
A comparative study of hash algorithms
with the prospect of developing a CAN bus
authentication technique

741

Original Scientific Paper

Asmae Zniti
Sidi Mohamed Ben Abdellah University,
Faculty of Sciences and Technologies (FST), Laboratory of Signals, Systems and Components (LSSC)
Route d’Imouzzer, Fez, Morocco
znitiasmae@gmail.com

Nabih El Ouazzani
Sidi Mohamed Ben Abdellah University,
Faculty of Sciences and Technologies (FST), Laboratory of Signals, Systems and Components (LSSC)
Route d’Imouzzer, Fez, Morocco
nabih.elouazzani@usmba.ac.ma

Abstract – In this paper, the performances of SHA-3 final round candidates along with new versions of other hash algorithms are analyzed
and compared. An ARM-Cortex A9 microcontroller and a Spartan -3 FPGA circuit are involved in the study, with emphasis placed on the
number of cycles and the authentication speed. These hash functions are implemented and tested resulting in a set of ranked algorithms in
terms of the specified metrics. Taking into account the performances of the most efficient algorithms and the proposed hardware platform
components, an authentication technique can be developed as a possible solution to the limitations and weaknesses of automotive CAN
(Controlled Area Network) bus – based embedded systems in terms of security, privacy and integrity. From there, the main elements of such
a potential structure are set forth.

Keywords: Hash algorithms, SHA-3, ARM-Cortex A9, FPGA, Number of Cycles, Authentication, CAN Bus

1. INTRODUCTION

In modern technology, embedded devices are smart-
er, more autonomous and better connected. Therefore,
questions of information security are increasingly sen-
sitive and have become of an utmost importance.

Hash functions are used for data integrity confirma-
tion and as message authentication codes (MAC) or
hash message authentication codes (HMAC). There ex-
ist several families of Security Hash Functions such as
SHA-0, SHA-1, SHA-2, and SHA-3. In 1997, the National
Security Agency NSA detected a major flaw in SHA-0
and so a new, improved algorithm –SHA-1 – was de-
veloped. This one, however, also suffered from severe
cryptographic weaknesses and was later replaced by
SHA-2 in 2002. Although as of yet, no significant cryp-
tographic issue has been found in SHA-2, it was consid-
ered to be algorithmically too closely related to SHA-1.
Since SHA-0, SHA-1 and SHA-2 suffer from these same
limitations as well, we dismiss them, choosing instead
to address the SHA-3 finalists [1] (Blake, Skein, JH,
Grøstl, Keccak).

 A number of studies have been conducted to com-
pare the effectiveness of various hash algorithms. In
2013, R.K. Dahal et al. published a paper examining the
performances of the SHA-3 finalists in addition to the
widely used SHA-2 [2]. Their findings indicated that,
among the SHA-3 finalists, Skein and Blake were the
most effective while, according to digest length and
block size, Grøstl, Keccak and JH followed.

In 2015, R. Sobti and Ganesan G. Geetha provided
a performance evaluation of the SHA-3 finalists on
ARM Cortex A8-based devices [3]. The results showed
that Grøstl and JH were not efficient while Skein was a
better option for long messages. They also found that
Blake was a good option, as it outperformed Keccak for
both 224 / 256- and 512-bit hash.

In 2018, a similar comparison was carried out on the
ARM Cortex-M4 platform [4] with different results. Blake
is the best choice as it performs better than all the algo-
rithms for all message digests, regardless of the input
size. Skein is also a good second option if, for higher
security margins, we need a 512-bit hash instead of a
256-bit hash.

Volume 13, Number 9, 2022

742 International Journal of Electrical and Computer Engineering Systems

Numerous factors affect the performances of a hash
algorithm. For example, Skein may be a better choice for
long messages, while Blake may be better for short mes-
sages. It is important to consider the specific application
when choosing the appropriate hash algorithm since no
single algorithm is necessarily the best in all cases.

The proposed study provides a more comprehensive
and up-to-date comparison of hash algorithms by im-
plementing the SHA-3 finalists, as well as other newer
common hashing functions, such as Blake2, Shake,
Kangaroo Twelve and Blake3 on ARM cortex-A9 also
taking their speed performance on an FPGA platform
into consideration [5, 6]. As a result, the best algorithm
is determined and the validity of the speed is verified.

As a potential application, an enhanced automotive
CAN bus network [7] can be implemented based on a
new structure relying on an authentication technique
[8, 9, 10]. Considering the issue that a CAN bus lacks the
security features such as message authentication and is
therefore vulnerable to spoofing attacks [11, 12, 13], an
effective solution may consist in implementing a hash
process. Each message on the bus must be hashed with
a key using a hash algorithm to form a message authen-
tication code (MAC), thus allowing each node to check
the authenticity of a received message. The process is
mainly intended to generate two frames. The first deals
with the transmission of data, while the second manages
the authentication and filtering of unauthorized frames.

The structure of the paper is organized as follows. In
Section 2, we briefly describe the SHA-3 Hash Function
contenders. In Section 3, we present an overview of the
CAN bus along with the principle of an authentication
solution. Section 4 gives an outline of the methodology
and the tools used for evaluation. Section 5 is dedicated
to the hardware simulation results and performance
analysis. The hash algorithm applied to produce digests
is selected and the authentication time is calculated in
section 6. Finally, Section 7 provides the conclusion.

2. AVAILABLE HASH ALGORITHMS

2.1. SECURE hASh AlgORIThm

A secure hash algorithm (SHA) is a standard invented by
the National Institute of Standards and Technology (NIST)
[14], based on the Message Digest (MD5) algorithm [15].
As the SHA-1 algorithm has already been cracked and
SHA-2 proved to suffer from the same weaknesses, the
NIST launched a public competition in November 2007
to make out a new cryptographic hash algorithm called
SHA-3. In October 2012, NIST declared the Keccak algo-
rithm as the winner of the SHA-3 competition.

2.2. ThE ShA-3 fINAlISTS

Keccak [16] was chosen from a range of five very
strong candidates (Skein [17], Blake [18], Grøstl [19] and,
JH [20]). NIST stated in its final report [21], that all five fi-

nalists had acceptable performances, and that any of the
finalists would have represented an effective option for
SHA3. In terms of performances, the report noted that
some of the five algorithms operate well in software,
while others appear more efficient in hardware.

2.3. ThE BlAkE AlgORIThm fAmIly

Blake2 [22] is an improved version of Blake, provided
in 2012 after Keccak was selected as SHA3. Blake2 was
engineered to take full advantage of Blake’s strengths
and optimize it for modern applications. Blake2 comes
in two main types: Blake2b which is optimized for 64-
bit platforms and Blake2s for smaller architectures.

A successor of Blake 2, Blake 3 [23], created in 2020,
was developed to be as fast as possible. The compression
function of Blake3 is closely based on that of Blake2s.

2.4. ThE kECCAk AlgORIThm fAmIly

Shake was declared by NIST in August 2015 as a part
of the SHA-3 family. It combines two eXtendable Out-
put Functions (XOFs), Shake128 and Shake256.

Kangaroo Twelve [24] is another XOF based on a re-
duced number of rounds (12 rounds) of the SHA-3 per-
mutation function (Keccak [1600]). It is designed to be
faster than SHA-3 and Shake while maintaining its flex-
ibility and security.

3. CAN BUS OVERVIEW

3.1. CAN BUS pROTOCOl

The Controller Area Network (CAN) [7] is a serial com-
munication bus that operates according to a specific
standard for efficient and reliable information trans-
mission between sensors, actuators, controllers, and
other nodes in real-time applications.

On a CAN bus, the communication between differ-
ent Electronic Control Units (ECUs) is achieved through
four frames: data frame, remote frame, error frame, and
overload frame.

As an example, Fig. 1 shows all the fields that make up
the whole data frame. The data field length can reach
up to 8 bytes, depending on the Data Length Code
(DLC) word. A unique identifier is also assigned in order
to manage both data transmission priorities between
different nodes and filtering these upon reception. The
size of the Identifier field is 11 bits for CAN version 2.0A
and 29 bits for version 2.0B.

fig. 1. CAN data frame structure

743Volume 13, Number 9, 2022

3.2. CAN BUS lImITATIONS

As previously mentioned, the CAN bus is vulnerable
to attacks perpetrated by malicious codes, leading to
software damage and physical harm [25]. Amongst the
weaknesses, we find:

•	 Non-confidentiality and transmission of unen-
crypted messages, which animate replay attacks
and vehicle espionage.

•	 Absence of the authenticity and non-repudia-
tion, which allows attackers to send arbitrary
frames on the network or even transmit valid
messages to trigger certain actions.

•	 Integrity: An attacker is able to add, delete, or
modify any type of data carried by the relayed
message.

•	 Availability: By sending high-priority messages,
nodes are prevented from responding, which
causes a denial of service (DoS), and conse-
quently affects the system availability.

3.3. pRINCIplE Of AN AUThENTICATION
 TEChNIqUE

The fundamental idea depends on a system that
includes a monitoring node made from an FPGA,
equipped with a particular CAN controller, responsible
for authenticating each message by verifying the MAC,
generated by (1):

MAC=hash function (IDi,Di,FCi,Keyi) (1)

where IDi is the CAN-ID (11 bits), Di indicates the data
of the message i (64 bits), FCi represents a complete
monotones counter for the message i of 32 bits, and

fig. 2. Under-consideration communication
protocol

4. ALGORITHM IMPLEMENTATION

4.1. pROCEDURE DETAIlS

The flowchart in Fig. 3 shows the entire process of
analyzing and comparing the performances in terms of
the number of cycles and the execution time.

The algorithms of interest are run on an ARM Cortex
A9-based platform, ranked according to their perfor-
mances and compared to those obtained by means of
an FPGA circuit as described in [5, 6].

KEYi denotes the encryption key for the node i encod-
ed on 128, 256 or 512 bits.

Message data and the MAC are transmitted on two
separate frames.

The planned protocol, illustrated in Fig. 2, will consist
in computing the hash value by means of the CPU-based
nodes participating in the communication, and perform-
ing the authentication of each CAN packet thanks to an
FPGA-based monitoring node in charge of checking the
hash value already calculated with its source.

fig. 3. Evaluation process of performance

744 International Journal of Electrical and Computer Engineering Systems

4.2. ARm ImplEmENTATION DATA

Knowing that 32-bit microcontrollers are widely
used in embedded systems, particularly in the automo-
tive industry, and in order to carry out simulations as
closely as possible to real cases, the ARM Cortex A9 has
been chosen as a testing tool. Three input sizes are con-
sidered depending on key bit lengths according to (1).
The results are shown in Fig. 4.

fig. 4. Considered hash input sizes

In addition, running a hash algorithm on a Cortex
A9-based platform requires a specific number of cycles
regardless of the CPU frequency. As a result, the num-
ber of cycles is chosen as a metric for assessing perfor-
mance.

5. RESULTS AND ANALYSIS

5.1. ARm CORTEx A9-BASED SImUlATIONS

Table 1 presents the cycles needed for 256 hash size
of different algorithms taking three input lengths into
account.

Number of Cycles [cycles]

Algorithm Input size =
30 Bytes

Input size =
46 Bytes

Input size =
78 Bytes

Blake2s 13338 13180 21972

Blake 18866 18926 55376

Blake3 37002 69334 82278

Kangaroo Twelve 48320 83310 169190

Skein 256-256 64080 79646 79646

Skein 512-256 64152 64588 80190

JH 261690 261472 385978

Keccak 398660 398430 398976

Shake 558136 546286 547622

Grøstl 1682462 1690474 2789116

Table 1. Number of cycles for different input sizes

In this particular case of short inputs (less than 78
bytes), it is obvious that Blake2s and Blake outperform
all the other contenders, providing the best choice.

Indeed, the results show that Blake2s beats all the
other algorithms and presents the best speed of execu-
tion while Grostl comes in a distant last place in com-
parison to other candidates.

Therefore, in real-case applications such as automo-
tive networks, blake2s can be the core software code of
any improved data transmission protocol.

5.2. fpgA-BASED RESUlTS

 As described in [5, 6], the FPGA Spartan-3 is a hard-
ware platform that allows the considered hash algo-
rithms to be run, highlighting major performance pa-
rameters from which a substantial advantage for the
Keccak algorithm can be seen.

Table 2 mainly shows the results obtained through
the FPGA of the two chosen algorithms according to
the CPU and FPGA-based analysis.

Table 3 shows the total time needed to generate an
authentication message in this case.

Processing time (FPGA)= Input Size/Throughput

Processing time (CPU)=Number of Cycle/Frequency (2)
(3)

Table 3. Keccak and Blake2S performances

Algorithm Tclk
[ns]

Bloc
size Rounds Throughput [mbps] =

Blocsize / (Rounds*Tclk)

keccak 9.75 1088 24 4650

Blake2s 43.4 512 10 1179.72

processing time [μs]

Input size = 30
Bytes

Input size = 46
Bytes

Input size = 78
Bytes

A
lg

or
it

hm

ARm

Sp
ar

at
an

3

ARm

Sp
ar

at
an

3

ARm

Sp
ar

at
an

3

ke
cc

ak 597.69 0.05 597.35 0.08 598.16 0.14

Total = 597.74 Total = 597.42 Total = 598.30

Bl
ak

e2
s 20.00 0.20 19.76 0.31 32.94 0.53

Total = 20.20 Total = 20.07 Total = 33.47

With regard to the FPGA implementation, Keccak has
an advantage over Blake2s by providing the most suit-
able parameter values. Thus, Keccak is still considered
the most appropriate solution.

6. COMPARISON OF BLAKE2S AND KECCAK

As a last step in the analysis and comparison procedure
and from knowing the respective strength of Keccak and
Blake2s, the focus in this section falls mainly on the entire
processing time combining ARM and FPGA devices.

In the prospect of using an FPGA platform and CPU-
based circuits in a protected CAN bus system, the pro-
cessing time required by both components is com-
puted by means of (2) and (3) respectively, with a CPU
frequency of 667 MHz.

Table 2. Performances of Keccak and Blake on
Spartan-3 FPGA

745Volume 13, Number 9, 2022

We notice, from Table 3, that the CPU processing con-
tribution accounts for a large part of the total time for
both Keccak and Blake2s. In addition, Blake2s offers a
reduced message generating time ranging from 20 to
34 microseconds, which is 30 times faster than Keccak.

As a result, the use of the blake2s algorithm requires
a maximum total hash time of 33.47 microseconds. Al-
though the latency of a CAN message in automotive
systems is typically around a few milliseconds, a few
tens of microseconds is readily acceptable, as it would
not have a significant effect on the CAN communica-
tion latency.

7. CONCLUSION

In this paper, an evaluation has been applied to the
SHA-3 contenders’ algorithms through an ARM Cortex
A9 processor. A relevant comparison has also been
performed involving an FPGA implementation to de-
termine the fastest platform. From the standpoint of an
ARM evaluation, the comparison shows a substantial
win for Blake2s algorithm whereas Keccak offers excel-
lent performances on FPGA circuits.

However, it is demonstrated that the CPU-based plat-
form's impact on processing time is far more important
than that of FPGA-based circuits. The comparison be-
tween Keccak and Blake2s shows that the latter is more
likely to suit perfectly the targeted performances of the
planned security system.

The use of cryptographic algorithms in automotive
CAN bus systems can introduce limitations of comput-
ing speed related especially to the time response when
dealing with real-time demands. However, consider-
able room for improvement with respect to security
and data protection can be achieved thanks to the pos-
sibility of including a monitoring node along with the
application of the justifiably chosen Blake2s that can
contribute to a greater effectiveness.

This process is meant to be part of an authentica-
tion system within the CAN bus aiming to overcome
the vulnerability problems of the network. As a matter
of fact, implementing a prototype and running hard-
ware simulations according to the guidelines of the en-
hanced network will be the follow-up task with respect
to the development of the ongoing process.

8. REFERENCES:

[1] NIST, SHA-3 Competition (2007-2012), https://

csrc.nist.rip/groups/ST/hash/sha-3/ (accessed:

2017)

[2] R. Dahal, J. Bhatta, T. Dhamala, "Performance Anal-

ysis of Sha-2 and Sha-3 Finalists", International

Journal on Cryptography and Information Secu-

rity, Vol. 3, No. 3, 2013, pp. 1-10.

[3] R. Sobti, G. Geetha, "Performance Comparison of

Keccak, Skein, Grøstl, Blake and JH: SHA-3 Final

Round Candidate Algorithms on ARM Cortex A8

Processor", International Journal of Security and

Its Applications, Vol. 9, No. 12, 2015, pp. 367-384.

[4] R. Sobti, G. Ganesan, "Performance Evaluation of

SHA-3 Final Round Candidate Algorithms on ARM

Cortex–M4 Processor", International Journal of

Information Security and Privacy, Vol. 12, No. 1,

2018, pp. 63-73.

[5] J. Sugier, “Improving FPGA implementations of

BLAKE and BLAKE2 algorithms with memory re-

sources”, Proceedings of the 12th International

Conference on Dependability and Complex Sys-

tems, Brunów, Poland, 2-6 July 2017, pp. 394-406.

[6] J. Sugier, “Low cost FPGA devices in high speed

implementations of KECCAK-f hash algorithm”,

Proceedings of the 9th International on Depend-

ability and Complex Systems, Brunów, Poland, 30

June - 4 July 2014, pp. 433-441.

[7] R. Bosch, ‘‘Can specification version 2.0’’, Postfach,

Stuttgart, Germany, Technical Report Bosch, 1991.

[8] O. Avatefipour, A. Hafeez, M. Tayyab, H. Ma-

lik, "Linking received packet to the transmitter

through physical-fingerprinting of controller area

network", Proceedings of the IEEE Workshop on In-

formation Forensics and Security, Rennes, France,

4-7 December 2017, pp. 1-6.

[9] P. Mundhenk, A. Paverd, A. Mrowca, S. Steinhorst,

M. Lukasiewycz, S. A. Fahmy, S. Chakraborty, “Se-

curity in automotive networks: Lightweight au-

thentication and authorization”, ACM Transactions

on Design Automation of Electronic Systems, Vol.

22, No. 2, 2017, pp. 1-27.

[10] J. Van Bulck, J. T. Mühlberg, F. Piessens, “VulCAN:

Efficient component authentication and software

isolation for automotive control networks”, Pro-

ceedings of the 33rd Annual Computer Security

Applications Conference, Orlando, USA, 4-8 De-

cember 2017, pp. 225–237.

[11] H. Zhang, X. Meng, X. Zhang, Z. Liu, "CANsec: A

Practical in-Vehicle Controller Area Network Secu-

rity Evaluation Tool", Sensors, Vol. 20, No. 17, 2020,

p. 4900.

746 International Journal of Electrical and Computer Engineering Systems

[12] A. Zniti, N. El Ouazzani, “Implementation of a blue-
tooth attack on controller area network”, Indone-
sian Journal of Electrical Engineering and Com-
puter Science, Vol. 21, No. 1, 2021, pp. 321-327.

[13] Y. Yang, Z. Duan, M. Tehranipoor, “Identify a spoof-
ing attack on an in-vehicle can bus based on the
deep features of an ecu fingerprint signal”, Smart
Cities, Vol. 3, No. 1, 2020, pp. 17-30.

[14] M. J. Dworkin, ‘‘SHA-3 standard: Permutation-
based hash and extendable-output functions’’,
NIST, Gaithersburg, MD, USA, Technical Report
NIST FIPS-202, 2015.

[15] R. Rivest, "The MD5 message-digest algorithm",
IETF Network Working Group, MA, USA, Technical
Report RFC 1321, 1992.

[16] G. Bertoni, J. Daemon, M. Peeters, G. V. Assche,
“The Keeccak sha-3 submission”, NIST SHA-3 Com-
petition (Round 3), Gaithersburg, MD, USA, Tech-
nical Report 03, 2011.

[17] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M.
Bellare, T. Kohno, J. Callas, J. Walker, “The skein
hash function family”, NIST SHA-3 Competition
(Round 3), Gaithersburg, MD, USA, Technical Re-
port 1.3, 2010.

[18] J. P. Aumasson, W. Meier, R. C. Phan, L. Henzen.
“The Hash Function BLAKE”, 1st Edition, Springer
Berlin Heidelberg, 2014.

[19] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F.
Mendel, C. chberger, M. Schlffer, S. S. Thomsen,

“SHA-3 proposal grostel”, NIST SHA-3 Competition

(Round 3). Gaithersburg, MD, USA, Technical Re-

port 2.0.1, 2008.

[20] H. J. Wu, “The hash function jh”, NIST SHA-3 Com-

petition (Round 3), Gaithersburg, MD, USA, Tech-

nical Report 42, 2011.

[21] NIST: Third-round report of the SHA-3 crypto-

graphic hash algorithm competition, http://www.

nist.gov/hash-competition (accessed: 2012)

[22] J. P. Aumasson, S. Neves, Z. W. O’Hearn, C. Win-

nerlein, “BLAKE2: Simpler, smaller, fast as MD5”,

Proceedings of the 11th International Confer-

ence on Applied Cryptography and Network

Security, Banff, AB, Canada, 25-28 June 2013,

pp. 119-135.

[23] S. Neves, J. O’Connor, J.P. Aumasson, Z. Wilcox-

O’Hearn, BLAKE3: One function, fast everywhere,

https://github.com/BLAKE3-team/BLAKE3-specs/

blob/master/blake3.pdf (accessed: 2020)

[24] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, R.V.

Keer, B. Viguier, "KangarooTwelve: Fast hashing

based on Keccak-p", Proceedings of the 16th In-

ternational Conference on Applied Cryptography

and Network Security, Belgium, 2-4 July 2018, pp.

400-418.

[25] L. Pan, X. Zheng, H. Chen, T. Luan, H. Bootwala, L.

Batten, "Cyber security attacks to modern vehicu-

lar systems", Journal of Information Security and

Applications, Vol. 36, 2017, pp. 90-100.

