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Abstract – Because of the massive utilization of the world wide web and the drastic use of electronic gadgets to access the online 
world, there is an exponential growth in the information produced by these hardware gadgets. The data produced by different sources, 
such as smart transportation, healthcare, and e-commerce, are large, complex, and heterogeneous. Therefore, storing and querying 
this data, coined "Big Data," is challenging. This paper compares relational databases with a few of the popular NoSQL databases. The 
performance of various databases in executing join queries, filter queries, and aggregate queries on large datasets are compared on a 
single node and multinode clusters. The experimental results demonstrate the suitability of NoSQL databases for Big Data Analytics and 
for supporting large userbase interactive web applications. 
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1. INTRODUCTION

Traditional Relational and Object-Relational database 
approaches are ineffective at delivering the flexibil-
ity and scalability needed when processing enormous 
amounts of fast-moving structured, unstructured, and 
semi-structured data and supporting a large number of 
concurrent users. NoSQL databases fully handle these 
problems. The following two subsections go into fur-
ther detail about these ideas.

1.1. LIMITATIONS OF ReLATIONAL DATABASeS 
 IN SUppORTINg MODeRN WeB  
 AppLICATIONS

Since the beginning of computers, the relational 
model has been the standard for storing and retrieving 
data. The limits of relational databases were made clear 
by the exponential increase in internet users and the 
widespread adoption of new-generation online appli-
cations, which ultimately called for the developing of a 
new generation of No-SQL databases. 

The reason why relational DBMSs are not well suited 
to support the requirements of modern web applica-
tions is their complete dependence on the fixed pre-
defined schema, strict consistency rules (adherence to 
ACID properties) [1], need for joining several tables for 
query processing (which is difficult and slow when data 
grows huge and is stored distributedly across multiple 
servers), poor performance in terms of availability and 
scalability while dealing with large volumes of unstruc-
tured or semi-structured workloads.

1.2. pROBLeM STATeMeNT AND SOLUTION  
 FeATUReS OF NOSQL DATABASeS 

In order to handle massive amounts of data and a 
very large user base, modern web-based applications 
have incorporated scale factors that have never been 
used before. Modern web applications must be able to 
serve vast numbers of concurrent users, respond quick-
ly to a considerably large user base scattered through-
out the globe, provides constant availability, manages 
a wide range of data, and update swiftly for new up-
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dates and features. The advent of these new challenges 
posed by the term coined as "big data" (made up of 
structured, semi-structured, and unstructured data and 
described by its volume, variety, and velocity features) 
created a need for out-of-the-box horizontal scalabil-
ity for today's data management systems. Additionally, 
we are dealing with a new community of applications 
where flexibility, scalability, availability, and cost are 
more crucial to application success than consistency 
in read-and-write operations. To ensure that our appli-
cation exhibits the features mentioned above, the first 
requirement is that the data management systems be 
designed to run on distributed systems.

The last ten years have seen the rise of cloud comput-
ing as the most practical and economical alternative for 
meeting the ever-increasing storage and processing 
demands of modern online applications. As a result, 
most web applications nowadays are hosted in the 
cloud, where the available resources can change size 
in response to the application's needs. Additional serv-
ers can be provided to the website to handle increased 
demand in the event of a sudden rise in traffic (scaling 
out) [2], thus ensuring the system's constant availabil-
ity and good performance. When the traffic returns to 
normal, the additional servers can be removed. NoSQL 
systems are faster and better equipped as they can take 
advantage of "scaling out," i.e., adding more nodes to 
the distributed system and distributing the additional 
load over newly added nodes.

The focus of this paper is to present the differences 
between relational databases and No-SQL databases 
as well as broad categorization of No-SQL data stores 
and to compare and analyze three popular No-SQL 
solutions – Cassandra, MongoDB, and CouchBase, and 
to highlight their differences with relational databases 
and other No-SQL data stores.

2. SQL VS. NOSQL

In order to tackle Big Data, the world has moved 
away from the "one size fits all" philosophy of RDBMS 
and toward the more flexible approach of No-SQL sys-
tems [3]. NoSQL databases give more freedom to de-
sign systems by studying the application's features and 
the type and volume of data it is dealing with, which is 
the cause for the shift in emphasis from traditional RD-
BMS to NoSQL database systems for handling Big Data.

2.1. NO-SQL SILeNT FeATUReS

No-SQL data stores are devised to scale horizontally 
and run-on commodity hardware. The term "horizontal 
scalability" means the ability to distribute the data and 
the processing workload of database operations over 
many servers with no shared memory. On the other 
side, "vertical scalability"— the only way of expanding 
the capabilities of centralized RDBMS systems—means 
boosting the resources of the specialized server, which 
comes at a significant cost. Moreover, No-SQL data 

stores can benefit significantly from cloud infrastruc-
tures from an implementation standpoint since they 
can be scaled and made available according to the ap-
plication's needs [4]. 

2.2. DeVIATION FROM ReLATIONAL  
 DATABASeS

The transactions in relational databases obey the ACID 
principle, which stands for Atomic, Consistent, Isolated, 
and Durability [5]. Many rows spanning many tables are 
updated as a single operation. This operation either suc-
ceeds or fails in its entirety, and concurrent operations are 
isolated from each other, so they cannot see any partial 
updates. Following these rigid consistency requirements 
could needlessly limit databases' ability to address the 
performance issues for a specific application. In distrib-
uted databases, following ACID properties strictly for all 
the transactions where many nodes handle the opera-
tions within the transaction creates complications. In re-
lational databases, it is essential not to allow any applica-
tion to view the inconsistent state of the data. Satisfying 
strict consistency requirements in distributed databases 
will force the system to ensure that communication chan-
nels maintain strict consistency of data and total synchro-
nization of replica copies with the consistent data across 
the clusters of nodes. Performing this complicated task at 
each transaction without compromising on the availabil-
ity of the system is highly difficult.

Because for each transaction, the system will have 
to wait till the updates inflicted by the transaction are 
propagated to all the other nodes hosting some por-
tion of the affected data. Unlike relational databases, 
many NoSQL systems are not ACID compliant [6]. In 
some NoSQL databases which bypass the strict consis-
tency rule of RDBMS, within the cluster, all writes are 
received by the MASTER, and synchronization of the 
SLAVE replicas with that of the MASTER data is car-
ried out periodically. Hence the updates are eventu-
ally propagated. SLAVE nodes are always available to 
respond to read queries, because of which there are 
reduced guarantees of returning consistent results for 
all the read requests. The idea is that by relaxing on the 
strict ACID constraints, we can enable the database sys-
tems to improve on the other desirable characteristics 
like availability, scalability & fault tolerance. As already 
discussed, many of today's modern applications won't 
mind not following strict ACID properties. But, its per-
formance will be badly affected if the uptime for all the 
requesting clients is not maintained. In replacement 
to ACID, No-SQL databases follow BASE [7] semantics 
which are explained below:

•	 (BA) Basically Available: an application is ready to 
accept read/write requests all the time.

•	 (S) Soft state: Results may not always be based on 
consistent data (no consistency guarantee).

•	 (E) Eventual consistency: The system assures that 
data will become consistent at some later point.
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When a distributed database system is installed on 
a group of server computers, high availability may be 
achieved by maintaining replica copies of the data on 
several machines within the group and updating those 
copies whenever a write operation is carried out on the 
MASTER machine [8]. Consider a scenario in which the 
network links between the cluster nodes are broken, 
and the network is divided into several fragments that 
cannot be reached by one another. In this situation, the 
database system is kept accessible for clients by mak-
ing one network segment active and disconnecting 
the others. Additionally, this stops the nodes of discon-
nected segments from responding to client queries, 
preventing the delivery of inconsistent results. 

After receiving the missed writes (updates) from the 
active cluster nodes, the inaccessible cluster segments 
begin serving the directed traffic of client requests. In a 
distributed database, the capacity of the clusters to con-
tinue operating despite communication breakdowns is 
referred to as partition tolerance [9]. The CAP theorem, 
which argues that in partition tolerance, one must choose 
between consistency and availability, explains the com-
plicated trade-off between consistency and availability in 
distributed databases [10]. Another way around, the sys-
tem cannot have all the following three properties at any 
given time: consistency (all servers having a consistent 
version of the data), availability (each request receives a 
timely response), and partition- tolerance (as the informa-
tion is distributed and replicated, even if there is a failure 
in a part of the system, the system continues to work). No-
SQL systems frequently compromise consistency to some 
degree to achieve high availability [11]. 

Feature RDBMS NoSQL

Data Structured Structured, Unstructured, 
Semi-structured

Schemas Fixed Dynamic

Scalability Vertical Horizontal

Compliance ACID properties BASE properties

Architecture Centralized Distributed

Consistency Strict Eventual

Query Language SQL OO API, SQL like

Performance Slow Fast

Best suited for banking, financial 
transactions

large-scale web 
applications, Sensor data

Table 1. Comparison of RDBMS and NoSQL

2.3. NO-SQL DATA MODeLS

Most No-SQL databases run on distributed systems 
and fall into four categories.

1. Key-Value Stores

a. The data is stored in the form of key-value pairs.

b. Keys are identifiers (unique in the namespace), and 
values are data associated with the keys. Keys are 
used for looking up data.

c. For fast lookups, keys are hashed [12].

d. In key-value pair, the value may be data or another 
key.

e. Supports querying, modifying data through pri-
mary key, and mass storage.   

f. Provides higher concurrency and higher query 
speed.

g. Best suited when high-speed and highly scalable 
caches are needed.

h. e.g., Amazon Dynamo, Azure Cosmos, Riak, Redis, 
etc.

i. Suitable for applications that use a single key to ac-
cess data, e.g., online shopping cart.

2. Document Stores

a. Documents contain contents as well as formatting 
information (JSON, XML).

b. Documents contain information in key-value pairs.

c. Keys are a string of characters, and values can be 
any basic data type or structure.

d. Collections are the list of documents. Documents 
in the same collection can follow different struc-
tures. 

e. A document can have embedded documents or ar-
rays inside it.

f. Supports indexing, designed for scalability and 
high performance.

g. In addition to CRUD (create, read, update, delete) 
operations, it supports filtering collections, joining 
multiple collections, performing groupings, aggre-
gations, etc.

h. Best suited when fast and constantly growing data.

i. e.g., MongoDB, Couchbase, CouchDB, RavenDB 
etc.

j. Suitable for content management systems, e.g., so-
cial networking sites, blogging platforms, etc.

3. Wide Column-Databases

a. In Column- Databases basic unit of storage is a col-
umn, i.e., data is organized in column families.

b. Column data is stored one after the another. Hence, 
the last item of the first column is followed by the 
first item of the second (next) column, and so on.

c. A query language for column-family databases 
supports CRUD and creates column-family opera-
tions [13]. 

d. An index is created on columns, reducing the I/O 
cost for the queries accessing columns of data.

e. More suitable for data warehouses where most of the 
analytical queries involve aggregations that need to 
scan data from a few columns but for all the rows.

f. e.g., HBase, Cassandra, Accumulo, Hypertable, etc.
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4. graph Databases (gD)

a. A collection of nodes (vertices) and relationships 
(edges) tagged with the information forms a graph 
[14].

b. A node is an object that has an identifier and a set 
of attributes. A relationship is a link between two 
nodes that contain features about that relation.

c. It provides fast operations as it models adjacency 
between objects.

d. Convenient to use for representing social network-
ing media, creating recommendation systems, and 
pattern mining.

e. It is best suited when the relationship between 
entities is more important than the entities them-
selves.

f. The data of popular applications like Facebook, 
Twitter, LinkedIn, etc., are modeled using graphs.

g. Neo4J, Infinite Graph, InfoGrid, HyperGraphDB, etc.

3. pOpULAR NOSQL DATABASeS

A few of the popularly used NoSQL databases are de-
scribed below:

1. MongoDB is developed in the cloud. It is a scalable, 
open-source No-SQL database that is document-
oriented, schema-free, and simple to use. It aims to 
fulfill the needs of expansive web applications by 
implementing highly parallel and globally scattered 
database systems. MongoDB supports auto shard-
ing, where it splits the data collections and stores the 
different data chunks among the available servers 
[15]. Additionally, it provides features like high per-
formance, partition tolerance, automatic scalability, 
and replication (uses Master-Slave replication) [16]. 

2. Cassandra is a distributed storage system for struc-
tured data management that can handle large vol-
umes of data. Scalability, high performance, high 
availability, high reliability, applicability, and repli-
cation are a few of its essential characteristics [17]. 
Its feature of executing map-reduce jobs in hadoop 
clusters is ideally suitable for mission-critical appli-
cations [18]. It is incrementally scalable, and data 
is partitioned and distributed among the nodes of 
a cluster in a fashion that allows repartitioning and 
redistribution.

3. CouchDB: CouchDB is sometimes called a "Cluster of 
unreliable commodity hardware." Initially, CouchDB 
was implemented in C++ but later ported to the 
Erlang OTP for implementing thoroughly lock-free 
concurrency of read-write requests. CouchDB data-
bases consist of documents made up of fields with 
a key, i.e., name and value. The value may be a num-
ber, boolean, date, string, ordered list, or associative 
map [19]. Documents may contain references to 
other documents (embedded documents). Couch-
DB is distributed; its other essential concepts are 

schema-free, views, distribution, replication, map-
reduce, etc. The cluster is conveniently scaled hori-
zontally and has no single point of failure. Clusters 
are designed to allow live changes means there is no 
downtime during database updates and software-
hardware upgrades [20]. If you're scaling reads over 
numerous servers, a write must happen on them. It 
also offers incremental replication with bidirectional 
conflict detection and resolution. 

4. HBase is a Hadoop-based open-source system that 
runs on the fault-tolerant Hadoop Distributed File 
System (HDFS). HDFS uses a master-slave architec-
ture that consists of name nodes (manages the file 
system) and data nodes (stores and replicate data) 
[21]. In a hadoop cluster, coordination between 
different nodes is maintained by one type of node 
called Zookeeper (single point of failure for HBase). 
The zookeeper stores the location of the META table. 
The client will query the META table to get the re-
gion server corresponding to the row key it wants to 
access. The client caches this information along with 
the META table location. HBase has two types: read 
cache (BlockCache) and write cache (MemStore). In 
HBase, data is stored in tables, but it is schema-less. 
Tables have lexicographically indexed multidimen-
sional row keys and several column families, each 
having a set of column qualifiers, which stores the 
fundamental data element [22]. Hence a combina-
tion of the table name, row key, column family, and 
column qualifier define the access. The system stores 
different versions of a data item, each assigned with 
an individual timestamp. This feature of HBase attri-
butes to its high write performance. In addition to 
hadoop services, HBase also has servers for manag-
ing metadata about the distribution of table data. 
The primary storage unit (shard) in HBase is Region 
which is managed by RegionServers (responsible 
for administrative activities). As the size of the data 
grows, new regions are created. The subset of the 
rows of a column family, ordered by the row key, are 
assigned to a particular region. An asynchronous 
write-ahead log (WAL) is used in HBase cluster rep-
lication which eventually targets consistency. The 
META table is an HBase table that lists all regions in 
the system. This unique HBase Catalog table holds 
the location of all areas in the cluster.

3.1 COMMON Key DeSIgN ChARACTeRISTICS 
 OF NO-SQL DATABASeS

Following are the critical characteristics of NoSQL da-
tabases that support Big Data Analytics.

1. Scalability: ability to efficiently meet the needs for 
varying workloads in terms of resources and perfor-
mance. A Spike in the number of users triggers the 
application running on a cloud to acquire additional 
servers. As the spike subsides and traffic becomes 
normal, additional servers are released [23].
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2. Flexibility: Before starting a project, RDBMS database 
designers must design all the tables, table relation-
ships, and schemas required to support an applica-
tion. Unlike relational databases, which demand the 
schema to stand defined before adding any data, 
No-SQL is schema-less and hence more capable of 
handling significant variations in the data structures.

3. Availability: Most of the No-SQL systems are almost 
always ready to accept new read or write requests. 
In the back end, No-SQL databases are usually de-
ployed on a distributed system consisting of multiple 
low-cost servers, each having an identical copy (rep-
lica) of the database. The large-scale web application 
also runs on a cluster of servers. As the backup serv-
ers keep replicated copies of data from the primary 
server, if a primary server goes down for maintenance 
or fails, the secondary servers elect the new primary, 
and thus the system remains available. In case of a 
sudden increase in the number of users, cluster ex-
pands in terms of compute, storage & bandwidth ca-
pacity to maintain system performance.

4. Replication: To prevent automatic fail-over caused 
by events like server or network failures, MongoDB 
utilizes an architecture called replica set to distribute 
copies of data among computers in the cluster. Scal-
ing the number of database reads is another benefit 
of replication. Database reads in read-intensive ap-
plications can be distributed among the computers 
in the replica set cluster. Replica sets typically in-
clude a primary server and a backup server. If a mas-
ter-slave arrangement is used, the primary server 
can handle both read and write requests, while the 
secondary servers can only handle read requests. 
Each write on the primary will be transmitted to all 
the secondary servers. In other words, reads from an 
alternative location will succeed only when they re-
ceive all the changes made to the primary. If the pri-
mary server fails, one of the secondary servers will 
be elected as a new primary [24].

5. Cost: Most of the No-SQL databases are available as 
open source and hence are free, thereby avoiding 
the issues like licensing, charging the users, etc.

6. Sharding (Partitioning) Data splitting (per-collection 
basis) over many servers with an emphasis on order 
preservation will increase performance. To do this, 
we partition the dataset into various servers and 
replicate each portion over many servers. We can 
significantly increase the read and write speed of the 
system since different users are accessing distinct 
portions (shards) of the dataset. A server can be a 
slave for a few shards and a master for few others.

7. Map-Reduce: MapReduce is a programming model 
in which computations are expressed as a map and 
reduce functions, which are impulsively parallelized 
across numerous machines within a cluster-based 
computing environment. It can perform calculations 
on large volumes of data in a reasonable amount of 

time by distributing and parallelizing it across mul-
tiple devices in the cluster. The computations take 
a set of input key-value pairs and produce a set of 
intermediate key-value pairs accepted by the set of 
reduced functions. The reduced functions merge 
the values by grouping using the intermediate keys 
(using operations like counting, summing, or aver-
aging) to produce possibly smaller values.

3.2 hADOOp BIg DATA FRAMeWORK

•	 Hadoop is a valuable open-source framework for 
developing distributed applications that process 
large amounts of data [25]. Hadoop is intended to 
run on clusters of commodity hardware (or cloud 
services such as Amazon's EC2), hence is capable of 
handling hardware malfunctions and failures. In ha-
doop, large data sets are divided into more number 
of smaller (64 MB) blocks which are spread to live in 
the cluster of several machines using the Hadoop 
Distributed File System (HDFS). 

•	 HDFS achieves this using its two components, Na-
meNode (stores metadata) and DataNodes (stores 
portion of actual data). Depending on the degree 
of replication, replica copies of each block will be 
maintained in the hadoop. If NameNode is the mas-
ter daemon, Data Nodes are slave daemons. Hadoop 
NameNode uses the rack information to distribute 
replicas across racks (avoiding multiple copies of the 
same block on the same rack) to ensure fault toler-
ance in case of rack failure. The other side of this rack 
awareness replication policy is the increased I/O cost 
due to the movement of blocks across racks.

•	 Cluster machines can access the distributed dataset 
in parallel, thus providing high throughput [26]. For 
computations, hadoop uses distributed data pro-
cessing framework called MapReduce, which uses 
the move code to data principle [27]. Hence, a por-
tion of data is computed on the same node where it 
resides. MapReduce has two phases: the map phase 
and the reduce phase. The map phase uses one or 
more mappers to process the input data, and the re-
duce phase uses zero or more reducers to process 
the data output during the map phase.

1. Map phase

a. Split the input data into several data segments.

b. Generate and assign a separate map task for each 
data segment.

2. Distribute the map tasks across the clusters of 
nodes.

3. Run the map tasks in the distributed framework.

a. Each map task runs on the disjoint set of input key-
value pairs.

b. Each map task outputs partially consolidated data 
in output key-value pairs.
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c. Output key-value pairs are also called intermediate 
key-value pairs.

4. Reduce phase

a. The outputs of map tasks (intermediate data set) 
are sorted and segmented.

b. Segmentation is done so that values associated 
with the same key belong to the same segment 
and are sent to the same reducer.

c. Reducers reduce the number of values associated 
with a particular key.

•	 A hadoop cluster can have only one JobTracker and 
several Task-Trackers. JobTracker accepts the client's 
MapReduce job submission, creates, and coordi-
nates job tasks to the TaskTrakers, finds the location 
of data from the NameNode, schedules, and moni-
tors the functions on the TaskTracker, and handles 
the failed TaskTracker tasks [28, 29].

4. eXpeRIMeNTATION 

The experiment is performed by installing the Ha-
doop cluster on three machines with 11th Gen Intel(R) 
Core (TM) i5 processor, 8 GB RAM, and SSD. The Hadoop 
ecosystem is installed with Hbase, Cassandra, Mon-
goDB, and CouchDB as NoSQL databases and MySQL 
as a relational database on the ubuntu platform on VM 
VirtualBox. Experimentation involves the execution of a 
few basic CRUD (Create, Read, Update, Delete) queries 
along with complex join, filter, and aggregate queries 
using a single node and the multinode cluster. The task 
of creating big datasets is automated through PL/SQL 
scripts. The generated datasets are imported into mul-
tiple database systems, and semantically equivalent 
queries are executed on each. The results are used to 
gain insights into the performance efficiency of dif-
ferent database systems in different scenarios. MySQL 
and HBASE experimentations are performed on the 
employee database, whose schema is shown in follow-
ing Fig. 1.

Fig. 1. Employee Dataset schema

A few examples of select and update queries execut-
ed on MySQL and HBASE are, 

Find the total salary dispensed by each department.

•	 List the employees who joined after 2019.

•	 List all employees in terms of increasing or decreas-
ing salaries.

•	 Increment the salary of each employee by 10 % of 
the current salary.

MongoDB, Cassandra, and CouchDB-based experi-
mentations are performed on the Movie database 
(structure derived from https://www.kaggle.com/
harshitshankhdhar/imdb-dataset-of-top-1000-mov-
ies-and-tv-shows. Data is generated using PL/SQL 
script, which generates random values (from the pre-
defined set of values extracted from the web-crawled 
data) having attributes: Title, ReleaseDate, Runtime, Di-
rector, Star1, Star2, Star3, and GrossIncome.
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A few examples of select, join, and aggregate queries 
executed on the Movie database are as follows:

•	 Report the director-wise total income from the 
short movies (maximum runtime 2 hours).

•	 Display the year-wise topmost movies in terms of 
Gross Income.

•	 Find out the number of movies in which the direc-
tor is also a leading actor (Star1).

•	 List all the movies released in the year 2019 in as-
cending order of their release date.

Database No of rows employees salary titles dept_emp

MySQL 100000 1375 ms 1328 ms 1015 ms 3024 ms

HBASE* 100000 40256 ms 40307 ms 40187 ms 40078 ms

MySQL 200000 3284 ms 3313 ms 2671 ms 4684 ms

HBASE* 200000 77461 ms 77465 ms 76554 ms 77123 ms

HBASE# 100000 2 m 51 s 2 m 25 s 2 m 45 s 2 m 55 s

Table. 2. Table-wise average Insertion time of MySQL and HBASE (* - Single Node, # - Multinode Cluster)

4.1 eXpeRIMeNTATION ReSULTS

As shown in Tables 2 & 3, although the insertion per-
formance of HBASE (using HIVE) is less than MySQL for 
the examined datasets, the batches of filter, join, and 
aggregate queries run several times faster on HBASE 
multinode cluster in comparison to MySQL. With the in-
crease in the number of nodes in the HBase cluster, the 
performance difference in further processing the batch 
of queries is expected to increase substantially with the 
scaling up of HBASE cluster performance. The HBASE 
execution time diminishes by approximately half when 
the cluster size doubles.  

Database No of rows Where Queries (avg) Join Queries (5000) Aggregate Queries (5000)

MySQL 100000 5 m 3 s 7 m 35 s 9 m 3 s

HBASE* 100000 12 s 8 m 45 s 10 m 35 s

MySQL 200000 9 m 52 s 18 m 38 s 14 m 4 s

HBASE* 200000 22 s 16 m 40 s 21 m 52 s

HBASE# 100000 1 s 2 m 45 s 3 m 35 s

Table 3. MySQL versus HBASE: Average execution time for the filter, join and aggregate queries.  
(* - Single Node, # - Multinode Cluster)

Database No of rows Where Queries (avg) Join Queries (5000) Aggregate Queries (5000)

HBASESSN 100000 12 s 8 m 45 s 10 m 35 s

HBASESSN 200000 22 s 16 m 40 s 21 m 52 s

HBASEDSN 200K–300K 36 s 25m 47s 32m 25s

Table 4. HBASE Performance -- Static vs. Dynamic Cluster  
(SSN – Static Single Node, DSN – Dynamic Single Node)

With HBASE, for the same number of nodes, static 
cluster performance in terms of scale-up and resource 
utilization is better than dynamic cluster (shown in Ta-
ble 4), where the changes in the configuration of the 

cluster are applied automatically in the online mode. 
MongoDB accomplishes a higher throughput on dy-
namic clusters for all three types of queries (shown in 
Table 5).

Database No of rows Insertion Where Queries (avg) Aggregate Queries

MongoDBSSN 100000 13.8 s 0.0250 s 11.84 m

MongoDBSSN 200000 16.05 s  0.0104 s 24.43 m

MongoDBSSN 400000 26.13 s  0.0103 s 49.73 m

MongoDBDSN 400000 28.5 s 0.0137 s 52.06 m

MongoDBSC 400000 13.93 m 13.31 m 1.81 h

MongoDBDC 400000 11.7 m 0.012 s 52.28 m

Table 5. MongoDB Performance -- Static vs. Dynamic Cluster  
(SSN – Static Single Node, DSN – Dynamic Single Node, SC – Static Cluster, DC – Dynamic Cluster)
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Database No of rows
Where 

Queries 
(avg)

Join 
Queries 
(5000)

Aggregate 
Queries 
(5000)

MySQL 100000 4.7 m 38.7 m 44.8 m

CouchDB* 100000 15.3 m 7.2 m 13.9 m

MySQL 200000 5.4 m 8.8 m 87.2 m

CouchDB* 200000 15.3 m 8.8 m 12.0 m

MySQL 300000 5.7 m 109.8 m 127.2 m

CouchDB* 300000 15.6 m 9.9 m 12.1 m

MySQL 400000 5.6 m 147.1 m 170.1 m

CouchDB* 400000 15.9 m 11.3 m 11.8 m

Table 6. MySQL vs CouchDB

The experimental observations (shown in Table 6) 
show that filter queries take more time in CouchDB 
whereas join and aggregate queries run faster in 
CouchDB than in MySQL database. With the inbuilt 
cache and use of map-reduce, CouchDB read-write 

Table 7. MySQL vs. MongoDB

Database No of rows Insertion Where Clause Aggregate Clause Join Clause

MySQL 100000 1.45 h 2.11 m 31.5 s 4.2 m 

MySQL 200000 2.88 h 7.99 m 51.1 s 14.91 m 

MySQL 400000 6.01 h 14.78 m 1.95 s 41 m

MongoDB* 400000 303.11 s 0.023 s 1.408 h @

MongoDB# 400000 292.008 s 1.009 s 2.405 h @

The number of queries per clause= 10000, 
*: MongoDB performance using Apache storm Single Node with static data
#: MongoDB performance using Apache storm Cluster with dynamic data.
@: Data Stored in one collection only with embedded documents and lists of other papers. All related data are in a single collection only. No 
joins of multiple collections were performed. 

For the Cassandra database, in tables 8 and 9, the to-
tal and average insertion time and total and average 
retrieval time for a number of rows (in the 2nd column) 
are shown (in the 3rd and 4th column [from the left], re-
spectively) for both single node and multinode cluster.

Experimentation shows on importing the Movie 
dataset and running the batches of queries (read-
intensive, write-intensive, and read-write mixed) in 
HBase, MongoDB, and Cassandra that, mostly HBASE 
is more efficient in handling write-intensive workloads. 

In contrast, Cassandra is more efficient while deal-
ing with read-intensive workloads. For read-intensive 
workloads (above 80% reads), MongoDB gives better 
performance than all the other databases. HBase per-
formance is better on workloads having mixed read 
and write requests. On balanced read-write workloads 
(50 % each), MongoDB shows better scaling behavior 
when compared to Cassandra (linear). When tried on 
read-intensive workloads, Cassandra shows significant-
ly high disk I/O compared to CouchDB and MongoDB. 

performance is good and is suitable for interactive ap-
plications (Table 6).

MongoDB with Apache Storm cluster with static/dy-
namic data is far more time efficient than MySQL, and 
its performance scales up nicely with the expansion 
in the number of nodes in the cluster. Because of this, 
MongoDB has high success in running a large number 
of queries in a short time. MongoDB's performance for 
join queries (complex queries in general) is far superior 
in comparison to its SQL as well as NoSQL counterparts 
because of its extensive use of subdocuments and em-
bedded lists, thereby avoiding the computations for 
searching the matched documents in the other collec-
tions (results are shown in Table 7). With update-heavy 
workloads, MongoDB performance dips, but on read-
heavy workloads, it’s performance remains leading 
compared to other databases. 

MongoDB's scaling performance is better than Cas-
sandra's insertion time and retrieval time (total and 
average time) for various data sizes on single and mul-
timode clusters are shown in Tables 8 and 9.

performance statistics on Cassandra

Retrieval type Number of Rows Insertion time total) (avg) ms Retrieval time (1000 queries) 
(total)/(avg) ms

static 100000 79152 (0.26384) 72047 (72)

static 200000 164342 (0.8217) 21873 (81)

static 300000 242731 (0.829) 83212 (83)

dynamic 700001-800000 110947 (1.1) 138176 (138)

dynamic 800001-1000000 218140 (1.0) 156368 (156)

dynamic 1000001-1300000 315755 (1.0) 198109 (198)

Table 8. Cassandra read-write performance statistics on a single node cluster



215Volume 14, Number 2, 2023

Cassandra Cluster 3-node cluster (replication factor: 3)

Retrieval type Number of Rows Insertion time  
(total)/(avg) ms

Retrieval time 
 (1000 queries) (total)/(avg) ms

static 1-100000 159034ms/1.590ms 54591ms/54.591 ms

static 100001-300000 229374ms/1.147ms 54903ms/54.903ms

static 300001-600000 346375ms/1.1546ms 66778ms/66ms

dynamic 600001-700000 154942ms/1.549ms 100469ms/100.469ms

dynamic 700001-900000 271857ms/1.359ms 77959ms/77.959ms

dynamic 900001-1200000 470318ms/1.568ms 73065ms/73.065ms

Table 9. Cassandra read write performance statistics on three node cluster

In general, using the traditional optimization tech-
niques in the distributed databases, and deploying the 
databases on scalable distributed frameworks like the 
cloud, makes the application more efficient in query ex-
ecution as well as in maintaining system performance 
in the presence of a fluctuating number of application 
users which eventually leads to fluctuating sizes of the 
query workloads. It is observed that within the avail-
able scope of further decomposition of the workload 
and workload queries, increasing the number of cores 
on a single node or the number of nodes in the cluster 
directly impacts the throughput and speed of query 
execution. However, the relative performances of dif-
ferent types of databases vary with the change in the 
read-write latencies, which is somewhat characterized 
by patterns of workload queries (read-intensive, write-
intensive, read-write-mixed).

Experimentation shows that HBASE is efficient in 
handling write-intensive workloads and read-write 
mixed workloads, whereas Cassandra, MongoDB is 
more efficient when dealing with read-intensive work-
loads. From the performance behavior, it can be safely 
concluded that MongoDB is best suitable for read-
intensive workloads. In contrast, HBASE is a better 
choice for writing dominant and balanced read-write 
workloads. With the inbuilt cache supporting the map-
reduce framework, CouchDB read-write performance is 
suitable for interactive applications. 

5. CONCLUSION

This paper contains a comparison of SQL databases 
and few NoSQL databases concerning their architec-
tures, underlying working principles, advantages and 
disadvantages, and suitability in different application 
domains. Also, it demonstrates the characteristics of 
popular NoSQL databases using experimental results. 
NoSQL databases are designed to store and analyze 
big data generated by sources like social media, e-com-
merce websites, sensors, etc. They are instrumental in 
several IOT-based smart systems (e.g., Health Monitor-
ing Systems, Traffic Monitoring Systems, etc.). To han-
dle large volumes, velocity, and variety of data and to 
cater to advanced requirements like scalability, avail-
ability, and fault tolerance, databases need to have the 
capacity to compute, store, access, and analyze data in 
a distributed fashion. As per our experimental results, 

it is evident that NoSQL databases fit these demands. 
Compared to relational databases, they are more suit-
able for dealing with big data tasks on scalable, elastic 
and fault-tolerant platforms like the cloud.
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