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Abstract – The design of a Proportional-Integral-Derivative (PID) controller with proportional, integral, and derivative, gain, kp , ki , and 
kd , respectively, for a time-delay system, is quite common, particularly in the ki - kd plane, for a fixed kp or in the kp - ki plane, for a fixed kd. 
These design methods have been widely reported in the literature, however, the process of investigating the effects of using any of these 
design planes on system performance has not been given serious attention hence the need for this study. The stability region in the ki - kd 
and kp - ki design plane for a fixed value of kp and kd respectively were determined. For every determined stability region, the optimum 
value of controller gains in the plane was determined using a genetic algorithm (GA) with the integral of time multiplied by absolute 
error (ITAE) used as the objective function. The optimum value of the fixed gains was graphically determined by plotting the minimum 
of ITAE (Min-ITAE) for each stability region against the fixed gains. The overall optimum controller gains are the fixed gain that gives 
minimum of Min-ITAE (Min (Min-ITAE)) and the gains that resulted in Min-ITAE that yielded the Min (Min-ITAE). Using the determined 
overall optimum controller gains, the system closed-loop step response was plotted for the two design planes and the time domain 
performance measures (TDPMs) were determined. Based on TDPMs obtained for examples 1, 2, and 3, the ki-kd design plane yielded a 
faster response while the kp- ki design plane yielded a response that closely tracks the input irrespective of the system type and order. The 
study will enable control system designers to select the design plane that will give the best system performance right from the start of 
controller design without involving trial and error once the system transfer function and design specifications are known. 
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1. INTRODUCTION

All practical control systems have associated time 
delays [1-3] resulting from the processing and trans-
mission of signals in the control loop [4, 5]. Therefore, 
the designing of a controller for such a system requires 
a full understanding of the effects of this delay on the 
system's performance. Time delay can degrade the sys-
tem's quality of performance or destabilise the system 
in the worst case [6]. To control this class of systems, a 
PID controller is normally employed due to its popular-
ity [7], simplicity, robustness, and ease of use [8-10]. To 
design a PID controller for a time-delay system the first 
step is to establish the stability boundary in the space 
of the controller parameter [11]. This is because of the 

lots of work that have been done in this area to the 
most recent, designs of PID controller for time-delay 
systems are normally carried out using the stability lo-
cus method [12].

One of the proven steps for the design of a PID con-
troller for time-delay systems using the stability locus 
method involves plotting the stability boundaries in the 
ki-kd plane for a fixed kp or in the kp-ki plane for a fixed 
kd and then computing all the stabilizing values of kp, ki, 
and kd in the stability region by sweeping over kp and 
kd for ki-kd, and kp-ki design planes respectively [16, 17].

The method for computation of all the stabilizing 
PID controller gains for a linear arbitrary order system 
with time delay in the ki-kd plane with fixed kp was re-
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ported in [7], while the procedure for computing the 
entire stability gains in the kp-ki plane with fixed kd was 
explained in [13]. The stabilization of controller param-
eters in the kp-ki plane for a given kd, for a time-delay 
integral fractional-order system, under the control of a 
fractional-order PID controller, was earlier determined 
and reported in [14]. It was observed that the controller 
gains in the kp-ki plane for a given kd and other con-
troller parameters yielded a general stability region, 
while the global stability region was obtained after the 
griding of kd. PID parameters for a second-order plant 
with time delay were obtained in the kp-ki plane with a 
fixed kd for specified GM and PM using the dominant 
poles method, as reported in [13]. PID controller tun-
ing method for integrating system with time delay was 
developed in the kp-ki plane for a fixed kd by [15]. After 
determining the stability region, weighted geometrical 
center approach was used to determine the required 
PID controller gains. The results obtained via simula-
tion are good, but the fixed kd was not optimized. In 
[16, 17], parametric methods were used to establish the 
stability region in the ki-kd plane for a fixed kp and kp-ki 
plane for a fixed kd, and GA was used to determine the 
optimum controller gains in the established region of 
the plane.

Despite the huge amount of published works in the 
literature on PID controller designs for time-delay sys-
tems in either ki-kd or kp-ki design planes, the effects of 
using either of the two design planes on the perfor-
mance of the designed system have not been given se-
rious attention in the research community, hence the 
need for this study. The aim of this study, therefore, is 
to investigate the effects of PID controller design plane 
selection on the performance of the designed system. 

To achieve the aim of this study, the equations that 
relate the controller gains, the system parameters, and 
the time delay together were derived. Using these 
equations and the frequency obtained from the graph 
of kp and kd against the frequency (ω), the stability 
boundaries in ki-kd and kp-ki planes for fixed kp and kd 
respectively was plotted. After the determination of 
the stability boundaries, the optimum controller gains 
within the stability region can now be determined. 
Several optimization methods have been used in the 
literature but in this study, GA was used because of 
its heuristic characteristics, powerful searching capa-
bilities [18], and amenability of the method of stability 
boundary locus (used in this study) to GA. For each of 
these regions, the optimum controller gains were de-
termined via GA using ITAE as the objective function. 
Since GA was used as a minimization process in this 
study, the obtained minimum value of ITAE (Min-ITAE) 
was plotted against the fixed kp and kd for ki-kd and kp-ki 
design planes respectively. Based on these graphs, the 
overall optimum gains were determined. These gains 
were used together with the system and time-delay 
transfer functions to generate the system closed-loop 
unit step response, which yielded the system TDPMs. 

The TDPMs considered in this study are Tr (rise time), 
%OS (percentage overshoot), %US (percentage un-
dershoot), Tp (peak time), Ts (settling time), and ess 
(steady-state error). These performance measures were 
used for system analysis and characterisation in the 
plane under consideration. The results show that the 
ki-kd design plane produced a faster response while the 
kp-ki design plane gives a response that closely tracks 
the input irrespective of the system’s type and order. 
Therefore, the major contribution of the study is to aid 
the control system designers in the selection of the de-
sign plane that will give the best system performance 
at the beginning of controller design without involving 
trial and error, given that the system transfer function 
and design specifications are known.

2. METHODOLOGY

2.1. DETERMINATION OF STAbILITY  
 bOUNDARY FOR PID-CONTROLLED 
 SYSTEM

The derivation of system forward and closed-loop 
transfer functions used in this study is based on the block 
diagram of the unity feedback control system shown in 
Fig.1, where R(s), E(s), and Y(s) are the reference input, 
error, and output respectively. Equations (1), (2), and (3) 
are the adopted expression for the plant, time delay, and 
controller transfer function respectively.

Fig. 1. Block diagram of unity feedback time-delay 
control system

(1)

where N(s) and D(s) are the plant transfer function 
numerator and denominator respectively.

(2)

where τ is the time delay in sec.

(3)

For easy application of D-decomposition method, 
the numerator and denominator of Equation (1) were 
broken into their even and odd parts after substituting 
jω for s as shown in Equation (4). It should be noted 
that for compactness purpose, the (-ω2) term has been 
removed from Ne (-ω

2 ), No (-ω2 ), De (-ω2 ) and Do (-ω2) 
in Equation (4) [19].

(4)

Finding the stability boundary in kp, ki, and kd space 
is a three-dimensional problem. For easy controller de-
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sign and analysis, it can be reduced to a two-dimen-
sional problem by fixing one of the parameters and 
finding the stability region in the plane of the remain-
ing two parameters. The overall stability region can be 
determined using the stability regions in the plane of 
the two parameters by sweeping over the fixed param-
eter values. For this study, kp and kd were fixed and the 
stability boundaries in the ki-kd and kp-ki planes were 
determined respectively.

The equations and conditions required for determin-
ing the stability region in the ki-kd plane for a fixed kp 
and the stability region in the kp-ki plane for a fixed kd 
are presented as follows [16, 17, 19, 20]:

2.1.1. Stability region in the ki-kd plane for a fixed kp

For ω=0

ki=0 (5)

For ω>0

(6)

(7)

where ω = ωn, (n=1,2,……) are the frequencies at 
which the line of a given value of kp intercepts the 
graph of kp of Equation (6) versus ω, and n is the num-
ber of points of intersection or the number of lines ob-
tainable from Equation (7). 

The stability boundary in the ki-kd plane is formed by 
the line obtained from Equation (5) and the lines gen-
erated from Equation (7) when ωn is substituted for ω.

2.1.2. Stability region in the kp-ki plane for a fixed kd

For ω=0

ki=0 (8)

For ω≥0

(9)

(10)

where ω=[0,ωc] and ωc is the frequency at which the 
line of a given value of kd in Equation (10) intercepts the 
graph of kd in Equation (11) against ω. Equation (11) was 
obtained from equation (7) when it is assumed that ki =0.

(11)

The stability boundary in the kp-ki plane is formed by 
the line obtained from Equation (8) and the locus gen-
erated by Equations (9) and (10) when ω=[0,ωc].

2.2. OPTIMIzATION OF PID CONTROLLER 
PARAMETERS

After the determination of the system convex stabil-
ity region, the next step is to determine the value of the 

controller parameters that give the best system perfor-
mance. The success of the determination and selection 
of optimum PID controller parameters using GA as an 
optimization tool is strongly dependent on the selec-
tion of appropriate objective function. To optimize 
the PID controller parameters, different system perfor-
mance indices have been used as the objective func-
tion. ITAE, ISE, MSE, and IAE were used by [21], ISE, ITAE, 
and IAE were used in [22, 23], while in [24] work, ISE, 
ITAE, IAE, and their combination were used. The ITAE 
(see equation (12)) was adopted in this study due to its 
best selectivity, a good criterion for PID controllers de-
sign [25]; and its minimum value can be easily defined 
as the system parameters are varied [26],

(12)

where T1≥Ts,( Ts is the system settling time in sec.), 
e(t) is the error and t is the time in sec.

2.3. GA-bASED PID CONTROLLER 
 PARAMETERS OPTIMIzATION

The PID controller gains were optimised using GA by 
following the steps shown in the flowchart of Fig. 2. 

Fig. 2. Flowchart of GA process for optimising PID 
controller gains [27, 28]
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The initial population was created inside the stability 
region because the stability boundary serves as the con-
straint for the optimisation problem. To determine the fit-
ness of the generated PID controller gains, the objective 
function, ITAE in this case was calculated for these gains 
in parallel. Based on the ranking value of the fitness func-
tion for the PID controller gains, half of the population was 
selected for reproduction. To get the next generation, the 
crossover was carried out on the already selected feasible 
solutions (gains). Also, to guide against the production of 
false optimum controller gains, a few individual solutions 
in the generation were mutated. The process continues in 
a loop until when there are no significant changes in the 
generations which is the condition for termination of the 
optimisation process. Details on the design of PID control-
lers for delay-free and time-delay systems using GA can 
be found in [16, 17] and [29] respectively.

3. SIMULATION EXAMPLES

Three different examples were used to demonstrate 
the selection of the PID controller design plane. For each 
of these examples, GA was used in searching for the: (i) 
optimum ki and kd in the ki - kd plane for different values 
of kp (ii) optimum kp and ki  in the kp - ki  plane for differ-
ent values of kd. Associated with each set of the optimum 
gains is a unique Min-ITAE since GA was used as a mini-
misation process. The optimum fixed kp gain kp, f, opt  for the 
ki-kd plane and kd, f, opt for the kp - ki  plane is the one that 
gives Min(Min-ITAE ) and can be graphically determined 
from the graphs of Min-ITAE versus fixed kp and Min-ITAE 
versus fixed kd for ki-kd plane and kp - ki plane respectively. 
The overall optimum gains for the ki-kd plane are the kp, f, 

opt  and the optimum ki and kd denoted by ki, opt and kd, opt 
respectively, that yielded the Min-ITAE that gives Min(Min-
ITAE). Also, the overall optimum gains for the kp-ki plane 
are the kd, f, opt and the optimum kp and ki also denoted by 
kp,opt and ki, opt respectively, that yielded the Min-ITAE that 
gives Min(Min-ITAE).To provide room for system perfor-
mance analysis and characterisation in each of these de-
sign planes using TDPMs, the system step response was 
plotted based on the overall optimum controller gains.

3.1. EXAMPLE 1

The design of the PID controller for an integrating 
second-order time-delay system with the system trans-
fer function given by equation (13) [30] was considered 
in this example. For this system Ne=1, No=0, De=-ω

2, and 
Do=1.

(13)

The ranges of kd and kp were first determined by plot-
ting kd against kp as shown in Fig. 3 using equations (6) 
and (11). Also based on these equations, the plots of 
kp against ω and kd against ω are shown in Fig. 4 and 
5 for the determination of the relevant frequencies for 
any given value of kp and kd respectively. It can be seen 
from Fig. 3 that the ranges of kp and kd are 0 – 1.717 and 
-1 – 2.261 respectively.

Fig. 3. Plot of kd against kp

Fig. 4. Plot of kp against ω

Fig. 5. Plot of kd against ω

For the case of PID controller design in the ki-kd plane, 
the fixed gains considered based on the range of kp as 
presented in Fig. 4 are kp = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 
and 1.6. The detailed design for kp = 0.2 is presented as 
follows:

As explained in Subsection 2.1.1., when ω = 0, the sta-
bility boundary equation that can be used for generating 
one of the boundary lines was derived using Equation (5). 
To generate the equations that can be used to form the 
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remaining boundary lines, the frequency at the point of 
intersection of the line of kp = 0.2 with the plot of kp ver-
sus ω in Fig. 4 was determined. From Fig. 4, the points of 
intersection are two and their corresponding frequencies 
are ω1=0.322 rad and ω2= 1.991 rad. Substituting ω1 and 
ω2 in Equation (7) yielded the remaining two equations 
required for generating the stability boundary’s lines. The 
resulting stability boundary equations are:

ki=0

kd1=9.6447ki-0.8467

kd2=0.2523ki+2.2257

(14)

(15)

(16)

Based on Equations (14) – (16), and the similar equa-
tions obtained for values of remaining fixed kp follow-
ing, the steps used for kp = 0.2, the system stability 
boundary in the ki-kd plane shown in Fig. 6 and 7 were 
obtained for when kp = 0.2 and for the complete set of 
fixed kp, respectively.

Fig. 6. The stability boundary in the ki-kd plane for 
kp = 0.2

Fig. 7. The stability boundary in the ki-kd plane for 
the set of fixed kp

The constraints needed for the GA were formed us-
ing Equations (14) – (16) and the stability boundary 
equations for other fixed kp considered following the 
same steps. After the formation of the constraints, the 
GA MATLAB code was written according to the flow-
chart in Fig. 2. The code was run for each scenario to 

Fig. 8. The stability boundary in the kp-ki plane for 
kd = -0.5

The same steps used for kd = -0.5 was adopted for oth-
er fixed kd scenarios and the stability boundaries of Fig. 9 
were obtained. The stability boundary equations for kd = 
-0.5 case were obtained from Equation (8) and by curve 
fitting the stability locus of Fig. 8 and are presented in 
Equations (17) and (18) respectively.

ki=0 (17)

ki= -0.061kp
4 -0.069kp

3 -0.34kp
2+0.25kp -3.6×10-6 (18)

For other fixed kd values, the stability boundary equa-
tions like (17) and (18) were also generated following 
the steps used for kd = -0.5 case. 

The constraints needed for the GA were formed us-
ing Equations (17) and (18) and the stability boundary 
equations for other fixed kd were considered. After the 
formation of constraints, the GA MATLAB code was writ-
ten according to the flowchart in Fig. 2. The code was run 
for each scenario to determine the optimum kp and ki, 

determine the optimum ki and kd, and the correspond-
ing Min-ITAE for each of the fixed kp. The kp, f, opt  and Min 
(Min-ITAE) were obtained from the plot of Min-ITAE ver-
sus fixed kp. The required TDPMs were obtained from 
the unit step response plotted using the determined 
overall optimum controller gains.

Taking the case of PID controller design in the kp-ki 
plane the fixed gains considered based on the range 
of kd as shown in Fig. 5 are kd = -0.5, 0, 0.5, 1.0, and 1.5. 
The design analysis for kd = -0.5 is presented as follows:

As discussed in Subsection 2.1.2., when ω = 0, the 
stability boundary equation that was used for generat-
ing one of the boundaries was derived using Equation 
(8). The frequency at the first point of intersection of 
the line of kd = -0.5 with the plot of kd versus ω in Fig. 
5 was determined to generate the equation that can 
be used to form the remaining boundary locus. From 
Fig. 5, the frequency at the said points of intersection, 
ωc=0.5917 rad. By generating the straight line defined 
by Equation (8) and plotting ki against kp using Equa-
tions (9) and (10) with ω=[0, ωc] the stability boundary 
of Fig. 8 was obtained for kd = -0.5.
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and the corresponding Min-ITAE for each of the fixed kd. 
kd,f,opt and Min (Min-ITAE) were obtained from the plot of 
Min-ITAE versus fixed kd. Also, the required TDPMs were 
obtained from the unit step response plotted using the 
determined overall optimum controller gains.

Fig. 9. The stability boundary in the kp-ki plane for 
the set of fixed kd

3.2. EXAMPLE 2

The design of a PID controller for an integrating sec-
ond-order time-delay system with left-hand side zero 
whose transfer function is shown in Equation (19) [15] 
was considered in this example. For this system Ne=0.6, 
No=-0.18, De= -w2, and Do=1 

(19)

The method employed for the design of the PID con-
troller in Example 1 was adopted in this example. As 
a result, the PID controller design in the ki-kd plane in 
this example was considered for the following fixed kp 
values:1, 2, 3, 4, 5, and 6. The stability boundary for the 
considered values of fixed kp is shown in Fig. 10. The 
required TDPMs were obtained from the unit step re-
sponse plotted using the determined overall optimum 
controller gains.

To design the PID controller in the kp-ki plane for this 
example the considered range of fixed kd are kd = -1, 0, 1, 
2, 3, and 4, and the stability boundaries of Fig. 11 were 
obtained for these fixed values of kd. The required TDPMs 
were obtained from the unit step response plotted using 
the determined overall optimum controller gains.

Fig. 10. The stability boundary in the ki-kd plane for 
the set of fixed kp

Fig. 11. The stability boundary in the kp-ki plane for 
the set of fixed kd

3.3. EXAMPLE 3

The design of a PID controller for a second-order 
time-delay system with left-hand side zero whose 
transfer function is shown in Equation (20) [19] was 
considered in this example. For this system Ne=1, No=-
0.5, De=1-2w2, and Do=3.

(20)

In this example, the method of PID controller design 
used in Example 1 was adopted. Therefore, for the ki-
kd plane the considered fixed kp values are: kp = -0.5, 
0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5. For these kp values, 
the obtained stability boundary is shown in Fig. 12. The 
required TDPMs were obtained from the unit step re-
sponse plotted using the determined overall optimum 
controller gains.

Fig. 12. The stability boundary in the ki-kd plane for 
the set of fixed kp
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For the design of PID controller in the kp-ki plane the 
fixed values of kd considered are: kd = -3, -2, -1, 0, 1, 2 and 
3. Based on these values of kd the stability boundaries 
plot of Fig. 13 was obtained. The required TDPMs were 
obtained from the unit step response obtained using 
the determined overall optimum controller gains.

Fig. 13. The stability boundary in the kp-ki plane for 
the set of fixed kd

4.  RESULTS AND DISCUSSIONS

The graphs of Min-ITAE versus the fixed kp and fixed 
kd for the ki-kd design plane and kp-ki design plane for 
Examples 1, 2, and 3 are shown in Fig. 14, 15, and 16 re-
spectively. It can be seen from these Figures that Min-
ITAE decreases from the initial value to the minimum 
value and then increases to a final value. Based on the 
minimum of Min-ITAE and the corresponding fixed kp 
and fixed kd obtained, kp,f,opt , kd,f,opt and Min (Min-ITAE) 
were determined and presented in Table 1. Using the 
value of kp,f,opt , kd,f,opt and the corresponding value of 
Min (Min-ITAE) the value of kp,opt , ki,opt and kd,opt were ob-
tained from the GA optimisation results and presented 
in Table 1.

Fig. 14. Plot of Min-ITAE versus the values of fixed 
kp, kd for Example 1

Fig. 15. Plot of Min-ITAE versus the values of fixed 
kp, kd for Example 2

Fig. 16. Plot of Min-ITAE versus the values of fixed 
kp, kd for Example 3

Using the open-loop transfer functions of Equations 
(13), (19), and (20) and the overall optimum gains of 
Table 1, the system closed-loop unit step responses of 
Fig. 17, 18, and 19 were plotted for Examples 1, 2, and 3 
respectively. From Fig. 17, 18, and 19, it is obvious that 
the systems' response never tracks the unit step input in-
stead, 0.5, 0.375, and 0 were tracked respectively, there-
fore, the need for a controller for these systems.

The TDPMs values obtained from the step response of 
Fig. 17 to 19 for the controlled systems under the two de-
sign planes are presented in Table 2. It is obvious from Ta-
ble 2 that the resulting system from the two design planes 
for the 3 examples is of good steady state because ess=0. 
Considering the transient state status, the response of the 
ki-kd design plane has higher swiftness for all the examples 
because of low Tr and Tp compared to the kp-ki design 
plane. On the other hand, the degree of similarity between 
the response of the system designed in the kp-ki plane with 
the unit step input for all examples is high compared with 
that of the ki-kd plane because of the lower value of %OS 
and Ts associated with the former. It can also be seen from 
Table 2, for Examples 2 and 3, there is an associated %US 
because of the right-hand side zero. But the %US for the 
ki-kd plane is higher than that of the kp-ki plane.
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Example Plane kp,f,opt kd,f,opt kp,opt ki,opt kd,opt Min (Min-ITAE)

1
ki-kd 0.6 -1.133×10-11 0.712 2.538

kp-ki 0.5 0.470 3.338×10-07 2.703

2
ki-kd 2.000 -1.808×10-09 2.278 0.5762

kp-ki 2.000 1.935 2.013×10-12 0.5184

3
ki-kd 1.5 0.485 1.113 2.398

kp-ki 1.000 1.410 0.460 2.564

Table 1. Optimum controller gains for different scenarios

Fig. 17. The unit step response using overall 
optimum gains for Example 1

Fig. 18. The unit step response using overall 
optimum gains for Example 2

Table 2. TDPMs for different examples and planes

Example Plane Tr (sec.) %OS %US Tp (sec.) Ts (sec.) ess

1
ki-kd 1.293 10.222 0 3.522 6.720 0.000

kp-ki 2.067 1.092 0 5.083 3.935 0.000

2
ki-kd 0.437 14.048 41.009 1.421 2.940 0.000

kp-ki 0.549 7.926 36.000 1.618 2.136 0.000

3
ki-kd 1.485 1.874 27.812 3.985 3.202 0.000

kp-ki 1.736 0.948 25.000 4.570 3.066 0.000

Fig. 19. The unit step response using overall 
optimum gains for Example 3.

It was observed that irrespective of the type and 
order of the system to be controlled, the ki-kd design 
plane yielded a faster response while the kp-ki design 
plane yielded a response that closely tracks the input. 
From these results, the system design plane can be de-
cided by control system designers since system design 
specifications depend on its applications.

5. CONCLUSIONS

The parametric effects of design plane selection on 
the performance of PID-controlled time-delay systems 
were presented in this study. System stability region in 
the ki-kd and kp-ki planes were determined for a fixed 
value of kp and kd respectively. The study concluded 
that systems required controllers because their closed-
loop response can never track the reference input. The 
controllers were designed by optimising the controller 



gains using a combination of GA and graphical meth-
ods to get the overall optimum gains.

It was also concluded, that irrespective of the type 
and order of the system, the ki-kd design plane yielded 
a system with a faster response while the kp-ki design 
plane yielded a system response that closely track the 
input. Also, for a system with right-hand-side zero the 
ki-kd design plane results in a system response with a 
higher %US compared to the kp-ki design plane. 

The study contributes to aiding the control system de-
signers to select the design plane which gives the best 
performance right from the start of controller design 
without using a trial and error approach, once the system 
transfer function and design specifications are known.
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