
Towards Auto Contract Generation and
Ensemble-based Smart Contract Vulnerability
Detection

747

Original Scientific Paper

K. Lakshminarayana
Puducherry Technological University,
Ph.D Scholor, Department of Computer Science and Engineering,
Puducherry, India
kodavali.lakshmi@pec.edu

K. Sathiyamurthy
Puducherry Technological University,
Faculty of Computer Science and Engineering,
Puducherry, India
sathiyamurthyk@ptuniv.edu.in

Abstract – Smart contracts (SC) are computer programs that are major components of Blockchain. The "intelligent contract" is made
up of the rules accepted by the parties concerned. When the transactions started by the parties obey these established rules, then only
their transactions will be completed without the involvement of a third party. Because of the simplicity and succinct nature of the solidity
language, most smart contracts are written in this language. Smart contracts have two limitations, which are vulnerabilities in SC and that
smart contracts can't be understood by all stakeholders, especially non-technical people who are involved in the business, since they are
written in a programming language. Hence, the proposed paper used the XGBoost model and BPMN (Business Process Modeling Notation)
tool to solve the first and second limitations of the SC respectively. Attackers are drawn to attention because of the popularity and fragility of
the Solidity language. Once smart contracts have been launched, they can’t be changed. If that smart contract is vulnerable, attackers may
then cash it. BPMN is used to represent business rules or contracts in graphical notation, so everyone involved in the business can understand
the business rules. This BPMN diagram can be converted into a smart contract template through the BPMN-SOL tool. A few publications
and existing tools exist on smart contract vulnerability detection, but they require more time to forecast and interpretation of vulnerability
causes is also difficult. Thus, the proposed model experimented with several deep learning approaches and improved F1 score results by an
average of 2% using the XGBoost model based on the ensemble technique to detect vulnerabilities of SCs, which are: Denial of Service (DOS),
Unchecked external call, Re-entrancy, and Origin of Transaction. This paper also combined two important features to construct a data set,
which are code snippets and n-grams.

Keywords: Blockchain, Smart Contract Vulnerabilities, Ethereum, Machine Learning, Ensemble Model, BPMN

1. INTRODUCTION

A Blockchain works in a decentralized environment
and it has a sequence of blocks that are connected us-
ing cryptographic techniques [1]. As shown in Figure 1,
each block consists of transaction data, a hash of the
preceding block, and a timestamp. By its design, block-
chain is unsusceptible to changing data by its design.
In a Blockchain, transactions between two parties are
recorded in an efficient, verifiable, and permanent way
[2]. Such a Blockchain can present an innovative solu-
tion to long-standing problems of security related to
data storage in centralized systems. Blockchain can
be considered the new face of cloud computing and

is expected to reshape organizational and individual
behavioral models.

An important feature of a Blockchain is, that it is a dis-
tributed database. It means no centralized database or
server exists Instead, the same Blockchain is duplicated
on every node of the network. Each node in the sys-
tem receives a duplicate of Blockchain where all chunks
have a grade of dealings in an encrypted format using
asymmetric keys. Due to the complexity of mathemati-
cal formulas used in cryptography techniques, it is prac-
tically impossible to guess the keys and crack the trans-
actions. The sender can use his private key to encode a
message to be sent, and the recipient can use his pub-

Volume 13, Number 9, 2022

748 International Journal of Electrical and Computer Engineering Systems

lic key to decrypt the message. Every new transaction
is broadcast and updated to all the network nodes to
maintain a consistent database across the whole Block-
chain network [3]. Bitcoins are the major general Block-
chain stand in the world. Ethereum is another popular
Blockchain that introduces smart contracts.

Smart Contracts (SC) are the programs for predefined
rules which are deployed into the Blockchain and these
programs execute automatically to make sure that ev-
ery transaction has to satisfy the predefined conditions
to complete the transaction. Smart Contracts work
based on simple conditional statements. Smart Con-
tracts are playing a more vital role in business among
a group of untrusted people, where every transac-
tion can be completed according to rules agreed by
all business stakeholders without the involvement of
third-party verification [4]. Initially, SC basis codes are
written in a high-level language, for example, Solidity

by designers. The source code is compiled into byte
codes (EVM code) by a compiler, it is in a hexadecimal
arrangement. These byte codes can be converted into
EVM instructions and are called opcodes [5].

Broadly three reasons attackers are focusing on smart
contracts: first, the smart contracts of Ethereum are
mainly money oriented transactions; secondly, after
being deployed into the Blockchain, it is not possible
to alter vulnerable SC; and finally, smart contracts have
no defined measures to determine the quality of smart
contracts [6]. Many smart contract assaults in 2016 led
to large money losses (multi-million dollar losses) as
a result of vulnerabilities in SCs. In smart contracts on
Ethereum, it's currently worth focusing on automated
deep study models to effectively detect SC vulnerabili-
ties [7], especially in financial matters such as money
transfers and more complicated code.

Fig 1. Ethereum Blockchain Network

Smart contract vulnerabilities are divided into four
categories, 1. security, 2. functional, 3. developmental,
and 4. operational [11]. Security concerns include re-
entrancy, external contract, DOS - denial of service, the
use of tx.origin, unchecked external call, and usage of
send() in place of transfer(). Functional vulnerabilities are
locked money, integer division, integer underflow, inte-
ger overflow, unsafe interface type, and reliance on time
stamps. Development concerns involve infringement of
token API, private modifier, non-compiler version fixa-
tion, violation of the style guide, duplicated back func-

tion, and degree of implied visibility. Finally, operational
problems include byte array and expensive loop vulner-
abilities. The major focus of this article is on security con-
cerns that consist of unchecked external calls, re-entran-
cy, DOS, and the origin of thetransaction.

Reentrancy vulnerability[10,15]: In which they can
take on the control flow and modify your data that is
not expected by the call function. There are numerous
shapes this bug class might take. The initial release of
this problem is single-function reentrancy in which

749Volume 13, Number 9, 2022

functions can be called repeatedly before the original
call is made. This might lead to harmful interactions
between the multiple calls of the function. The other
release of this problem is the re-entrancy of a cross-
function, in which an attacker can also attack the same
state with two functions [8]. As re-entrancy can occur
through several functions and even between differ-
ent contracts, a single function will not be enough to
prevent re-entrancy. Instead, all internal work (i.e. state
modifications) has been recommended first, and then
the external function has to be called to prevent re-
entrancy vulnerability.

DOS vulnerability: A specific quantity of gas (transac-
tion fee) is required for the execution of smart contract
functions. The Ethereum network establishes a gas lim-
it for every block and should not exceed that amount of
all transactions in a block. Programmable statements
in smart contracts that cause DOS (Denial of Service),
if the gas limit is exceeded when these statements are
executed. DOS vulnerability may be caused in scenari-
os such as 1) A loop variable with a value higher than or
less than 382 depends more or less on the network gas
limit. 2) Work with unfamiliar array sizes.

Vulnerability of transaction origin: The keyword
called "tx.origin" in solidity language indicates the
address of the account that began a transaction. For
example, consider the sequence of call series X--> Y
and Y--> Z. From the Z viewpoint, msg.sender is Y, and
tx.origin is X. The "tx.origin" keyword can sometimes
lead to dubiety, therefore try to avoid the use of "tx.ori-
gin" for authorization. Instead, it can be handled with
msg.sender.

Machine Learning (ML) algorithms are classified by
learning style, consisting of supervised, semi-super-
vised, and unsupervised. In supervised learning, input
or training data has a predefined label. Initially, a classi-
fier has to be designed with appropriate layers to train
on training data and to predict the label of test data.
The classifier has to be tuned well to get a good level
of prediction accuracy. In unsupervised learning, train-
ing data does not have a label, hence the classifier is
designed to cluster unsorted data based on similarities
and variance.

 Wang Wei et al[5] presented an automated vulner-
ability detection model for smart contracts using the
XGBoost machine learning model by extracting bigram
features from SC opcodes. The limitation of this paper
is that bigrams (2-gram) may not always be suitable to
detect all types of vulnerabilities, because some vulner-
abilities may require more than bigram features. Inter-
pretation of opcodes is more difficult compared with
high-level source code. The proposed framework uses
an ensemble-based XGBoost supervised model [5] to
perform multi-label classification to detect SC vulner-
abilities with the help of a data set created by n-gram
features which are extracted from high-level SC source
code. Ensemble algorithms join the outcomes of a set
of simple and feeble models to get better predictions

than those that are obtained using a single learning
algorithm. The association of this remaining paper is
organized as follows: Part 2 gives literature work on
smart contract vulnerability detection systems using
machine learning; part 3 explains the proposed work
for vulnerability detection using the XGBoost learning
model; part 4 demonstrates experiment details and
comparison outcomes; and finally, conclusion and fu-
ture scope will be in part 5.

2. LITERATURE WORK

Recently, a few papers [5,6,9,10,11] were published
on behalf of smart contract susceptibility detection
using different ML techniques. Jian-Wei Liao et al. [6]
present smart contract susceptibility detection using
machine learning and fuzz testing techniques. The
Authors used existing SC vulnerability detection tools,
which are Oyente and Remix, to label training data sets.
These static detection tools are more time-consuming
[12]. The Authors also stated that to detect vulnerabili-
ties of SC, it requires SC skilled people or predefined
patterns of vulnerabilities. They extracted features
from SC opcodes to prepare the data set.

Pouyan Momeni et al [9] presented smart contract se-
curity analysis with machine learning techniques, and
the authors used existing traditional tools, which are
Mythril [13] and Slither to label the SCs that are pres-
ent in the dataset. These SC are given to a solidity parser
as an input, and it generates an AST (Abstract Syntax
Tree). Processing of AST is straightforward and easy to
interpret. Features can be extracted comfortably from
this AST as its output. The traditional tools used in the
paper have been taking more time to predict vulner-
abilities[12]. Feng Mi et al. [14] presented a paper on the
automatic detection of SC vulnerabilities using deep
learning. The authors prepared a data set with extracted
features from the SC byte code. Moreover, the interpre-
tation of byte code makes it difficult to analyze results.
Peng Qian et al. [7] proposed graph neural networks for
smart contract vulnerability detection with the help of
expert knowledge. The authors constructed a graph for
the extracted patterns from a given SC. Authors devel-
oped an open-source tool to extract patterns or features.
Hence, in the proposed work, the open source feature
extraction tool has been used and tailored as per the
proposed work requirements.

Lakshminarayana. K et al [15] experimented with ba-
sic classification methods, which are binary classifica-
tion, multiclass classification, multi-label classification,
and auto encoding techniques to detect smart contract
vulnerabilities, which are reentrancy, DOS, and Tx.origin.
The proposed paper also tries to improve detection re-
sults of the same vulnerabilities using a combination of
two techniques, which are the contract snippets, n-gram
features, and the XGBoost classification technique. Yip-
ing Liu et al. [19] presented an SC vulnerability detec-
tion model based on symbolic execution by taking SC
assembly code (opcode) as input to generate a control

750 International Journal of Electrical and Computer Engineering Systems

flow graph. Zhang L et al [20] presented an SC vulner-
ability detection model based on an information graph
and ensemble technique. Input for this model is consid-
ering SC opcodes to find the critical opcode sequence
for each vulnerability. But the proposed paper has been
using high-level source code directly as input since SC
source code is easier to trace the source of vulnerabil-
ity than SC byte code or SC opcodes. Nowadays, deep
learning techniques have been extensively used in many
areas in real life, for example, to prevent COVID by trac-
ing social distances [16], network behavior monitoring
[17], to help programmers who feel it is difficult to learn
by identifying their mistakes and suggesting corrections
[18], and also for the detection of unusual activities in
the health care sector, etc.

Zhenguang Liu et al. [10] present automated re-
entrancy detection for SC. This paper used BLSTM for
the classification task. The authors propose contract
snippets (keywords) to capture semantic information
from a given SC. The limitation of this paper is that it
considers every word of each line in an SC to prepare a
feature set. This may increase the number of features,
but it may lead to a reduction in classification accuracy.
Wesley Joon-Wie Tann et al [11] presented the LSTM
machine learning model for safer smart contracts.
LSTM will consider a sequence of opcode features to
detect SC vulnerabilities. But LSTM doesn't care about
the inspection of data and control-flow possessions
(ex: loops and function calls). K. Frantzet al[21] and Lu-
ciono B et al [22] proposed methods to convert BPMN
diagrams to solidity smart contract templates. Authors

in [21] developed a domain-specific language (DSL)
called ADICO-Solidity DSL for conversion from BPMN
to solidity code. Authors in [22] prepare a Petri net
graph as an intermediate step from BNMN elements
and then convert them to solidity code from Petri nets.
Each of the above papers has its pros and cons. Hence,
the proposed paper combines the pros of the above
papers, which are the usage of a parser, contract snip-
pets, and usage of n-grams to prepare the data set in
the proposed SC vulnerability system, and also does
work towards auto SC generation using the BPMN-SOL
compiler [23,24].

3. PROPOSED SYSTEM

The general building of the proposed model is
shown in Figs. 2(a) and 2(b). In the proposed system,
a smart contract is supplied as input to the solidity
parser. It performs preprocessing steps like removing
comments and identifying functions and loops. From
the parser output, code snippets (important keywords)
and n-grams can be extracted as shown in Table1.

These n-grams play a major role in identifying vulner-
abilities. Now it is possible to prepare a data set by con-
sidering n-grams as features, and they could be labeled
according to the n-grams found in the SC. As shown
in figure 3, different classes of vulnerability (C1 to C4)
are correlated with different disjoint sets of n-gram fea-
tures (N1 to N7). It applies to all solidity smart contracts
if we provide high- level solidity source code as an in-
put instead of byte code or opcode of smart contracts.

Fig 2(a). Training a Machine Learning Model

Table 1. Examples for Code Snippets and n-grams from smart contracts

Code Snippets (Key Words) n-grains

if, (), msg, sender, msg. sen der.ca 11.va lue, a ddr.transfer(*)

call, value, . , [,], msg.sender, tx.origin()9 solidity ^9

While, transfer, function, funtion(), [msg.sender]=0

return. require. revert. msg.sender.transfer, addr.send("),

addr, if(*addr.send(*)) revert, if(*()),

751Volume 13, Number 9, 2022

The data set is created after analyzing the smart con-
tract source codes, which are collected from [25, 27] as
per the algorithm shown in Figure4. In the literature on
SC, many papers prepared data sets from the byte code
of SC, which are difficult to analyze and difficult to con-
firm whether SC is vulnerable or not. Hence, this paper
prepared datasets from high-level SC source code in-
stead of from byte code or opcodes of SC.

Multi-label classification task: this requires one or
more labels for each input sample as an output, and the
outputs are required at the same time. The hypothesis
is that the output labels depend on the inputs. In the
proposed system, four classes of vulnerabilities, which
are DOS (C1), unconditional external call (C2), reentran-
cy (C3), and transaction origin (C4), can be predicted.

This prepared data set is given to ensemble-based
XGBoost classifiers to train the network, where it uses
internal K-Fold cross-validation (KF-CV) to test and im-
prove its training performance. Cross-validation means

Fig 2(b). Smart Contract Template generation and testing a Model

Fig 3. Data Set for multi-label classification to detect vulnerabilities

an evaluation of machine learning models on a small
sample of data. Cross-validation is mostly utilized to
evaluate the skills of a machine learning model on invis-
ible data in applied machine learning. A K-Fold CV is a
collection of K sections/folds where each fold is utilized
as a test set at a certain moment. Consider the case of
a 5-fold CV, where K=5. In this case, the total data set is
divided into five equal partitions. First, the first parti-
tion acts as a test set and the remaining partitions act
as training sets. In the next iteration, the 2nd partition
acted as the testing set and the remaining partitions
acted as training sets. This process will continue for all
five partitions, and finally, the results of all folds are av-
eraged to predict the model's final performance.

XGBoost stands for Extreme Gradient Boosting. It is
a scalable and tree-based boosting machine learning
model. It is a popular and efficient open-source imple-
mentation. Gradient boosting is a learning method
that tries to forecast a target variable by integrating
estimates for several weaker and simpler models. In

752 International Journal of Electrical and Computer Engineering Systems

Ensemble Learning, XGBoost is included in the boost-
ing methods group. Ensemble learning consists of a
group of predictors that offer higher prediction accu-
racy through several models. In gradient-boosted algo-
rithms, the loss function is optimized, unlike in other
booster techniques where incorrectly categorized
branch weights are raised. XGBoost is a sophisticated
gradient booster implementation with certain regula-
tory features. XGBoost features include, that it can be
executed both on single and distributed systems (Ha-
doop, Spark) (regression and classification problems),
parallel processing support, optimization of cache, and
effective memory management for big data sets over
RAM. It contains many regularizations that help to re-
duce overfitting problems. Auto tree pruning means

the decision tree does not increase further internally
beyond specified limitations, can manage any missing
information, has cross-validation integrated, and takes
care of some outliers.

As illustrated in Figure 5 in the XGboosting, mistakes
caused by earlier models may be rectified by successive
models. The trees will be created in sequence to mini-
mize the mistakes of the previous tree in every succes-
sive tree. The previous tree lists each tree and updates
the remaining bugs. The successive trees in the series
will thus find information from an updated residual ver-
sion. Gradient improvement is only a framework into
which any model may be plugged, but tree-based
models offer superior results.

Fig. 4. Algorithm to generate data set from given smart contracts

Fig. 5. XGBoost Classification Model

753Volume 13, Number 9, 2022

Once a machine learning model gets trained well,
then it will classify or predict the smart contract vul-
nerabilities if we supply any SC as input for it. As smart
contracts are written in programming languages, all
stakeholders of a business can't interpret them to
make them conform to whether they meet all business
requirements or not. Hence, this paper used the Busi-
ness Process Modeling Notation (BPMN) tools [25,26]
to construct a graphical representation of a smart con-
tract, as these BPMN diagrams are easy to understand
by everyone, even if they do not have any technical
knowledge, as shown in Figure 6. It includes functions

for withdrawal, deposit, and balance inquiry. This BPMN
diagram can be converted into a smart contract tem-
plate by the BPMN-SOL tool. It is a compiler to convert
a BPMN file to a solidity file [23,24]. The BPMN-SOL tool
internally follows the caterpillar engine to convert a
given smart contract into a solidity code template [18].
The output of the BPMN-SOL tool is the SC template
as shown in Figure7 (sample code, it is not generated,
we are still working on it). The SC template can't be
processed by the solidity compiler. Hence, developer
involvement is required to make slight changes to con-
vert it into a final smart contract as shown in Figure 8.

Fig. 6. BPMN diagram for Withdraw, Deposit, and Balance Enquiry functions

Fig. 7. Sample Smart Contract Template for the given BPMN diagram (Fig. 6)

Fig. 8. Final Smart Contract after modifications to SC Template

This paper concentrated on eXtreme Gradient Boosting
(XGBoost) to build a suggested system to discover vulner-
abilities in smart contracts based on code snippets and
n-grams. For comparison purposes, this paper also used
Random Forest (RF), K-Nearest Neighbor (KNN), and Sup-
port Vector Machine (SVM) machine learning models.

Random Forest is a flexible and easy-to-use algorithm
for classification tasks. It is a kind of supervised learning al-
gorithm. Random forests may construct many trees from
randomly selected data samples. Its final classification
prediction result is based on the majority voting results of
trees constructed by it. The robustness of this model de-
pends upon the number of trees constructed by it. Even
though the random forest is a good model, compared
with gradient-boosted trees, it has lower accuracy. SVM is
the extensively utilized classification process, and it aims
to identify a hyperplane in positive or negative samples
in each of the segments such that there is the highest
margin for the two segments, where the classification
system is very reliable and generalizes new samples. The
KNN classification algorithm is also used frequently. It is
efficient and straightforward. For the given test sample, k-
samples nearest to the test sample are determined based
on a certain distance measure, and then information from
k-neighbors is predicted. In k-samples, the most common
category marks are chosen as the prediction outcomes,
depending on the majority voting.

4. EXPERIMENT DETAILS AND RESULTS

The Keras Python package is being used to experi-
ment with deep-learning models. Keras is a user-friend-
ly, free, and useful framework to create and evaluate
deep learning models with a few code lines. The CO-
LAB resource is helpful for executing all the Python pro-
grams needed for this task online without cost. First of
all, we must upload the data sets to the Google Cloud
(colab) before the applications are run.

Metrics[29]: The matrices used in the proposed work
are confusion matrix, recall, precision, F1 score, Micro-
F1, and Macro-F1 to measure the deep learning models
(XGBoost, SVM, RF, and KNN) performance for multi-
label classifications. The metric types used will direct
us to choose better machine learning models. To as-
sess the performance of multi-label classification, the
useful measures are Micro-F1 and Macro-F1. Micro-F1
and Macro-F1 are called Global-F1 and Average-F1, re-
spectively. These measures can be calculated from the
confusion matrix. It involves variables TN, FN, FP, and TP,
which stand for True Negatives, False Negatives, False
Positives, and True Positives, respectively.

Precision = TP / (FP + TP);

Recall = TP / (FN + TP);

F1-SCORE = (2 * Precision * Recall)/(Precision + Recall)

Both the Micro F1-score and the Macro F1-score are
used to evaluate the performance of multi-label binary
problems. For both, the best value is 1 and the worst

value is 0. The Micro-F1_score is defined as the harmonic
mean of precision and recall. The Micro-F1_score mea-
sures the aggregated F1_score of all classes. Note that
precision and recall have the same relative contribution
to the F1_score. It can give high values even if the model
is performing poorly on the rare labels since it gives more
importance to the frequent labels. For the calculation of
the micro-averaging F1-score, initially compute the sum
of all false positives, true positives, and false negatives
over all the labels. Then calculate the global precision
and global recall from these sums. Finally, compute the
harmonic mean to obtain the micro F1-score.

Micro-F1_Score = (2* Global Precision * Global Recall)/
 (Global Precision + Global Recall)

Macro-F1_score will treat all classes equally. It will give a
low value for the models that only do well in the frequent
classes while showing unsatisfactory results in the rare
classes. Macro F1-averaging is calculated by computing
the F1-score for each class and then averaging them.

Macro-F1_Score = (2* Average Precision * Average Recall)/
 (Average Precision + Average Recall)

For the XGBoost classifier, all metrics are calculated as
shown in Table 2. The dataset consists of a total of 1380
records, with 320, 330, 350, and 380 records for C1, C2, C3,
and C4 respectively. The detailed calculation of Micro and
Macro F1-scores of XGBoost classifier is shown below.

STP (Sum of all TP) = (110+180+215+175) = 680;
SFP (Sum of FP) = (5+5+7+9) = 26
SFN (Sum of FN) = (0+8+8+0) = 16;
Global Precision = STP / (STP+SFP) = 0.9631
Global Recall = STP / (STP + SFN) = 0.977;
Micro-F1 = 0.97;

Average Precision=(sum of all precisions)/4 = 0.9622;
Average Recall=(sum of all Precisions) /4 = 0.9803; Mac-
ro-F1 = 0.971.

For comparison purposes, the above metrics are also
calculated for other deep learning models (RF, SVM,
and KNN) similarly to those calculated for XGBoost as
shown in Table3. XGBoost classifier demonstrates good
performance to detect smart contract vulnerabilities
compared with RF, SVM, and KNN as shown in Figure 9.

The novelty of the proposed paper can be observed in
Table 4, as it combines the two important features, which
are contract snippets from [7,10] and the n-gram feature
from [5], then an XGBoost ensemble model inspired by
[5,20] to improve detection accuracy results and also work
done towards auto SC generation inspired by [21,22].

XG

Bo
os

t

TP FP FN TN Precision Recall F1-Score

C1 110 5 0 205 0.9565 1 0.9777

C2 180 5 8 137 0.9729 0.9574 0.9651

C3 215 7 8 120 0.9684 0.9641 0.9662

C4 175 9 0 196 0.9510 1 0.9749

Table 2. F1 Score calculation for XGBoost from
confusion matrix elements.

754 International Journal of Electrical and Computer Engineering Systems

Fig. 9. Performance Comparison graph

FI-SCORE
Micro_F1

(Global F1)
Macro_F1
(Avg F1)ML MODEL DOS (C1) Unchecked

Exception (C2)
Reentrancy

(C3)
Tx_Origin

(C4)

XGBoost 0.977 0.965 0.966 0.974 0.97 0.971

RF 0.962 0.965 0.944 0.921 0.951 0.957

SVM 0.951 0.947 0.962 0.954 0.956 0.961

KNN 0.942 0.956 0.937 0.968 0.943 0.952

Table. 3. Micro-F1 and Macro-F1 calculation for Machine Learning Models.

Vulnerabilities
Detection Features Used ML Model

Used
Work Done Towards
Auto SC Generation

Liu Zhenguang et al [10] Reentrancy Contact Snippets Bi-LSTM No

WeiWang et al [5]
Reentrancy, Timestamp,

Overflow, Underflow,
Callstack, TOD

Bi-gram XGBoost No

Peng Qian et al [7] Reentrancy, Timestamp,
Infinite Loop

Pattern (Snippets)
Extraction, Graph

construction
CNN No

Zhang L [20]
Reentrancy, Timestamp,

Overflow, Underflow,
Callstack, TOD

Information Graph Ensemble
Learning No

C. K. Frantz et al[21] --NA-- ADICO-Solidity DSL --NA-- YES

Luciano B et al [22] --NA-- Petri net graphs --NA-- YES

Proposed Model
Re-entrancy, DOS,

Unchecked external call,
Origin of Transaction

Contact Snippets,
N-gram, BPMN-SOL

Compiler
XGBoost YES

Table. 4. Comparing proposed model with Existing Papers

5. CONCLUSION & FUTURE WORK

This paper proposed work towards auto-smart con-
tract generation and smart contract vulnerability de-
tection models to identify specific security-related vul-
nerabilities using the XGBoost multi-label classification
model. As shown in Figure 9, the proposed XGBoost
model produced a 2% better average F1 score (2% bet-
ter results than RF and KNN, and 1% better results than
SVM), Compared with RF, SVM, and KNN deep learning
models, by combining the best two features (called
contract snippets and n-grams) from the literature to
prepare a data set for the XGBoost model to detect SC

vulnerabilities, which are Denial of Service (DOS), Un-
checked external call, Re-entrancy, and Origin of Trans-
action. This paper also makes use of BPMN and BPMN-
SOL tools to initiate the work towards auto-smart con-
tract generation. The limitation of this work is that the
BPMN-SOL tool produces the smart contract template,
where developers have to put effort into preparing the
final smart contract. In our future work, we will concen-
trate on improving SC template quality, again trying to
make it a fully automated conversion, and also try to
improve SC vulnerability detection accuracy results us-
ing advanced deep learning concepts.

755Volume 13, Number 9, 2022

6. REFERENCES

[1] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato,

“A survey on consensus mechanisms and mining

strategy management in Blockchain networks”,

IEEE Access, Vol. 7, 2019, pp. 22328-22370.

[2] A. Bruyn, Shanti, “Blockchain an introduction”, Uni-

versity Amsterdam, 2017, pp. 1-43.

[3] A. P. Joshi, M. Han, Y. Wang, “A survey on secu-

rity and privacy issues of Blockchain technology”,

Mathematical Foundations of Computing, Vol. 1,

No. 2, 2018, pp. 121-147.

[4] Cointelegraph, https://cointelegraph.com/bit-

coin-for-beginners/how-Blockchain-technology-

works-guide-for-beginners#where-can-Block-

chain-be-used (accessed: 2022)

[5] Wei. Wang, Song. Jingjing , Xu. Guangquan, Li.

Yidong, Hao. Wan, Su. Chunhua, “ContractWard:

Automated Vulnerability Detection Models for

Ethereum Smart Contracts”, IEEE Transactions on

Network Science and Engineering, Vol. 8, No. 2,

2021, pp. 1133-1144.

[6] Liao. Jian-Wei, Tsai. Tsung-Ta, “SoliAudit: Smart

Contract Vulnerability Assessment Based on Ma-

chine Learning and Fuzz Testin”, Proceedings of

the Sixth International Conference on Internet of

Things: Systems, Management and Security, 2019,

pp. 458-465.

[7] P. Qian, W. Xun, “Combining Graph Neural Net-

works with Expert Knowledge for Smart Contract

Vulnerability Detection”, IEEE Transactions on

Knowledge and Data Engineering, 2021. (in press)

[8] S. S. Gupta, O. Yew-Soon, “Learning Approach to

Detecting Security Threats”, Proceedings of ACM,

New York, NY, USA, 2019.

[9] P. Momeni, Y. Wang, R. Samavi, “Machine Learn-

ing Model for Smart Contracts Security Analysis”,

Proceedings of the 17th International Conference

on Privacy, Security and Trust, Fredericton, NB,

Canada, 26-28 August 2019.

[10] L. Zhenguang, H. Qingming, “Towards Automated

Reentrancy Detection for Smart Contracts Based

on Sequential Models.” IEEE Access, Vol. 8, 2020,

pp. 19685-19695.

[11] W. J.-W. Tann, X. J. Han, S. S. Gupta, O. Yew-Soon,

“Towards Safer Smart Contracts: A Sequence

Learning Approach to Detecting Security Threats”,

Proceedings of ACM, New York, NY, USA, 2019.

[12] B. Mueller, “ConsenSys/Mythril”, http:// github.

com/ ConsenSys/mythril (accessed: 2020)

[13] O. López-Pintado, B. García-Bañuelos, M. Dumas,

I. Weber, A. Ponomarev, “Caterpillar: A Business

Process Execution Engine on the Ethereum Block-

chain”, Software: Practice and Experience, 2018,

pp:1–45.

[14] M. Feng, Wang. Zhuoyi, “VSCL: Automating Vul-

nerability Detection in Smart Contracts with Deep

Learning”, Proceedings of the IEEE International

Conference on Blockchain and Cryptocurrency,

Sydney, Australia, 3-6 May 2021.

[15] K. L. Narayana, K. Sathiyamurthy, “Automation

and smart materials in detecting smart contracts

vulnerabilities in Blockchain using deep learning”,

Materials Today: Proceedings, 2021. (in press)

[16] G. Chhaya, N. S. Gill, P. Gulia, “SSDT: Distance Track-

ing Model Based on Deep Learning”, International

Journal of Electrical and Computer Engineering

Systems, Vol. 13, No. 5, 2022.

[17] M. R. Isa, M. A. Khairuddin, “SIEM Network Behav-

iour Monitoring Framework using Deep Learning

Approach for Campus Network Infrastructur”, In-

ternational Journal of Electrical and Computer En-

gineering Systems, 2021.

[18] S. A. Baharudin, A. Lajis, “Deep Learning Approach

for cognitive competency assessment in Comput-

er Programming subject”, International Journal

of Electrical and Computer Engineering Systems,

2021.

[19] L. Yiping, X. Jie, C. Baojiang, “Smart Contract Vul-

nerability Detection Based on Symbolic Execution

Technology”, Proceedings of the China Cyber Se-

curity Annual Conference, 2021, pp. 193-207.

[20] L. Zhang, J. Wang, W. Wang, “A Novel Smart Con-

tract Vulnerability Detection Method Based on

Information Graph and Ensemble Learning”, Sen-

sors, Vol. 22, No. 9, 2022.

[21] C. K. Frantz, M. Nowostawski, “From Institutions to

Code: Towards Automated Generation of Smart

756 International Journal of Electrical and Computer Engineering Systems

Contracts”, Proceedings of the Workshop on Engi-

neering Collective Adaptive Systems, co-located

with SASO, Augsburg, 2016.

[22] B. Luciano, A. Ponomarev, “Optimized Ex-

ecution of Business Processes on Blockchain”,

arXiv:1612.03152v1, 2016.

[23] BPMN-SOL Compiler, https://github.com/sig-

navio/ BPMN-Sol (accessed: 2022)

[24] BPMN-SOL Compiler, https://github.com/

shaunazzopardi/bpmn-to-solidity (accessed:

2022)

[25] BPMN, https://www.visual-paradigm.com/guide/

bpmn/what-is-bpmn/ (accessed: 2022)

[26] BPMN, https://www.lucidchart.com/pages/bpmn.
(accessed: 2022)

[27] Smart Contract Dataset, https://swcregistry.io/
docs/ SWC-107#modifier-reentrancy-fixedsol (ac-
cessed: 2022)

[28] Smart Contract Dataset, https://github.com/
smartbugs/ smartbugs (accessed: 2022)

[29] Classification-loss-metrics, https://peltarion.com/
knowledge-center/documentation/evaluation-
view/ classification-loss-metrics/f1-score (ac-
cessed: 2022)

[30] Ethereum Smart Contract Best Practices, https://
consensys.github.io/smart-contract-best-practic-
es/ known_attacks/ (accessed: 2022)

757Volume 13, Number 9, 2022

