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Abstract – In Intelligent Transport Systems, traffic management and providing stable routing paths between vehicles using 
vehicular ad hoc networks (VANET's) is critical. Lots of research and several routing techniques providing a long path lifetime have 
been presented to resolve this issue. However, the routing algorithms suffer excessive overhead or collisions when solving complex 
optimization problems. In order to improve the routing efficiency and performance in the existing schemes, a Position Particle Swarm 
Optimization based on Fuzzy Logic (PPSO-FL) method is presented for VANET that provides a high-quality path for communication 
between nodes. The PPSO-FL has two main steps. The first step is selecting candidate nodes through collectively coordinated 
metrics using the fuzzy logic technique, improving packet delivery fraction, and minimizing end-to-end delay. The second step is 
the construction of an optimized routing model. The optimized routing model establishes an optimal route through the candidate 
nodes using position-based particle swarm optimization. The proposed work is simulated using an NS2 simulator. Simulation results 
demonstrate that the method outperforms the standard routing algorithms in packet delivery fraction, end-to-end delay and 
execution time for routing in VANET scenarios. 
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1. INTRODUCTION

VANETs have recently attracted attention for their 
ability to enable inter-vehicle communications. As a 
result, efficient routing is one of the methods for im-
proving vehicular traffic safety. Ad hoc On-demand Dis-
tance Vector adaptation in the Virtual Node layer (VNA-
ODV) [1] improves packet delivery fraction and latency. 
However, with so many messages to send, so much 
overhead, and so many collisions, the network lifetime 
was reduced. [4] proposes FB QoS-Vanet, a QoS-based 
routing protocol that accommodates applications 
with QoS requirements. Long Lifetime Anypath (LLA) 
[16] was created to address connection link stability, 
ensuring stable communication pathways to reduce 
overhead and extend the network's life. Clustering and 
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cluster-based routing techniques were described in [2] 
to obtain a higher delivery ratio and much lower over-
head for delay-tolerant networks. In [7], a novel poly-
nomial-time sequential topology inference algorithm 
was designed to reduce probing overhead and handle 
node dynamics.

According to recent experiments, multi-path fading 
and co-channel interference influence packet delivery 
in wireless mesh networks. [9] proposed a Cross-Layer 
Channel Adaptive Routing protocol to improve chan-
nel and transmission rate. Aside from significant routes, 
path maintenance and latency were also considered, 
which identified and corrected the point of failure be-
fore performing recovery action. However, increased 
scalability posed severe threats to energy consump-
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tion. To address energy consumption issues, [21] de-
signed an energy-aware clustering algorithm that ad-
dressed energy consumption and improved network 
lifetime. The method described in [15] is applicable 
in dynamic network conditions and compatible with 
both vehicle-to-infrastructure and vehicle-to-vehicle 
communication modes. The authors of [3] designed a 
bi-objective optimization formulation to analyze link-
stability to ensure energy-aware routing in distributed 
wireless networks. [5] developed a stochastic model 
with a density-dependent velocity profile for optimiz-
ing both transport and communication networks. [14] 
proposed interference-aware routing based on passive 
measurements to improve routing efficiency. In [10], 
the authors investigated some traditional features of 
the particle swarm in search of properties.

We propose Position Particle Swarm Optimization with 
Fuzzy Logic for vehicular ad hoc networks with correlat-
ed metrics, the cores of a Collective Coordinated Fuzzy 
Logic algorithm and a Position-based Particle Swarm 
Optimization algorithm in this paper. The Collective 
Coordinated Fuzzy Logic algorithm selects candidate 
nodes by considering correlated metrics, bandwidth, 
node energy, and mobility to improve packet delivery 
fraction in VANET. A position-based particle swarm opti-
mization algorithm is proposed to reduce the execution 
time during routing, which improves the efficiency of 
routing in VANET by eliminating the inertial weight and 
control coefficients in PSO. As a result, it can enhance 
VANET routing efficiency and extend network lifetime.

The remainder of the paper is structured as follows: 
section 2 reviews some related works on routing algo-
rithms. section 3 suggests using fuzzy logic to optimize 
position particle swarms, and section 4 contains a de-
tailed description of the simulation results as well as 
discussions. Finally, section 5 brings the work to a close.

2. RELATED WORKS 

The works of literature related to link correlation and 
data acquisition concerning routing are described in 
this section.  A novel link correlation aware opportu-
nistic routing scheme was designed in [18] by applying 
link correlation metrics. In [13], a framework for secure 
and data acquisition methods was presented using 
advanced encryption standard. Another acknowledge-
ment-based broadcast protocol was investigated in 
[17] using connected dominating sets to provide high-
er reliability and message delivery. 

Recently, VANETs have emerged as one of the most 
demanding research areas, ensuring safety in Intel-
ligent Transport system networks. In [8], a Trajectory-
based Statistical Forwarding scheme was presented 
in the road network that ensured data forwarding and 
reduced the packet delivery delay fraction through an 
optimal rendezvous point. However, with the increas-
ing number of vehicles, the routing overhead also 
increased. To reduce the routing overhead, In [22], a 

neighbour coverage-based probabilistic rebroadcast 
protocol was designed aiming at reducing the number 
of retransmissions. In [6], a machine learning-based 
adaptive routing protocol was developed based on re-
inforcement learning for underwater sensor networks.

Geographic routing is attractive since the routing 
state needed for greedy forwarding at each node is 
highly based on the network size. In [11], a geographic 
routing protocol for d-dimensional spaces was in-
vestigated to reduce the node churn rate. In [20], op-
portunistic routing was considered to estimate the 
traffic flow density based on the road traffic flow and 
geographic topology. Robust routing and scheduling 
mechanisms designed in [19] in dynamic conditions 
aim to improve routing efficiency. Another method to 
address reliable packet delivery using beacon distance 
vector-based global routing and distance vector-based 
local routing was designed in [12] to achieve scalability 
and efficiency in a wide range of scenarios.

3.  POSITION PARTIClE SwARm OPTImIzATION 
wITh Fuzzy lOgIC(PPSO-Fl)

The proposed PPSO-FL focuses on enhancing the 
routing operations in VANETs, with the amalgamation 
of collectively coordinated metrics and position-based 
particle swarm optimization. In this section, a routing 
operation is described by starting with a network mod-
el, followed by Fuzzy Logic-based Candidate node Se-
lection, and finally, ends with an optimal route through 
Position-based Particle Swarm Optimization. 

3.1. NETwORK mODEl

Let us consider a unidirectional network of length 'l'. 
For vehicles' V= v1 , v2 ,…,vn' on the network, there oc-
curs 'D' discrete speed levels with speed 'vi' seen by the 
observer as 'λi'. Therefore, the overall vehicle arrival rate 
is expressed as given below:

(1)

With the above vehicle arrival rate 'VAR', the prob-
ability of occurrence of speed 'vi' is expressed as given 
below:

(2)

Let us now model a network topology in the form of 
a graph' G=(V,E)'. Here, vehicles (referred to as nodes) 
represent vertices set 'V={vi}' and links to the set of 
time-dependent edges 'E={eij}' with every node having 
the same transmission radius 'R'. An edge 'eij' is said to 
exist if the distance 'Distij' between two nodes'vi' and 
'vj' is less than or equal to 'R' and is expressed as given 
below:

(3)

The problem lies in designing an optimized routing 
method elaborated in the forthcoming subsections 
with the above network model.
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3.2. Fuzzy BASED CANDIDATE SElECTION 

The PPSO-FL uses collectively coordinated metrics, 
including bandwidth, node energy, and mobility of the 
node, to identify the feasible links between the nodes 
using the candidates. The efficient nodes from the set 
of nodes in VANET are selected as candidates. This se-
lection is made based on the improved bandwidth 'BE' 
rate, possessing high energy 'E(T)' and low mobility 
'DRij' pattern using a fuzzy logic model. Fig. 1 shows a 
simple fuzzy logic model for candidate node selection.

Fig. 1 Candidate node selection using  
the fuzzy logic

Once the network is deployed with the nodes, each 
node broadcasts a 'HELLO' packet to its neighbour 
nodes. The broadcasted packet includes the source 
node identifier 'vi', Destination node 'vn' and the collec-
tive coordinated metrics bandwidth 'v(B)', node energy 
'v(E)' and mobility of the node 'v(M)' respectively, as 
shown in Fig. 2.

Fig. 2 Format of hello message

The candidate nodes are ascertained with the aid of 
the fuzzy logic model. Fig. 3 shows the process of Fuzzy 
Logic-based Candidate node Selection.

Fig. 3 Process of Fuzzy Logic-based 
Candidate node Selection.

As shown in Fig. 3, metrics bandwidth 'v(B)', node en-
ergy 'v(E)', and mobility of the node 'v(M)' are given as 
the input to the fuzzy model. Whenever a source node 
in the network needs to transfer message packets to 
the destination node, the PPSO-FL evaluates the lo-
cal bandwidth 'B' based on the transmission range of 
neighbours 'R(vi)'. Thus, the node monitors the trans-
mission channel, measures the bandwidth estimation, 
and is expressed below:

(4)

From (4), the bandwidth 'BE' is measured based on 
the product of transmission channel capacity 'TCC' and 
the ratio of the idle time 'Tidle' to the overall time 'Ttot'. 
Once the bandwidth is estimated, the node energy is 
evaluated. Let us consider a node with initial energy as 
'Ei', then, the energy consumed over a period of time 'T' 
is expressed as given below:

(5)

From (5), the energy consumed 'E(T)' is the summa-
tion of the number of data packets transmitted, 'DPt' and 
received 'DPr' over some time 'T'. Finally, the node mobil-
ity of 'vi' concerning node 'vj' is evaluated based on the 
distance rate 'DRij' and is expressed as given below:

Where '(vi - vb)' and '(vb - vj)' are the Cartesian prod-
ucts of nodes 'vi' and 'vj' respectively with 'R' corre-
sponding to the transmission range. The fuzzification 
converts the numeric values to fuzzy values from the 
above-evaluated bandwidth rate (6), energy, and node 
mobility. Followed by this, the membership functions 
are evaluated as expressed below:

(6)

(7)

With the membership function measured using (7), the 
rule evaluation with higher bandwidth, node possessing 
high energy and low mobility is expressed below:

The interpretation of the above rule is that higher 
bandwidth, energy, and low node mobility are a de-
sirable selection which yields a high collective coor-
dinated outcome. Finally, the PPSO-FL produces a nu-
meric result based on the output membership function 
called defuzzification and is expressed below:

(8)

From (8), a node with the maximum collective coordi-
nated outcome is selected as the candidate node. Fig. 4 
shows the Collective Coordinated Fuzzy Logic algorithm.
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Fig. 4 Collective Coordinated Fuzzy Logic algorithm

As shown in Fig.4, the Collective Coordinated Fuzzy 
Logic algorithm uses fuzzy logic for the candidate 
node selection. If the source node needs to send a 
data packet to the destination node in the network, 
the PPSO-FL initially calls the fuzzy logic that selects 
the candidate nodes through which the data packets 
are sent in VANET. In the PPSO-FL, the candidate nodes 
are selected using the Collected Coordinated metrics, 
namely, Bandwidth estimation, Node energy, and node 
mobility. The nodes with high bandwidth, high energy, 
and low mobility are selected as the candidate node 
through which the data packets are sent. As a result, 
the packet delivery fraction improves and the end-to-
end delay for route identification decreases.

3.3. POSITION-BASED PSO

Once the candidate nodes are identified, routing 
must be performed, which is one of the challenging 
tasks in VANET. Therefore, it becomes difficult to iden-
tify an optimal combination for the quality of service in 
VANET. By applying Particle Swarm Optimization, opti-
mal routing in VANET is easily measured. However, the 
control parameters in PSO play a major role with the 
slight differences in the control parameter that results 
in different performances. Hence, the PPSO-FL, Posi-
tion-based PSO is designed to minimize the dependen-
cy of the control parameters and therefore improve the 
efficiency of routing in VANET. 

Let us consider the (particles) candidate nodes 'CN' 
as a set of random solutions through which the source 
node 'vi' sends the data packets 'DPi' and finally reach-
es the destination node 'vn'. Each candidate node 'cni' 
is considered to be a potential solution (route) that 
moves in the search space (i.e. network with transmis-
sion range 'R') following the optimal candidate node. 

Each candidate is made up of two 'n' dimensional 
vectors, with 'n' representing the entire network's di-
mensionality, called the position vector 'pi', and velocity 
vector 'vi' are expressed as given below.

(9)
(10)

Where 'n' corresponds to the candidates in the net-
work. 

(11)

(12)

Where 'vvi' and 'pvi' corresponds to the velocity and 
position vector for the 'ith' candidate node in the net-
work. In (11), 'Pbest' corresponds to the previous best 
candidate node whereas, 'G_best' represents the global 
best candidate node in the network with 'rn1' and 'rn2' 
corresponding to the random numbers. Inertial weight 
is denoted as 'ω' whereas, 'ac1' and 'ac2' represent the 
acceleration coefficient values. 

(13)

Where the position of 'Pbest' and 'Gbest' is expressed in 
(13). Based on the convergence characteristic of PSO, 
the PPSO-FL uses Position-based PSO (PPSO), each par-
ticle (i.e. candidate nodes) only has a position vector 
and eliminates the velocity vector. Therefore, PPSO in 
the PPSO-FL eliminates the parameters, 'ω, ac1 and ac2', 
minimizing the execution time for routing. The updat-
ed positional value based on the PPSO-FL using PPSO 
is expressed as given below.

Where 'M (*)' corresponds to the updated positional 
value based on the average '(Gbest+Pbest)/2' and stan-
dard deviation '|Gbest, Pbest|' respectively. Let us consider a 
source node 'S', candidate nodes 'v1, v2, v3, v4, v5, v6, v7, v8, 
v9, v10, v11' through which the data packets 'DPi' has to be 
sent to the destination node 'D' respectively. Fig. 5 shows 
the construction of the optimized routing model using 
PPSO with three possible routes identified.

As shown in Fig. 5, three routes exist between the 
source node 'S' and destination node 'D'. They are (i) 
route 1: 'S → cn1→ cn2 → cn8 → D', (ii) route 2: 'S → cn3 → 
cn5 → cn6 → D' and (iii) route 3: ' S→ cn4 → cn7 → cn9 → 
cn10 → cn11 →D' respectively. By applying the proposed 
PPSO, the optimal route is 'S→ cn3→ cn5→cn6→D'.

(14)

(15)
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Fig. 5 Construction of optimized routing model

Fig. 6 shows the PPSO algorithm, aiming at improv-
ing the identification of optimal routes by the candi-
date nodes, therefore improving the routing efficiency 
in VANET.

Fig. 6 PPSO Algorithm

In this paper, a position-based particle swarm optimi-
zation algorithm by evaluating the candidate nodes is 
presented. Using the optimal candidate node and ran-
domly adjusting the candidate nodes, the particles' iner-
tia is heterogeneous. The diversity of learning between 
the particles (i.e. candidate nodes) is increased, and the 
candidate nodes quickly identify the optimal solution, 
which in turn paves the way for routing efficiency.

4. SIMULATION AND RESULTS ANALYSIS

An extensive simulation has been performed to in-
vestigate the proposed PPSO-FL routing optimization. 
The results outcomes have been compared against the 

two existing routing algorithms, namely, Virtual Node 
Ad hoc On-demand Distance Vector (VNAODV) [1] and 
Long Lifetime Anypaths (LLA) [16].

4.1. SImulATION ENVIRONmENT 
  AND PARAmETERS

NS-2.35 network simulator has been used in the 
simulation of the PPSO-FL method. NS-2 simulator has 
been used to create mobility log files with the simu-
lation parameters listed in Table 1. Once the network 
is deployed with maximum traffic flow based on the 
simulation parameter listed, the simulation has been 
performed in different VANET scenarios

Table 1 Simulation parameters

Parameter Value

Node density 10, 20, 30, 40, 50, 60, 70

Simulation area 2000m × 2000m

Vehicle speed 15 m/s

Transmission range 300m

Transmission rate 4Mbps

Data packet size 1000 bytes

Simulation time 1400s

Vehicle speed 1.4 – 16.7 m/s

4.2. PERFORmANCE mETRICS

Packet Delivery Fraction (PDF): routing efficiency is 
defined as the total number of data packets sent into 
the network for every successfully delivered data pack-
et.  In other words, the PDF, a measure for routing ef-
ficiency, is the ratio of total data packets received over 
total data packets sent by the source during the simu-
lation period. PDF characterizes the correctness of the 
routing optimality.

(16)
Where the 'PDF' is obtained using the data packets 

received 'DPr' and sent 'DPs'. 

End-to-end delay: The average end-to-end delay is 
the average time needed to transfer a data packet from 
the source vehicle (i.e. node) to the destination vehicle. 
The lower is the end-to-end delay, the better the ap-
plication performs.

(17)

Execution time during routing: The execution time 
for routing is the time taken for obtaining a route path 
concerning different routes in the network.

(18)
Where the execution time 'ET' is measured using the 

number of routes'Ri' identified to the time taken for 
routing 'Time (Ri)'.
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4.3. RESulT ANAlySIS

The results in Table 2 show that the proposed PPSO-
FL method outperforms the two existing methods 
VNAODV [1] and LLA [16] in terms of packet delivery 
fraction. It is noteworthy that the proposed PPSO-FL 
method considers collectively coordinated metrics 
concurrently, whereas the existing methods VNAODV 
and LLA, consider a single objective. 

When the data packets are of equal size, the pro-
posed PPSO-FL method outperforms the compared 
VNAODV and LLA in packet delivery fraction. Because, 
collectively coordinated metrics such as bandwidth, 
node energy, and node mobility in finding candidate 
nodes in the PPSO-FL result in a higher packet delivery 
fraction. Due to reactive and any path routing for indi-
vidual vehicles, the packet delivery fraction of VNAODV 
and LLA improves with increasing data packets. As a 
result, PPSO-FL outperforms VNAODV and LLA in can-
didate node selection and packet delivery fraction. The 
result shows that the PPSO-FL method maximises the 
packet delivery fraction by 9.84% more than VNAODV 
and 23.92% more than LLA. 

Table 2 Performance analysis of packet delivery 
fraction

Data Packets Packet Delivery Fraction (%)

PPSO-Fl VNAODV llA

8 89.35 78.29 65.32

16 91.48 83.38 70.23

24 93.25 86.15 74.19

32 88.49 78.39 65.28

40 90.21 81.11 68.37

48 93.17 85.07 72.14

Fig. 7 Measure of end to end delay

Fig. 7 shows the end-to-end delay for different packets 
transmitted by 60 different nodes. When the speed and 
density of the data packet increase, the frequency topol-
ogy changes also increase. Frequent route reconstruc-

tion increases control overhead, potentially increasing 
congestion rate and packet collisions. Fig. 7 shows that 
the PPSO-FL method effectively reduces end-to-end 
delay, particularly when the speed is high, and the size 
of data packets is small. The topology changes fast as 
the speed increases, and thus the size of data packets 
increases, increasing the end-to-end delay. However, 
compared to the existing VNAODV and LLA, PPSO-FL 
shows significant improvements. The VNAODV and LLA 
fail to incorporate the rate of bandwidth, node energy, 
and mobility in route selection, resulting in this improve-
ment.  They provide longer delays if the size of the data 
packet is large. The fuzzy-based candidate selection 
method is used in the PPSO-FL method to select the can-
didate nodes, reducing route rediscovery. As a result, the 
PPSO-FL method produces the lowest end-to-end delay 
by 21.34% compared to VNAODV and 35.60% compared 
to LLA, respectively. 

Fig. 8 Measure of execution time

In Fig. 8, we evaluate the execution time for routing 
using the three methods PPSO-FL, VNAODV, and LLA 
that presents the relationship between execution time 
and the number of routes identified. The results proved 
that packets routed through PPSO-FL require fewer 
candidate nodes to reach a destination than state-of-
the-art routing protocols. The Position-based PSO that 
eliminates the dependence of parameters, 'ω, ac1 and 
ac2' with direction toward the destination in-network, 
results in better performance, reduces the execution 
time for routing using PPSO-FL by 14.69% compared to 
VNAODV and 30.99% compared to LLA.

5. CONCluSION

In this paper, we have designed a Position Particle 
Swarm Optimization with Fuzzy Logic (PPSO-FL) meth-
od for VANETs, leveraging the collectively coordinated 
metrics instead of instantaneous velocity. Furthermore, 
when determining the candidate node, the proposed 
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method takes into account the maximum collective 
coordinated outcome. A practical solution is provided 
utilising position-based PSO based on the approach, 
ensuring optimal routing based on the converging 
characteristic of PSO. Because, packet delivery fraction 
is the essential element impacting routing efficiency of 
all parameters, precisely calculating this value is criti-
cal. We used updated positional values to remove the 
control coefficients, resulting in optimal routing that 
avoided the effects of rapid velocity changes. The sim-
ulation results show that, when compared to previous 
research, the suggested algorithm increases the packet 
delivery fraction for various numbers of routes and 
packets. The proposed model has a better performance 
in terms of execution time and end-to-end delay. 
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