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Abstract – Smart contracts (SC) are computer programs that are major components of Blockchain. The "intelligent contract" is made 
up of the rules accepted by the parties concerned. When the transactions started by the parties obey these established rules, then only 
their transactions will be completed without the involvement of a third party. Because of the simplicity and succinct nature of the solidity 
language, most smart contracts are written in this language. Smart contracts have two limitations, which are vulnerabilities in SC and that 
smart contracts can't be understood by all stakeholders, especially non-technical people who are involved in the business, since they are 
written in a programming language. Hence, the proposed paper used the XGBoost model and BPMN (Business Process Modeling Notation) 
tool to solve the first and second limitations of the SC respectively. Attackers are drawn to attention because of the popularity and fragility of 
the Solidity language. Once smart contracts have been launched, they can’t be changed. If that smart contract is vulnerable, attackers may 
then cash it. BPMN is used to represent business rules or contracts in graphical notation, so everyone involved in the business can understand 
the business rules. This BPMN diagram can be converted into a smart contract template through the BPMN-SOL tool. A few publications 
and existing tools exist on smart contract vulnerability detection, but they require more time to forecast and interpretation of vulnerability 
causes is also difficult. Thus, the proposed model experimented with several deep learning approaches and improved F1 score results by an 
average of 2% using the XGBoost model based on the ensemble technique to detect vulnerabilities of SCs, which are: Denial of Service (DOS), 
Unchecked external call, Re-entrancy, and Origin of Transaction. This paper also combined two important features to construct a data set, 
which are code snippets and n-grams. 
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1. INTRODUCTION

A Blockchain works in a decentralized environment 
and it has a sequence of blocks that are connected us-
ing cryptographic techniques [1]. As shown in Figure 1, 
each block consists of transaction data, a hash of the 
preceding block, and a timestamp. By its design, block-
chain is unsusceptible to changing data by its design. 
In a Blockchain, transactions between two parties are 
recorded in an efficient, verifiable, and permanent way 
[2]. Such a Blockchain can present an innovative solu-
tion to long-standing problems of security related to 
data storage in centralized systems. Blockchain can 
be considered the new face of cloud computing and 

is expected to reshape organizational and individual 
behavioral models.   

An important feature of a Blockchain is, that it is a dis-
tributed database. It means no centralized database or 
server exists Instead, the same Blockchain is duplicated 
on every node of the network. Each node in the sys-
tem receives a duplicate of Blockchain where all chunks 
have a grade of dealings in an encrypted format using 
asymmetric keys. Due to the complexity of mathemati-
cal formulas used in cryptography techniques, it is prac-
tically impossible to guess the keys and crack the trans-
actions. The sender can use his private key to encode a 
message to be sent, and the recipient can use his pub-
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lic key to decrypt the message. Every new transaction 
is broadcast and updated to all the network nodes to 
maintain a consistent database across the whole Block-
chain network [3]. Bitcoins are the major general Block-
chain stand in the world. Ethereum is another popular 
Blockchain that introduces smart contracts.

Smart Contracts (SC) are the programs for predefined 
rules which are deployed into the Blockchain and these 
programs execute automatically to make sure that ev-
ery transaction has to satisfy the predefined conditions 
to complete the transaction. Smart Contracts work 
based on simple conditional statements. Smart Con-
tracts are playing a more vital role in business among 
a group of untrusted people, where every transac-
tion can be completed according to rules agreed by 
all business stakeholders without the involvement of 
third-party verification [4]. Initially, SC basis codes are 
written in a high-level language, for example, Solidity 

by designers. The source code is compiled into byte 
codes (EVM code) by a compiler, it is in a hexadecimal 
arrangement. These byte codes can be converted into 
EVM instructions and are called opcodes [5].

Broadly three reasons attackers are focusing on smart 
contracts: first, the smart contracts of Ethereum are 
mainly money oriented transactions; secondly, after 
being deployed into the Blockchain, it is not possible 
to alter vulnerable SC; and finally, smart contracts have 
no defined measures to determine the quality of smart 
contracts [6]. Many smart contract assaults in 2016 led 
to large money losses (multi-million dollar losses) as 
a result of vulnerabilities in SCs. In smart contracts on 
Ethereum, it's currently worth focusing on automated 
deep study models to effectively detect SC vulnerabili-
ties [7], especially in financial matters such as money 
transfers and more complicated code.

Fig 1. Ethereum Blockchain Network

Smart contract vulnerabilities are divided into four 
categories, 1. security, 2. functional, 3. developmental, 
and 4. operational [11]. Security concerns include re-
entrancy, external contract, DOS - denial of service, the 
use of  tx.origin, unchecked external call, and usage of 
send() in place of transfer(). Functional vulnerabilities are 
locked money, integer division,  integer underflow, inte-
ger overflow, unsafe interface type, and reliance on time 
stamps. Development concerns involve infringement of 
token API, private modifier, non-compiler version fixa-
tion, violation of the style guide, duplicated back func-

tion, and degree of implied visibility. Finally, operational 
problems include byte array and expensive loop vulner-
abilities. The major focus of this article is on security con-
cerns that consist of unchecked external calls, re-entran-
cy, DOS, and the origin of thetransaction.

Reentrancy vulnerability[10,15]: In which they can 
take on the control flow and modify your data that is 
not expected by the call function. There are numerous 
shapes this bug class might take. The initial release of 
this problem is single-function reentrancy in which 
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functions can be called repeatedly before the original 
call is made. This might lead to harmful interactions 
between the multiple calls of the function. The other 
release of this problem is the re-entrancy of a cross-
function, in which an attacker can also attack the same 
state with two functions [8]. As re-entrancy can occur 
through several functions and even between differ-
ent contracts, a single function will not be enough to 
prevent re-entrancy. Instead, all internal work (i.e. state 
modifications) has been recommended first, and then 
the external function has to be called to prevent re-
entrancy vulnerability.

DOS vulnerability: A specific quantity of gas (transac-
tion fee) is required for the execution of smart contract 
functions. The Ethereum network establishes a gas lim-
it for every block and should not exceed that amount of 
all transactions in a block. Programmable statements 
in smart contracts that cause DOS (Denial of Service), 
if the gas limit is exceeded when these statements are 
executed. DOS vulnerability may be caused in scenari-
os such as 1) A loop variable with a value higher than or 
less than 382 depends more or less on the network gas 
limit. 2) Work with unfamiliar array sizes.

Vulnerability of transaction origin: The keyword 
called "tx.origin" in solidity language indicates the 
address of the account that began a transaction. For 
example, consider the sequence of call series X--> Y 
and Y--> Z. From the Z viewpoint, msg.sender is Y, and 
tx.origin is X. The "tx.origin" keyword can sometimes 
lead to dubiety, therefore try to avoid the use of "tx.ori-
gin" for authorization. Instead, it can be handled with 
msg.sender. 

Machine Learning (ML) algorithms are classified by 
learning style, consisting of supervised, semi-super-
vised, and unsupervised. In supervised learning, input 
or training data has a predefined label. Initially, a classi-
fier has to be designed with appropriate layers to train 
on training data and to predict the label of test data. 
The classifier has to be tuned well to get a good level 
of prediction accuracy. In unsupervised learning, train-
ing data does not have a label, hence the classifier is 
designed to cluster unsorted data based on similarities 
and variance.

 Wang Wei et al[5] presented an automated vulner-
ability detection model for smart contracts using the 
XGBoost machine learning model by extracting bigram 
features from SC opcodes. The limitation of this paper 
is that bigrams (2-gram) may not always be suitable to 
detect all types of vulnerabilities, because some vulner-
abilities may require more than bigram features. Inter-
pretation of opcodes is more difficult compared with 
high-level source code. The proposed framework uses 
an ensemble-based XGBoost supervised model [5] to 
perform multi-label classification to detect SC vulner-
abilities with the help of a data set created by n-gram 
features which are extracted from high-level SC source 
code. Ensemble algorithms join the outcomes of a set 
of simple and feeble models to get better predictions 

than those that are obtained using a single learning 
algorithm. The association of this remaining paper is 
organized as follows: Part 2 gives literature work on 
smart contract vulnerability detection systems using 
machine learning; part 3 explains the proposed work 
for vulnerability detection using the XGBoost learning 
model; part 4 demonstrates experiment details and 
comparison outcomes; and finally, conclusion and fu-
ture scope will be in part 5.

2. LITERATURE WORK

Recently, a few papers [5,6,9,10,11] were published 
on behalf of smart contract susceptibility detection 
using different ML techniques. Jian-Wei Liao et al. [6] 
present smart contract susceptibility detection using 
machine learning and fuzz testing techniques. The 
Authors used existing SC vulnerability detection tools, 
which are Oyente and Remix, to label training data sets. 
These static detection tools are more time-consuming 
[12]. The Authors also stated that to detect vulnerabili-
ties of SC, it requires SC skilled people or predefined 
patterns of vulnerabilities. They extracted features 
from SC opcodes to prepare the data set. 

Pouyan Momeni et al [9] presented smart contract se-
curity analysis with machine learning techniques, and 
the authors used existing traditional tools,  which are 
Mythril [13] and Slither to label the SCs that are pres-
ent in the dataset. These SC are given to a solidity parser 
as an input, and it generates an AST (Abstract Syntax 
Tree). Processing of AST is straightforward and easy to 
interpret. Features can be extracted comfortably from 
this AST as its output. The traditional tools used in the 
paper have been taking more time to predict vulner-
abilities[12]. Feng Mi et al. [14] presented a paper on the 
automatic detection of SC vulnerabilities using deep 
learning. The authors prepared a data set with extracted 
features from the SC byte code. Moreover, the interpre-
tation of byte code makes it difficult to analyze results. 
Peng Qian et al. [7] proposed graph neural networks for 
smart contract vulnerability detection with the help of 
expert knowledge. The authors constructed a graph for 
the extracted patterns from a given SC. Authors devel-
oped an open-source tool to extract patterns or features. 
Hence, in the proposed work, the open source feature 
extraction tool has been used and tailored as per the 
proposed work requirements.

Lakshminarayana. K et al [15] experimented with ba-
sic classification methods, which are binary classifica-
tion, multiclass classification, multi-label classification, 
and auto encoding techniques to detect smart contract 
vulnerabilities, which are reentrancy, DOS, and Tx.origin. 
The proposed paper also tries to improve detection re-
sults of the same vulnerabilities using a combination of 
two techniques, which are the contract snippets, n-gram 
features, and the XGBoost classification technique. Yip-
ing Liu et al. [19] presented an SC vulnerability detec-
tion model based on symbolic execution by taking SC 
assembly code (opcode) as input to generate a control 
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flow graph. Zhang L et al [20] presented an SC vulner-
ability detection model based on an information graph 
and ensemble technique. Input for this model is consid-
ering SC opcodes to find the critical opcode sequence 
for each vulnerability. But the proposed paper has been 
using high-level source code directly as input since SC 
source code is easier to trace the source of vulnerabil-
ity than SC byte code or SC opcodes. Nowadays, deep 
learning techniques have been extensively used in many 
areas in real life, for example, to prevent COVID by trac-
ing social distances [16], network behavior monitoring 
[17], to help programmers who feel it is difficult to learn 
by identifying their mistakes and suggesting corrections 
[18], and also for the detection of unusual activities in 
the health care sector, etc. 

Zhenguang Liu et al. [10] present automated re-
entrancy detection for SC. This paper used BLSTM for 
the classification task. The authors propose contract 
snippets (keywords) to capture semantic information 
from a given SC. The limitation of this paper is that it 
considers every word of each line in an SC to prepare a 
feature set. This may increase the number of features, 
but it may lead to a reduction in classification accuracy. 
Wesley Joon-Wie Tann et al [11] presented the LSTM 
machine learning model for safer smart contracts. 
LSTM will consider a sequence of opcode features to 
detect SC vulnerabilities. But LSTM doesn't care about 
the inspection of data and control-flow possessions 
(ex: loops and function calls). K. Frantzet al[21] and Lu-
ciono B et al [22] proposed methods to convert BPMN 
diagrams to solidity smart contract templates. Authors 

in [21] developed a domain-specific language (DSL) 
called ADICO-Solidity DSL for conversion from BPMN 
to solidity code. Authors in [22] prepare a Petri net 
graph as an intermediate step from BNMN elements 
and then convert them to solidity code from Petri nets. 
Each of the above papers has its pros and cons. Hence, 
the proposed paper combines the pros of the above 
papers, which are the usage of a parser, contract snip-
pets, and usage of n-grams to prepare the data set in 
the proposed SC vulnerability system, and also does 
work towards auto SC generation using the BPMN-SOL 
compiler [23,24].

3. PROPOSED SYSTEM

The general building of the proposed model is 
shown in Figs. 2(a) and 2(b). In the proposed system, 
a smart contract is supplied as input to the solidity 
parser. It performs preprocessing steps like removing 
comments and identifying functions and loops. From 
the parser output, code snippets (important keywords) 
and n-grams can be extracted as shown in Table1. 

These n-grams play a major role in identifying vulner-
abilities. Now it is possible to prepare a data set by con-
sidering n-grams as features, and they could be labeled 
according to the n-grams found in the SC. As shown 
in figure 3, different classes of vulnerability (C1 to C4) 
are correlated with different disjoint sets of n-gram fea-
tures (N1 to N7). It  applies to all solidity smart contracts 
if we provide high- level solidity source code as an in-
put instead of byte code or opcode of smart contracts. 

Fig 2(a). Training a Machine Learning Model

Table 1. Examples for Code Snippets and n-grams from smart contracts

Code Snippets (Key Words) n-grains

if, ( ), msg, sender, msg. sen der.ca 11.va lue, a ddr.transfer(*)

call, value, . , [, ], msg.sender, tx.origin( )9 solidity ^9

While, transfer, function, funtion( ), [msg.sender]=0

return. require. revert. msg.sender.transfer, addr.send("),

addr, if(*addr.send(*)) revert, if( *( )),
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The data set is created after analyzing the smart con-
tract source codes, which are collected from [25, 27] as 
per the algorithm shown in Figure4. In the literature on 
SC, many papers prepared data sets from the byte code 
of SC, which are difficult to analyze and difficult to con-
firm whether SC is vulnerable or not. Hence, this paper 
prepared datasets from high-level SC source code in-
stead of from byte code or opcodes of SC. 

Multi-label classification task: this requires one or 
more labels for each input sample as an output, and the 
outputs are required at the same time. The hypothesis 
is that the output labels depend on the inputs. In the 
proposed system, four classes of vulnerabilities, which 
are DOS (C1), unconditional external call (C2), reentran-
cy (C3), and transaction origin (C4), can be predicted. 

This prepared data set is given to ensemble-based 
XGBoost classifiers to train the network, where it uses 
internal K-Fold cross-validation (KF-CV) to test and im-
prove its training performance. Cross-validation means 

Fig 2(b). Smart Contract Template generation and testing a Model

Fig 3. Data Set for multi-label classification to detect vulnerabilities

an evaluation of machine learning models on a small 
sample of data. Cross-validation is mostly utilized to 
evaluate the skills of a machine learning model on invis-
ible data in applied machine learning. A K-Fold CV is a 
collection of K sections/folds where each fold is utilized 
as a test set at a certain moment. Consider the case of 
a 5-fold CV, where K=5. In this case, the total data set is 
divided into five equal partitions. First, the first parti-
tion acts as a test set and the remaining partitions act 
as training sets. In the next iteration, the 2nd partition 
acted as the testing set and the remaining partitions 
acted as training sets. This process will continue for all 
five partitions, and finally, the results of all folds are av-
eraged to predict the model's final performance.

XGBoost stands for Extreme Gradient Boosting. It is 
a scalable and tree-based boosting machine learning 
model. It is a popular and efficient open-source imple-
mentation. Gradient boosting is a learning method 
that tries to forecast a target variable by integrating 
estimates for several weaker and simpler models. In 
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Ensemble Learning, XGBoost is included in the boost-
ing methods group. Ensemble learning consists of a 
group of predictors that offer higher prediction accu-
racy through several models. In gradient-boosted algo-
rithms, the loss function is optimized, unlike in other 
booster techniques where incorrectly categorized 
branch weights are raised. XGBoost is a sophisticated 
gradient booster implementation with certain regula-
tory features. XGBoost features include, that it can be 
executed both on single and distributed systems (Ha-
doop, Spark) (regression and classification problems), 
parallel processing support, optimization of cache, and 
effective memory management for big data sets over 
RAM. It contains many regularizations that help to re-
duce overfitting problems. Auto tree pruning means 

the decision tree does not increase further internally 
beyond specified limitations, can manage any missing 
information, has cross-validation integrated, and takes 
care of some outliers.

As illustrated in Figure 5 in the XGboosting, mistakes 
caused by earlier models may be rectified by successive 
models. The trees will be created in sequence to mini-
mize the mistakes of the previous tree in every succes-
sive tree. The previous tree lists each tree and updates 
the remaining bugs. The successive trees in the series 
will thus find information from an updated residual ver-
sion. Gradient improvement is only a framework into 
which any model may be plugged, but tree-based 
models offer superior results. 

Fig. 4. Algorithm to generate data set from given smart contracts

Fig. 5. XGBoost Classification Model
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Once a machine learning model gets trained well, 
then it will classify or predict the smart contract vul-
nerabilities if we supply any SC as input for it. As smart 
contracts are written in programming languages, all 
stakeholders of a business can't interpret them to 
make them conform to whether they meet all business 
requirements or not. Hence, this paper used the Busi-
ness Process Modeling Notation (BPMN) tools [25,26] 
to construct a graphical representation of a smart con-
tract, as these BPMN diagrams are easy to understand 
by everyone, even if they do not have any technical 
knowledge, as shown in Figure 6. It includes functions 

for withdrawal, deposit, and balance inquiry. This BPMN 
diagram can be converted into a smart contract tem-
plate by the BPMN-SOL tool. It is a compiler to convert 
a BPMN file to a solidity file [23,24]. The BPMN-SOL tool 
internally follows the caterpillar engine to convert a 
given smart contract into a solidity code template [18]. 
The output of the BPMN-SOL tool is the SC template 
as shown in Figure7 (sample code, it is not generated, 
we are still working on it). The SC template can't be 
processed by the solidity compiler. Hence, developer 
involvement is required to make slight changes to con-
vert it into a final smart contract as shown in Figure 8. 

Fig. 6. BPMN diagram for Withdraw, Deposit, and Balance Enquiry functions

Fig. 7. Sample Smart Contract Template for the given BPMN diagram (Fig. 6)

Fig. 8. Final Smart Contract after modifications to SC Template



This paper concentrated on eXtreme Gradient Boosting 
(XGBoost) to build a suggested system to discover vulner-
abilities in smart contracts based on code snippets and 
n-grams. For comparison purposes, this paper also used 
Random Forest (RF), K-Nearest Neighbor (KNN), and Sup-
port Vector Machine (SVM) machine learning models. 

Random Forest is a flexible and easy-to-use algorithm 
for classification tasks. It is a kind of supervised learning al-
gorithm. Random forests may construct many trees from 
randomly selected data samples. Its final classification 
prediction result is based on the majority voting results of 
trees constructed by it. The robustness of this model de-
pends upon the number of trees constructed by it. Even 
though the random forest is a good model, compared 
with gradient-boosted trees, it has lower accuracy. SVM is 
the extensively utilized classification process, and it aims 
to identify a hyperplane in positive or negative samples 
in each of the segments such that there is the highest 
margin for the two segments, where the classification 
system is very reliable and generalizes new samples. The 
KNN classification algorithm is also used frequently. It is 
efficient and straightforward. For the given test sample, k-
samples nearest to the test sample are determined based 
on a certain distance measure, and then information from 
k-neighbors is predicted. In k-samples, the most common 
category marks are chosen as the prediction outcomes, 
depending on the majority voting.

4. EXPERIMENT DETAILS AND RESULTS

The Keras Python package is being used to experi-
ment with deep-learning models. Keras is a user-friend-
ly, free, and useful framework to create and evaluate 
deep learning models with a few code lines. The CO-
LAB resource is helpful for executing all the Python pro-
grams needed for this task online without cost. First of 
all, we must upload the data sets to the Google Cloud 
(colab)  before the applications are run.

Metrics[29]: The matrices used in the proposed work 
are confusion matrix, recall, precision, F1 score, Micro-
F1, and Macro-F1 to measure the deep learning models 
(XGBoost, SVM, RF, and KNN) performance for multi-
label classifications. The metric types used will direct 
us to choose better machine learning models. To as-
sess the performance of multi-label classification, the 
useful measures are Micro-F1 and Macro-F1. Micro-F1 
and Macro-F1 are called Global-F1 and Average-F1, re-
spectively. These measures can be calculated from the 
confusion matrix. It involves variables TN, FN, FP, and TP, 
which stand for True Negatives, False Negatives, False 
Positives, and True Positives, respectively.

Precision = TP / (FP + TP);

Recall = TP / (FN + TP);

F1-SCORE = (2 * Precision * Recall)/(Precision + Recall)

Both the Micro F1-score and the Macro F1-score are 
used to evaluate the performance of multi-label binary 
problems. For both, the best value is 1 and the worst 

value is 0. The Micro-F1_score is defined as the harmonic 
mean of precision and recall. The Micro-F1_score mea-
sures the aggregated F1_score of all classes. Note that 
precision and recall have the same relative contribution 
to the F1_score. It can give high values even if the model 
is performing poorly on the rare labels since it gives more 
importance to the frequent labels. For the calculation of 
the micro-averaging F1-score, initially compute the sum 
of all false positives, true positives, and false negatives 
over all the labels. Then calculate the global precision 
and global recall from these sums. Finally, compute the 
harmonic mean to obtain the micro F1-score.

Micro-F1_Score = (2* Global Precision * Global Recall)/ 
   (Global Precision + Global Recall)

Macro-F1_score will treat all classes equally. It will give a 
low value for the models that only do well in the frequent 
classes while showing unsatisfactory results in the rare 
classes. Macro F1-averaging is calculated by computing 
the F1-score for each class and then averaging them.

Macro-F1_Score = (2* Average Precision * Average Recall)/ 
   (Average Precision + Average Recall)

For the XGBoost classifier, all metrics are calculated as 
shown in Table 2. The dataset consists of a total of 1380 
records, with 320, 330, 350, and 380 records for C1, C2, C3, 
and C4 respectively. The detailed calculation of Micro and 
Macro F1-scores of XGBoost classifier is shown below.

STP (Sum of all TP) = (110+180+215+175) = 680; 
SFP (Sum of FP) = (5+5+7+9)  = 26
SFN (Sum of FN) = (0+8+8+0) = 16;        
Global Precision = STP / (STP+SFP) = 0.9631
Global Recall = STP / (STP + SFN) = 0.977; 
Micro-F1 = 0.97;

Average Precision=(sum of all precisions)/4 = 0.9622; 
Average Recall=(sum of all Precisions) /4 = 0.9803; Mac-
ro-F1 = 0.971.

For comparison purposes, the above metrics are also 
calculated for other deep learning models (RF, SVM, 
and KNN) similarly to those calculated for XGBoost as 
shown in Table3. XGBoost classifier demonstrates good 
performance to detect smart contract vulnerabilities 
compared with RF, SVM, and KNN as shown in Figure 9. 

The novelty of the proposed paper can be observed in 
Table 4, as it combines the two important features, which 
are contract snippets from [7,10] and the n-gram feature 
from [5], then an XGBoost ensemble model inspired by 
[5,20] to improve detection accuracy results and also work 
done towards auto SC generation inspired by [21,22].  

XG
 

Bo
os

t

TP FP FN TN Precision Recall F1-Score

C1 110 5 0 205 0.9565 1 0.9777

C2 180 5 8 137 0.9729 0.9574 0.9651

C3 215 7 8 120 0.9684 0.9641 0.9662

C4 175 9 0 196 0.9510 1 0.9749

Table 2. F1 Score calculation for XGBoost from 
confusion matrix elements.
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Fig. 9. Performance Comparison graph

FI-SCORE
Micro_F1  

(Global F1)
Macro_F1  
(Avg F1)ML MODEL DOS (C1) Unchecked 

Exception (C2)
Reentrancy 

(C3)
Tx_Origin 

(C4)

XGBoost 0.977 0.965 0.966 0.974 0.97 0.971

RF 0.962 0.965 0.944 0.921 0.951 0.957

SVM 0.951 0.947 0.962 0.954 0.956 0.961

KNN 0.942 0.956 0.937 0.968 0.943 0.952

Table. 3. Micro-F1 and Macro-F1 calculation for Machine Learning Models.

Vulnerabilities 
Detection Features Used ML Model 

Used
Work Done Towards 
Auto SC Generation

Liu Zhenguang et al [10] Reentrancy Contact Snippets Bi-LSTM No

WeiWang et al [5]
Reentrancy, Timestamp, 

Overflow, Underflow, 
Callstack, TOD

Bi-gram XGBoost No

Peng Qian et al [7] Reentrancy, Timestamp, 
Infinite Loop

Pattern (Snippets) 
Extraction, Graph 

construction
CNN No

Zhang L [20]
Reentrancy, Timestamp, 

Overflow, Underflow, 
Callstack, TOD

Information Graph Ensemble 
Learning No

C. K. Frantz et al[21] --NA-- ADICO-Solidity DSL --NA-- YES

Luciano B et al [22] --NA-- Petri net graphs --NA-- YES

Proposed Model
Re-entrancy, DOS, 

Unchecked external call, 
Origin of Transaction

Contact Snippets, 
N-gram, BPMN-SOL 

Compiler
XGBoost YES

Table. 4. Comparing proposed model with Existing Papers

5. CONCLUSION & FUTURE WORK

This paper proposed work towards auto-smart con-
tract generation and smart contract vulnerability de-
tection models to identify specific security-related vul-
nerabilities using the XGBoost multi-label classification 
model. As shown in Figure 9, the proposed XGBoost 
model produced a 2% better average F1 score (2% bet-
ter results than RF and KNN, and 1% better results than 
SVM), Compared with RF, SVM, and KNN deep learning 
models, by combining the best two features (called 
contract snippets and n-grams) from the literature to 
prepare a data set for the XGBoost model to detect SC 

vulnerabilities, which are Denial of Service (DOS), Un-
checked external call, Re-entrancy, and Origin of Trans-
action. This paper also makes use of BPMN and BPMN-
SOL tools to initiate the work towards auto-smart con-
tract generation. The limitation of this work is that the 
BPMN-SOL tool produces the smart contract template, 
where developers have to put effort into preparing the 
final smart contract. In our future work, we will concen-
trate on improving SC template quality, again trying to 
make it a fully automated conversion, and also try to 
improve SC vulnerability detection accuracy results us-
ing advanced deep learning concepts.
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