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Abstract – In this paper, the performances of SHA-3 final round candidates along with new versions of other hash algorithms are analyzed 
and compared. An ARM-Cortex A9 microcontroller and a Spartan -3 FPGA circuit are involved in the study, with emphasis placed on the 
number of cycles and the authentication speed. These hash functions are implemented and tested resulting in a set of ranked algorithms in 
terms of the specified metrics. Taking into account the performances of the most efficient algorithms and the proposed hardware platform 
components, an authentication technique can be developed as a possible solution to the limitations and weaknesses of automotive CAN 
(Controlled Area Network) bus – based embedded systems in terms of security, privacy and integrity. From there, the main elements of such 
a potential structure are set forth.  
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1. INTRODUCTION

In modern technology, embedded devices are smart-
er, more autonomous and better connected. Therefore, 
questions of information security are increasingly sen-
sitive and have become of an utmost importance. 

Hash functions are used for data integrity confirma-
tion and as message authentication codes (MAC) or 
hash message authentication codes (HMAC). There ex-
ist several families of Security Hash Functions such as 
SHA-0, SHA-1, SHA-2, and SHA-3. In 1997, the National 
Security Agency NSA detected a major flaw in SHA-0 
and so a new, improved algorithm –SHA-1 – was de-
veloped. This one, however, also suffered from severe 
cryptographic weaknesses and was later replaced by 
SHA-2 in 2002. Although as of yet, no significant cryp-
tographic issue has been found in SHA-2, it was consid-
ered to be algorithmically too closely related to SHA-1.  
Since SHA-0, SHA-1 and SHA-2 suffer from these same 
limitations as well, we dismiss them, choosing instead 
to address the SHA-3 finalists [1] (Blake, Skein, JH, 
Grøstl, Keccak).

 A number of studies have been conducted to com-
pare the effectiveness of various hash algorithms. In 
2013, R.K. Dahal et al. published a paper examining the 
performances of the SHA-3 finalists in addition to the 
widely used SHA-2 [2]. Their findings indicated that, 
among the SHA-3 finalists, Skein and Blake were the 
most effective while, according to digest length and 
block size, Grøstl, Keccak and JH followed. 

In 2015, R. Sobti and Ganesan G. Geetha provided 
a performance evaluation of the SHA-3 finalists on 
ARM Cortex A8-based devices [3]. The results showed 
that Grøstl and JH were not efficient while Skein was a 
better option for long messages. They also found that 
Blake was a good option, as it outperformed Keccak for 
both 224 / 256- and 512-bit hash.

In 2018, a similar comparison was carried out on the 
ARM Cortex-M4 platform [4] with different results. Blake 
is the best choice as it performs better than all the algo-
rithms for all message digests, regardless of the input 
size. Skein is also a good second option if, for higher 
security margins, we need a 512-bit hash instead of a 
256-bit hash.

Volume 13, Number 9, 2022



742 International Journal of Electrical and Computer Engineering Systems

Numerous factors affect the performances of a hash 
algorithm. For example, Skein may be a better choice for 
long messages, while Blake may be better for short mes-
sages. It is important to consider the specific application 
when choosing the appropriate hash algorithm since no 
single algorithm is necessarily the best in all cases.

The proposed study provides a more comprehensive 
and up-to-date comparison of hash algorithms by im-
plementing the SHA-3 finalists, as well as other newer 
common hashing functions, such as Blake2, Shake, 
Kangaroo Twelve and Blake3 on ARM cortex-A9 also 
taking their speed performance on an FPGA platform 
into consideration [5, 6]. As a result, the best algorithm 
is determined and the validity of the speed is verified. 

As a potential application, an enhanced automotive 
CAN bus network [7] can be implemented based on a 
new structure relying on an authentication technique 
[8, 9, 10]. Considering the issue that a CAN bus lacks the 
security features such as message authentication and is 
therefore vulnerable to spoofing attacks [11, 12, 13], an 
effective solution may consist in implementing a hash 
process. Each message on the bus must be hashed with 
a key using a hash algorithm to form a message authen-
tication code (MAC), thus allowing each node to check 
the authenticity of a received message. The process is 
mainly intended to generate two frames. The first deals 
with the transmission of data, while the second manages 
the authentication and filtering of unauthorized frames.

The structure of the paper is organized as follows. In 
Section 2, we briefly describe the SHA-3 Hash Function 
contenders. In Section 3, we present an overview of the 
CAN bus along with the principle of an authentication 
solution. Section 4 gives an outline of the methodology 
and the tools used for evaluation. Section 5 is dedicated 
to the hardware simulation results and performance 
analysis.  The hash algorithm applied to produce digests 
is selected and the authentication time is calculated in 
section 6. Finally, Section 7 provides the conclusion. 

2. AVAILABLE HASH ALGORITHMS

2.1. SECURE hASh AlgORIThm

A secure hash algorithm (SHA) is a standard invented by 
the National Institute of Standards and Technology (NIST) 
[14], based on the Message Digest (MD5) algorithm [15]. 
As the SHA-1 algorithm has already been cracked and 
SHA-2 proved to suffer from the same weaknesses, the 
NIST launched a public competition in November 2007 
to make out a new cryptographic hash algorithm called 
SHA-3. In October 2012, NIST declared the Keccak algo-
rithm as the winner of the SHA-3 competition.

2.2. ThE ShA-3 fINAlISTS

Keccak [16] was chosen from a range of five very 
strong candidates (Skein [17], Blake [18], Grøstl [19] and, 
JH [20]). NIST stated in its final report [21], that all five fi-

nalists had acceptable performances, and that any of the 
finalists would have represented an effective option for 
SHA3. In terms of performances, the report noted that 
some of the five algorithms operate well in software, 
while others appear more efficient in hardware.

2.3. ThE BlAkE AlgORIThm fAmIly

Blake2 [22] is an improved version of Blake, provided 
in 2012 after Keccak was selected as SHA3. Blake2 was 
engineered to take full advantage of Blake’s strengths 
and optimize it for modern applications. Blake2 comes 
in two main types: Blake2b which is optimized for 64-
bit platforms and Blake2s for smaller architectures.

A successor of Blake 2, Blake 3 [23], created in 2020, 
was developed to be as fast as possible. The compression 
function of Blake3 is closely based on that of Blake2s.

2.4. ThE kECCAk AlgORIThm fAmIly

Shake was declared by NIST in August 2015 as a part 
of the SHA-3 family. It combines two eXtendable Out-
put Functions (XOFs), Shake128 and Shake256.

Kangaroo Twelve [24] is another XOF based on a re-
duced number of rounds (12 rounds) of the SHA-3 per-
mutation function (Keccak [1600]). It is designed to be 
faster than SHA-3 and Shake while maintaining its flex-
ibility and security.

3. CAN BUS OVERVIEW

3.1. CAN BUS pROTOCOl

The Controller Area Network (CAN) [7] is a serial com-
munication bus that operates according to a specific 
standard for efficient and reliable information trans-
mission between sensors, actuators, controllers, and 
other nodes in real-time applications.

On a CAN bus, the communication between differ-
ent Electronic Control Units (ECUs) is achieved through 
four frames: data frame, remote frame, error frame, and 
overload frame. 

As an example, Fig. 1 shows all the fields that make up 
the whole data frame. The data field length can reach 
up to 8 bytes, depending on the Data Length Code 
(DLC) word. A unique identifier is also assigned in order 
to manage both data transmission priorities between 
different nodes and filtering these upon reception. The 
size of the Identifier field is 11 bits for CAN version 2.0A 
and 29 bits for version 2.0B.

fig. 1. CAN data frame structure
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3.2. CAN BUS lImITATIONS

As previously mentioned, the CAN bus is vulnerable 
to attacks perpetrated by malicious codes, leading to 
software damage and physical harm [25]. Amongst the 
weaknesses, we find:

•	 Non-confidentiality and transmission of unen-
crypted messages, which animate replay attacks 
and vehicle espionage.

•	 Absence of the authenticity and non-repudia-
tion, which allows attackers to send arbitrary 
frames on the network or even transmit valid 
messages to trigger certain actions.

•	 Integrity: An attacker is able to add, delete, or 
modify any type of data carried by the relayed 
message.

•	 Availability: By sending high-priority messages, 
nodes are prevented from responding, which 
causes a denial of service (DoS), and conse-
quently affects the system availability.

3.3. pRINCIplE Of AN AUThENTICATION 
 TEChNIqUE

The fundamental idea depends on a system that 
includes a monitoring node made from an FPGA, 
equipped with a particular CAN controller, responsible 
for authenticating each message by verifying the MAC, 
generated by (1):

MAC=hash function (IDi,Di,FCi,Keyi) (1)

where IDi is the CAN-ID (11 bits), Di indicates the data 
of the message i (64 bits), FCi represents a complete 
monotones counter for the message i of 32 bits, and 

fig. 2. Under-consideration communication 
protocol

4. ALGORITHM IMPLEMENTATION

4.1. pROCEDURE DETAIlS

The flowchart in Fig. 3 shows the entire process of 
analyzing and comparing the performances in terms of 
the number of cycles and the execution time. 

The algorithms of interest are run on an ARM Cortex 
A9-based platform, ranked according to their perfor-
mances and compared to those obtained by means of 
an FPGA circuit as described in [5, 6].

KEYi denotes the encryption key for the node i encod-
ed on 128, 256 or 512 bits. 

Message data and the MAC are transmitted on two 
separate frames.

The planned protocol, illustrated in Fig. 2,  will consist 
in computing the hash value by means of the CPU-based 
nodes participating in the communication, and perform-
ing the authentication of each CAN packet thanks to an 
FPGA-based monitoring node in charge of checking the 
hash value already calculated with its source. 

fig. 3. Evaluation process of performance
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4.2. ARm ImplEmENTATION DATA

Knowing that 32-bit microcontrollers are widely 
used in embedded systems, particularly in the automo-
tive industry, and in order to carry out simulations as 
closely as possible to real cases, the ARM Cortex A9 has 
been chosen as a testing tool. Three input sizes are con-
sidered depending on key bit lengths according to (1). 
The results are shown in Fig. 4.

fig. 4. Considered hash input sizes

In addition, running a hash algorithm on a Cortex 
A9-based platform requires a specific number of cycles 
regardless of the CPU frequency. As a result, the num-
ber of cycles is chosen as a metric for assessing perfor-
mance.

5. RESULTS AND ANALYSIS

5.1. ARm CORTEx A9-BASED SImUlATIONS

Table 1 presents the cycles needed for 256 hash size 
of different algorithms taking three input lengths into 
account.

Number of Cycles [cycles]

Algorithm Input size = 
30 Bytes

Input size = 
46 Bytes

Input size = 
78 Bytes

Blake2s 13338 13180 21972

Blake 18866 18926 55376

Blake3 37002 69334 82278

Kangaroo Twelve 48320 83310 169190

Skein 256-256 64080 79646 79646

Skein 512-256 64152 64588 80190

JH 261690 261472 385978

Keccak 398660 398430 398976

Shake 558136 546286 547622

Grøstl 1682462 1690474 2789116

Table 1. Number of cycles for different input sizes

In this particular case of short inputs (less than 78 
bytes), it is obvious that Blake2s and Blake outperform 
all the other contenders, providing the best choice.

Indeed, the results show that Blake2s beats all the 
other algorithms and presents the best speed of execu-
tion while Grostl comes in a distant last place in com-
parison to other candidates.

Therefore, in real-case applications such as automo-
tive networks, blake2s can be the core software code of 
any improved data transmission protocol.

5.2. fpgA-BASED RESUlTS

 As described in [5, 6], the FPGA Spartan-3 is a hard-
ware platform that allows the considered hash algo-
rithms to be run, highlighting major performance pa-
rameters from which a substantial advantage for the 
Keccak algorithm can be seen. 

Table 2 mainly shows the results obtained through 
the FPGA of the two chosen algorithms according to 
the CPU and FPGA-based analysis.

Table 3 shows the total time needed to generate an 
authentication message in this case.

Processing time (FPGA)= Input Size/Throughput

Processing time (CPU)=Number of Cycle/Frequency (2)
(3)

Table 3. Keccak and Blake2S performances

Algorithm Tclk 
[ns]

Bloc 
size Rounds Throughput [mbps] = 

Blocsize / (Rounds*Tclk)

keccak 9.75 1088 24 4650

Blake2s 43.4 512 10 1179.72

processing time [μs]

Input size = 30 
Bytes

Input size = 46 
Bytes

Input size = 78 
Bytes

A
lg

or
it

hm

ARm

Sp
ar

at
an

3

ARm

Sp
ar

at
an

3

ARm

Sp
ar

at
an

3

ke
cc

ak 597.69 0.05 597.35 0.08 598.16 0.14

Total = 597.74 Total = 597.42 Total = 598.30

Bl
ak

e2
s 20.00 0.20 19.76 0.31 32.94 0.53

Total = 20.20 Total = 20.07 Total = 33.47

With regard to the FPGA implementation, Keccak has 
an advantage over Blake2s by providing the most suit-
able parameter values. Thus, Keccak is still considered 
the most appropriate solution.

6. COMPARISON OF BLAKE2S AND KECCAK

As a last step in the analysis and comparison procedure 
and from knowing the respective strength of Keccak and 
Blake2s, the focus in this section falls mainly on the entire 
processing time combining ARM and FPGA devices.

In the prospect of using an FPGA platform and CPU- 
based circuits in a protected CAN bus system, the pro-
cessing time required by both components is com-
puted by means of (2) and (3) respectively, with a CPU 
frequency of 667 MHz.

Table 2. Performances of Keccak and Blake on 
Spartan-3 FPGA
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We notice, from Table 3, that the CPU processing con-
tribution accounts for a large part of the total time for 
both Keccak and Blake2s. In addition, Blake2s offers a 
reduced message generating time ranging from 20 to 
34 microseconds, which is 30 times faster than Keccak.

As a result, the use of the blake2s algorithm requires 
a maximum total hash time of 33.47 microseconds. Al-
though the latency of a CAN message in automotive 
systems is typically around a few milliseconds, a few 
tens of microseconds is readily acceptable, as it would 
not have a significant effect on the CAN communica-
tion latency.

7. CONCLUSION

In this paper, an evaluation has been applied to the 
SHA-3 contenders’ algorithms through an ARM Cortex 
A9 processor. A relevant comparison has also been 
performed involving an FPGA implementation to de-
termine the fastest platform. From the standpoint of an 
ARM evaluation, the comparison shows a substantial 
win for Blake2s algorithm whereas Keccak offers excel-
lent performances on FPGA circuits.

However, it is demonstrated that the CPU-based plat-
form's impact on processing time is far more important 
than that of FPGA-based circuits. The comparison be-
tween Keccak and Blake2s shows that the latter is more 
likely to suit perfectly the targeted performances of the 
planned security system.

The use of cryptographic algorithms in automotive 
CAN bus systems can introduce limitations of comput-
ing speed related especially to the time response when 
dealing with real-time demands. However, consider-
able room for improvement with respect to security 
and data protection can be achieved thanks to the pos-
sibility of including a monitoring node along with the 
application of the justifiably chosen Blake2s that can 
contribute to   a greater effectiveness.

This process is meant to be part of an authentica-
tion system within the CAN bus aiming to overcome 
the vulnerability problems of the network. As a matter 
of fact, implementing a prototype and running hard-
ware simulations according to the guidelines of the en-
hanced network will be the follow-up task with respect 
to the development of the ongoing process.
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