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Abstract – Humans observe and infer things in a disentanglement way. Instead of remembering all pixel by pixel, learn things with factors 
like shape, scale, colour etc. Robot task learning is an open problem in the field of robotics. The task planning in the robot workspace with 
many constraints makes it even more challenging. In this work, a disentanglement learning of robot tasks with Convolutional Variational 
Autoencoder is learned, effectively capturing the underlying variations in the data. A robot dataset for disentanglement evaluation is 
generated with the Selective Compliance Assembly Robot Arm. The disentanglement score of the proposed model is increased to 0.206 
with a robot path position accuracy of 0.055, while the state-of-the-art model (VAE) score was 0.015, and the corresponding path position 
accuracy is 0.053. The proposed algorithm is developed in Python and validated on the simulated robot model in Gazebo interfaced with 
Robot Operating System. 
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1. INTRODUCTION

With the emergence of Artificial Intelligence (AI), tra-
jectory planning in robotics has been solved for many 
scenarios with different methods [1]. However, task 
planning with generative models is still because of the 
complex nature of the joint trajectory, joint constraints, 
self-collision and collision with the workspace objects. 
Numerous problems in robotics are solved based on 
reinforcement learning, established in real-time feed-
back from sensors. Serial manipulator robots possess 
multiple joints and links where each joint is controlled 
by one or many actuators using link actuator signals. 
Numerous models propose modelling the lower-di-
mensional joint values with sensory feedback. This ap-
proach models are an open-loop higher-dimensional 
abstraction of the lower-dimensional joint values.

Generative models are best suited for generating 
data from the same distribution. Generative Adver-
sarial Network (GAN) [2] and Variational Autoencoder 
(VAE) [3, 4] are the two most common forms of gen-
erative deep learning networks. VAEs were picked be-
cause their training is more stable than GAN (no mode 
collapse). VAE has two models, namely encoder and 
decoder. The encoder maps the input into a higher-
dimensional latent space, and the decoder rebuilds it. 

Volume 13, Number 7, 2022

Fig. 1. The Proprioception intelligence model for 
human and robots. Higher and lower-dimensional 

space exists in the nervous system and DNN for 
human and robots. Lower dimensional signals 

directly control the joints using the motor signals.

Proprioception is the ability of a human to sense 
position, orientation, joint angle etc. If a robot model 
has these features? Fig. 1 shows the model of a human 
drawing an image on paper blindfolded and a robot 
without any visual feedback - both project the higher 
dimensional planning to lower-dimensional action.

A change in an independent factor in a higher di-
mension only affects a single factor in output is called 
disentanglement [5]. Disentanglement representation 
of data has been getting more critical in the machine 
learning community in recent years. The human brain 
coded each object based on colour, shape, size, etc.; 
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similarly, if the robot can learn the task’s underlying 
nature, human interpretability, predictive performance 
and compressed representation will benefit.

In the proposed disentanglement robot model, the 
encoder generates the mapping function from lower 
dimensional raw trajectory data to higher dimensional 
representation, and all the interpretable higher-dimen-
sional vectors generate the mapping function from 
higher-dimensional representation to lower-dimen-
sional motor signals in the decoder, which encapsu-
lates all the kinematics complexities, sequence, and 
task information. The main contributions in the work 
are as follows

•	 The model generates a generative model for ro-
bot task planning

•	 Human interpretable, disentangled latent space 
is learned by the model, which is an effective 
way to make new data from the underlying fac-
tors of variations.

The rest of the paper is organised as follows. Section 
2 explains related works in the field; Section 3 describes 
the system implementation for disentanglement rep-
resentation. Section 4 presents the simulation setup. 
Section 5 discusses the results obtained, and Section 6 
explains the conclusions.

2.  RELATED WORK

Disentanglement models generate data from the 
independent factors of variation. Since βVAE [6], dis-
entanglement learning is getting strong community 
attention. Disentanglement learning is divided into 
supervised and unsupervised. The supervised method 
needs the dataset to contain all the factors of varia-
tions. Supervised and unsupervised disentanglement 
models gain much attention in the image, audio and 
video domains. Most real-world datasets do not have 
variation factors, so the proposed work implements 
the unsupervised model. 

Disentanglement in robotics usually processes the 
input image and learns the disentanglement on those. 
Y. Hristov et al. [7] presented the robot learns from 
demonstrations from the captured scene. Mobile ro-
bot path planning and execution are demonstrated 
with disentanglement scene representation by V.A.K.T 
Rajan et al. [8]. Learning the changing surroundings by 
mobile robots in [9, 10] uses image-based disentangle-
ment. M.Wulfmeier et al. [9] represent an improved re-
inforcement learning approach for better perception 
and exploration with the help of disentanglement. J. 
Pajarinen et al. [11] presented a probabilistic approach 
to disentangle the objects from an image and waste 
sorting using the state of the art machine learning al-
gorithms with a robotic arm. M. Zolotas et al. [12] pre-
sented a robotic wheelchair that uses a disentangled 
Variational sequence encoder for trajectory planning 
and execution with a joystick and laser scanner inputs. 

Robot disentanglement models produce closed-loop 
control systems with cameras, sensors, user inputs, or 
combinations. The proposed implementation uses an 
open-loop control system, which learns and produces 
the task without feedback.

3. SYSTEM IMPLEMENTATION

The robot trajectory contains the sequence of mov-
ing joint values. Each channel in the data includes a 
single joint motion and collectively moves to achieve 
a particular goal. The data is recorded in a simulator/
emulator environment and used as the dataset. 

Fig. 2. The Variational Autoencoder model 
architecture for 1-D robot task sequence data.

3.1. ThE PROPOSED NETWORK  
 ARChITECTuRE

Autoencoder (AE) network consists of two networks 
named encoder and decoder. One dimensional Con-
volution layer captures the hidden features in the data 
and generates the model. The architecture is portrayed 
in Fig. 2. CNN learns features from the raw data while 
training, sparsely connected layers make it more effi-
cient to learn large networks than the densely connect-
ed Multi-Layer Perceptron (MLP). Also, they have low 
computational requirements and are immune to small 
changes in translation, scaling and distortion in the in-
put. Hence 1-D CNNs are used for learning the underly-
ing data structures of robot tasks with non-linear Rectifi-
er Linear Unit (ReLU) activation functions (max(0, x)). The 
initial layers of the encoder network learn the simple 
joint-trajectory features in its kernels, and the higher 
layers model the complex task level representation.

Parameter Link1 Link2 Link3 Link4

Link length (a) 0.45 m 0.45 m 0 0

Link Twist(α) 0 π 0 0

Joint distance(d) 0 0 d3 0

Joint Angle(θ) θ1 θ2 0 θ4

Table 1. DH parameters of SCARA robot.



Volume 13, Number 7, 2022 563

The decoder network/generative network uses the 
transposed convolution layers to model the latent di-
mensional vector into the robot task data. The proba-
bilistic nature of the model makes it a generative net-

work for robot-task data. The model is trained using a 
variant Stochastic Gradient Descent optimiser called 
Adam, which is relatively computationally efficient and 
less prone to noise.

Fig. 3. The disentanglement robot task dataset generation. a) Input path generated using interpolation 
of points and selected using a multiplexer module, b) 2D vector transformation module with translation, 

rotation and scaling operations c) The generated trajectory is shown - grey colour represents the canvas d) 
Robot trajectory generation module e) The generated joint values f ) Task space path is plotted by applying 

forward kinematics to the joint-values g) stored in a dataset.

Factor Values Count

Shape Circle, Square, Triangle, Star 4

Scaling 0.5, 0.6, 0.7, 0.8, 0.9, 1. 6

Orientation 0, 9, 18 … 351 40

Position_x -70.0, -68.5 … 70 32

Position_y -70.0, -68.5 … 70 32

Total configurations 983040

Table 2. Factors of variation

3.2. SIMuLATION SYSTEM DESIgN

Selective Compliance Assembly Robot Arm (SCARA) 
[13] is a 4-degree of freedom (DOF) serial manipulator 
robot used in the proposed work. The simulated model 
of the SCARA robot is developed as a physical linkage 
system with a Unified Robotics Description Format 
(URDF) file based on Denavit–Hartenberg (DH) [14] 
parameters described in Table 1. Robot Operating Sys-
tem (ROS)[15] interfaced with Gazebo simulator with 
Open Dynamics Engine (ODE) physics engine is used 
for simulating the model with joint, link, visual and col-
lision parameters in the URDF file. Since the simulator 
is computationally complex, a low-footprint kinematics 
model is also developed with the robotics toolbox for 
Python [16] for evaluating the model performance in 
the evaluation phase. 

Considering X∈ {xi} as input and Z∈ {zi} as the latent 
space vector in the network, Evidence Lower Bound 
(ELBO) [3] in VAE is defined as

(1)

where p(X|Z) and p(Z|X) are two probability distribu-
tions. The term E[logp(X|Z)] represents the reconstruc-
tion and DKL [q(Z|X)||p(Z)] represents the similarity 
between the two probability distribution. The goal of 
the network is to maximise the ELBO, i.e., maximise the 
similarity while keeping the prior and posterior distri-
bution closure as possible.

The model ϕ and θ represent the weights and biases 
of the probabilistic encoder and decoder, respectively, 
and its corresponding distribution is defined as qϕ (z|x) 
and pθ (x|z). The final objective is to minimise the loss as

(2)

The gradients cannot backpropagate since the sam-
pling operation exists in the model. Re-parameterisa-
tion trick is used to model the z as

z = μ + σ ⊙ ϵ (3)
where fully connected layers model the mean (μ) and vari-
ance (σ) of the prior representation pθ (z) and a sampling 
layer with a sampling normal vector (ϵ∼ N(0,1)) is utilised. 
(⊙ represents element-wise product) The latent vector 
is called codes in disentanglement representation. The 
compressed human interpretable vector is learned - each 
robotic task generated with varying human interpretable 
factors like position, orientation, constraints etc. 
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Adding more importance to the KL loss term in equa-
tion 2 with a new-hyper-parameter β(> 1) will enhance 
the divergence factor and improves the disentangle-
ment performance. The network is called βVAE, and the 
new loss is given by,

(4)

As the β increases, the representation becomes more 
suitable, but the reconstruction loss increases, leading to 
lower precision in robotic tasks, which is not advisable.

4. SIMuLATION SETuP

4.1 DATASET

Disentanglement testing Sprites dataset (dSprites) 
[15] is a popular dataset with images and its underlying 
factors of variations. The robot version of the dSprites-
like dataset is developed using the SCARA robot with 
a straightforward task - "draw a shape on a canvas", as 
shown in Fig. 3. Four different shapes were picked - box, 
circle, triangle and star. Each shape creates multiple in-
stances by varying the independent factors – Position (x, 
y), scaling (s), and rotation (θ). The transformation is ac-
complished by using a 2D vector algebra equation.

The dataset preparation is carried out in two steps. The 
task space trajectory is generated using the transforma-
tion metric in the first phase and the generation of the 
joint space trajectory in the second phase. Four basic 
shapes are selected in the first phase - circle, square, tri-
angle and star. The vector drawing of each shape is gen-
erated using linear algebra equations. Then interpolate 
the points in the shape and create a sequence in the task 
space of the robot canvas. Each point is transformed us-
ing the equation 

Fig. 4. The disentanglement robot task dataset generation (equidistant samples) of a sample  
(drawing a star).  a) ROS robot visualisation (Rviz) with end-effector movement is shown, b) Gazebo simulated 

robot, c) The generated trajectory in three-dimensional space is shown d) Generated plot in canvas.

(5)

where x, y, θ and s represent independent factors of 
variations, xi, yi represents the position points in the 
generated trajectory. 

The xoffset, yoffset, zoffset and scanvas projects the points into 
the robot workspace and the  points on the robot task 
space obtained as (xo /so, yo/so, zo /so). 

The values represent the 2D representation of the task 
as plotted on a canvas, as shown in Fig. 4d. Then the 
values are translated into the robot workspace, which 
will be the 3D representation shown in Fig. 4c. The ro-
bot trajectory points in Robot visualization (Rviz) and 
gazebo simulator are shown in Fig. 4a and Fig. 4b.

All possible combinations of the factors of variations 
are generated, as shown in Table 2. The total configura-
tions are estimated as

(6)

The Robot Trajectory generation uses Cartesian plan-
ners available in the Moveit planning library [18]. The 
generated trajectory is post-processed to remove outli-
ers, and the dataset is created for the training.

Each configuration ci ∈ Ctotal is taken and generated, 
the task space path using a 2D vector transformation 
block with equation 5. The robot Trajectory generation 
module plans the trajectory and appends it to a dataset. 
The dataset is normalized based on the corresponding 
joint limits in the post-processing phase. 

The generated task is stored with the corresponding 
factors and metadata in the database. The data filtering 
and outlier removal were done by using Python scripts.

4.2 RObOTICS METRICS

Accuracy and repeatability are the two most com-
mon evaluation metrics for robot performance defined 
in ISO 9283:1998 [19]. Each is calculated by generating 
n data points. Path position accuracy and repeatability 
are computed as the maximum pose position accuracy 
and repeatability value.
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4.3 DISENTANgLEMENT METRICS

Each independent element in the labelled data is 
called a factor, and the varying independent variables 
in the latent space are called codes. There is no proper 
way to measure true disentanglement, completeness 
and informativeness, but the literature suggests many 
metrics to rely on. βVAE score is one of the first metrics 
to evaluate the disentanglement’s performance, also 
called the z-min variance score. Later many methods 
were suggested with different advantages.

βVAE [6] and FactorVAE [20] are some of the initial dis-
entanglement representation methods which measure 
the variance in codes. Mutual information Gap (MIG) 
[5] is used to evaluate the disentanglement by using 
the mutual information between the true underlying 
factors and generated codes, which uses the difference 
between the most prominent two variations. jemmig is 
introduced in [21], which measures the modified MIG 
score, including all the factors of variation instead of 
top2 as in MIG score.

Later disentanglement is represented using three 
terms disentanglement, completeness and informative-
ness (DCI) [22]. DCI run k linear repressor and evaluates 
the metrics. Disentanglement represents the amount of 
disentangling the underlying data variations. Complete-
ness measures the amount of data a single variable cap-
tures, and informativeness represents how informative 
the latent vector is. Disentanglement library functions 
are used for evaluating the metrics [23]. 

Fig. 5. The disentanglement score (MIG) vs. 
reconstruction error (MSE) plot for different models.

5.  RESuLTS AND DISCuSSIONS

In order to evaluate the performance, each model is 
trained for 100 epochs with a batch size of 128. The re-
sulting z (codes) is evaluated against the factors in the 
dataset and different metrics calculated for measur-
ing various disentanglement metrics. Fig. 5 represents 
the reconstruction loss (mean squared error) with a 
MIG disentanglement score of VAE and βVAE models 
with different beta values. βVAE models provide bet-
ter disentanglement by compromising reconstruction 
quality. The work aims to find the trade-off between re-
construction loss and disentanglement. The VAE model 

achieves a minimum reconstruction metric (3.4x10-5 m), 
with a better reconstruction loss but poor disengage-
ment (MIG score = 0.015). βVAE(β=5) model has a better 
disentanglement score of 0.206 and a reconstruction er-
ror of 2x10-4 m. The figure shows that the βVAEβ=10  model 
has a slightly greater MIG score (0.207) than the βVAEβ=5 
model, but has a higher reconstruction error of 4.9x10-

4 m. For the performance evaluations, models in VAE, 
βVAEβ=5 and βVAEβ=10 are considered.

The evolution of disentanglement metric and recon-
struction error over epoch are shown in Fig. 6. MIG met-
ric shows a massive improvement over traditional VAE 
models but will affect the reconstruction performance. 
As MIG is not directly linked with the loss function, it 
does not monotonically increase. Fig. 7 shows the re-
construction performance of models, and the corre-
sponding evaluation metrics are shown in Table 3.  

Fig. 6. The evolution of MIG score metric and 
reconstruction loss (MSE) for different models

Fig. 7. The reconstruction performance of different 
models - input, VAE, βVAE (β=5), βVAE (β=10).

In order to evaluate the repeatability, input and recon-
structed images are plotted in Fig. 8 in the first and second 
rows, respectively. Joint space reconstruction error in VAE, 
βVAEβ=5 and βVAEβ=10 are 4.4 x 10-4 ± 1.7 x 10-4 m, 5.4 x 10-4 
± 4.9 x 10-5 m and 3.5 x 10-3 ± 2.1 x 10-4 m respectively. 
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And the corresponding robot task space loss (com-
puted by applying forward kinematics) is 8.9 x 10-4 ± 
2.6 x 10-4 m, 3.3 x 10-4 ± 5.7 x 10-5 m and 2.3 x 10-3 ± 2.1 
x 10-4 m respectively. The joint space loss is less in the 
case of VAE model, but the tasks space loss is lower in 
βVAEβ=5  model. It is because of the non-linear forward 
kinematics conversions. The latent dimensional trans-
versal representation of the best-performing model is 
depicted in Fig. 8, rows 3-12. 

Each row shows the transversal of only one code, and 
the decoded  the plot  is shown. Fig. 8a, Fig. 8b and Fig. 
8c show the transversal in VAE, βVAEβ=5 and βVAEβ=10 
models respectively with Gaussian reconstruction loss. 
While considering the VAE model in Fig. 8, the 5th and 
6th rows show y position transversal and the 5th and 9th 
rows show x position transversal. Rows 10th and 11th 
produce similar instances over the changes in the cor-
responding code.

Fig. 8. The first row shows the input image, and the second row shows the corresponding reconstructed 
images for computing the repeatability of the model. Rows 3-12 show the latent transversal performance of 
the model. The latent transversal performance of each model, each row shows the code, and columns show 

the transverse in that particular code with all other codes kept constant. The fifth column in each figure 
shows the reconstructed instance and their transversals generated based on this.

Other rows produce some noise outputs. The βVAEβ=5 
in Fig. 8b shows x position, y position and orientation 
transversal in the 5th, 6th and 7th rows, respectively. Scal-
ing is embedded in code in the 3rd and 7th rows. Rows 
4th and 8th produce shape transversal, and code varia-
tion in 9th -12th rows does not produce much difference. 
The βVAEβ=10 in Fig. 8c produces position x, y and scale 
transversals in the 5th, 6th and 4th rows, respectively. The 
3rd and 8th rows encode code for shape, and rows 7, 
9-12 do not produce a visible output difference.

While analyzing the variations, the 5th row in the VAE 
model changes x and y positions and not all factors of 
variations are not encoded, while βVAEβ=5 and βVAEβ=10 
encodes the codes and has achieved a higher disentan-
glement score. It can be observed that the reconstruc-
tion performance is quite prominent in lower β values.

Generative models produce samples from a sample 
distribution, so each time it generates a new sample, it 
belongs to the same distribution, but some variations 
exist. It is the property of VAE which causes the varia-
tion in standard deviation. Table 3 shows the precision 
of different models. Robot tasks need to be precise 
and accurate. The higher value of standard deviation 

in Reconstruction loss, accuracy and repeatability are 
due to the generative nature of the model. Accuracy 
and repeatability are calculated in task space and the 
Reconstruction loss in the joint space of the robot. The 
non-linear kinematics operation produces variations 
between the reconstruction values and the robotics 
metrics. The model is executed 100 times and gener-
ates the plot sown in Fig. 9.

Model VAE βVAE (β=5) βVAE (β=10)

Rec_loss ↓(x10-3 m) 0.346 ± 0.345 2.085 ± 2.714 4.970 ± 7.019

Accuracy ↓ (m) 0.053 ± 0.013 0.055 ± 0.039 0.080 ± 0.065

Repeatability ↓ (m) 0.017 ±  0.002 0.030 ± 0.007 0.039 ± 0.010

MIG [14] ↑ 0.051 0.206 0.207

Disentanglement [37] ↑ 0.5 0.914 0.786

Completeness [37] ↑ 0.128 0.216 0.302

Informativeness [37] ↑ 0.122 0.213 0.21

jemmig [36] ↑ 0.192 0.297 0.292

βVAE score [15] ↑ 0.546 0.617 0.612

FactorVAE [16] ↑ 0.611 0.647 0.759

Table 3. Metrics considered.  
(↑ Means higher is better).
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Fig. 9. βVAEβ=5 model task space input and output representation in x and y axis is represented (top) and its 
corresponding accuracy and repeatability is plotted (bottom)

The performance analysis of different disentangle-
ment representations, losses and robot precision are 
listed in Table 3. Joint space reconstruction loss is 
lower in the VAE model. As the β value increases, re-
construction performance decreases. However, there 
is an allowed limit for each task’s precision and accu-
racy range. Optimization of β based on task nature and 
disentanglement required can be achieved by hyper-
parameter tuning. Literature shows that the βVAE and 
FactorVAE scores do not provide practically feasible 
metrics. This work uses the MIG score as the primary 
metric for evaluating disentanglement.

6. CONCLUSION

In this work, CNN-based Variational Autoencoder 
models have been utilized for disentanglement rep-
resentation of robot tasks. All the models have been 
trained on the robot disentanglement dataset pro-
posed. Popular disentanglement metrics such as MIG 
score, DCI, jemmig, VAE and FactorVAE scores are used 
to evaluate the model performance as well as robot 
accuracy and precision metrics. From various disentan-
glement metrics, it has been found that the underlying 
factors of variation in tasks learn better with disentan-
glement losses. The model has been found to generate 
disentanglement representation with a path position 
accuracy of 0.055, close to the VAE model (0.053) and 
better disentanglement of 0.206, which is far better 
than the state-of-the-art VAE model.  

The disentanglement generative models can be used 
as a supervised data generator for training deep learn-
ing models and can be directly used in robot task gen-
eration applications (e.g. Painting tasks).  
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