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Abstract – The design of cryptographic hardware that supports multiple cryptographic primitives is common in literature. In this work, 
a new design is presented consisting of a multi-purpose cryptographic system featuring both 128-bit pipelined AES-CORE (Advanced 
Encryption Standard) for high-speed symmetric encryption and a Keccak hash core on a low-cost FPGA. The KECCAK-CORE’s security and 
performance parameters are tunable in the sense that capacity, bitrate, and the number of rounds can be user-defined. Such flexibility 
enables the core to suit a large range of security requirements. The structure of Keccak’s sponge construction is exploited to enable 
different modes of operation. An example application outlined in this work is Pseudo Random Number Generation (PRNG). With few 
adjustments, the KECCAK-CORE was also operated as a post-processing unit for True Random Number Generation (TRNG) that uses the 
analog Lorenz chaotic circuit as a physical entropy source. The multi-purpose design was implemented in VHDL targeting an IntelFPGA 
Cyclone-V FPGA. For AES symmetric encryption, a maximum throughput of 31.1Gbps was achieved and a logic usage of 25146LEs (23% 
of the FPGA) in the case of the pipelined variant of AES-CORE. For the KECCAK-CORE, maximum throughput figures of 5.81, 8.4, and 
11Gbps were achieved for the three SHA-3 variants 512, 384, and 256-bit respectively, with an area usage of 8947LEs (8%). The system 
as a whole occupies an area of 26909LEs (26%). The random sequences generated by the system operating in PRNG and TRNG post-
processing modes successfully passed the National Institute of Standards and Technology (NIST) statistical test suite (NIST SP 800-22). 
The information entropy analysis performed on the post-processed TRNG sequences indicates an average of 0.935.
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1. INTRODUCTION

Security is crucial in today’s embedded systems. 
To ensure data integrity and confidentiality, various 
cryptographic algorithms have been developed. The 
structure of these algorithms is highly parallelizable, 
which makes them favorable for hardware implemen-
tations. Also, the emphasis on high communication 
bandwidths requires the use of hardware-accelerated 
cryptographic algorithms most commonly ASIC (Ap-
plication Specific Integrated Circuit) accelerators which 
offer the highest performance and power efficiency. 
However, these are not cost-efficient for individual use. 
FPGAs (Field Programmable Gate Arrays) are flexible al-
ternatives that provide reconfiguration and lower costs 

for small production. In addition, they can facilitate 
the design/prototype of cryptographic hardware that 
combines multiple cryptographic primitives [1], [2], [3]. 
This flexibility enables the system to support various 
cryptographic operations and protocols required by 
applications such as IEEE 802.11, Bluetooth, Transport 
Layer Security (TLS), Global System for Mobile (GSM), 
ISO/IEC 29192, etc.

The advantages of using flexible multi-purpose cryp-
tosystems that use ASIC and FPGA lie in their ability 
to provide a common implementation that supports 
various requirements for different new technologies 
such as Wireless Sensor Networks (WSN) and the In-
ternet of Things (IoT). These technologies often need 
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to overcome the challenge of deploying efficient cryp-
tographic algorithms on their resource-constrained 
nodes [4]. The use of resource-shared multi-purpose 
cryptographic designs can help in overcoming such 
challenges and offer area/power reductions rather 
than using multiple distinct cores. This flexibility can 
also assist in protecting against different attacks by 
switching to a more suitable security level of the same 
algorithm if needed. In terms of performance, through-
put requirements may also dictate that the system 
should switch to a more appropriate configuration [1].

The multi-purpose design proposed in this paper 
includes two main cryptographic classes: block cipher 
for symmetric-key encryption/decryption and hash 
functions. The symmetric encryption is performed us-
ing AES128. A new Keccak design and implementation 
(SHA-3) is presented, which supports multiple modes of 
operations with tunable security/performance param-
eters and extendable output length. The security/per-
formance parameters include the capacity, bitrate, and 
number of rounds. A practical mode of operation sup-
ported by the proposed construction is examined, that 
is a reseedable cryptographically secure PRNG, which 
is beneficial when high throughput bursts of random 
bits are needed. Furthermore, this work studies the 
use of the KECCAK-CORE as a post-processing unit for 
physical entropy bits (sampled from the analog Lorenz 
chaotic system) in TRNG to eliminate statistical defects 
inherited in the digitized analog signals (das). The post-
processed bits can be used to seed the PRNG, the two 
generators can be used to generate in-system signals 
required for encryption such as keys and nonces. For 
consistency and simplicity, the general nature NIST’s 
statistical test suite is used to evaluate both RNGs [5]. 

Contributions of this work are summarized as follows:

•	 The implementation of a pipelined AES operated 
in CTR (Counter) mode with no RTL (Register Trans-
fer Level) register balancing. The architecture pro-
vides high throughput while maintaining a good 
throughput-to-area ratio.

•	 The hardware implementation/evaluation of the 
most recent provably secure PRNG in cryptogra-
phy, the sponge-based PRNG.

•	 Investigation of the cryptographic hash function 
based post-processing by taking advantage of 
the implemented Keccak algorithm to debias the 
chaotic Lorenz system. Even though hashing algo-
rithms’ implementations are relatively demanding 
in hardware, this is not an issue in the case of this 
work since the hash function was already imple-
mented for other purposes.

This paper is organized as follows. In Section 2, relat-
ed literature is outlined. Section 3 covers some needed 
cryptographic background concepts related to AES, 
KECCAK, and RNG. Section 4 explains the design and 
implementation of the proposed system and its sup-
ported modes of operation. Section 5 presents the ob-

tained results in terms of performance, area usage, and 
randomness/entropy-related tests. Section 6 compares 
these results to other related works. Conclusions are 
laid out in Section 7.

2. RElATED wORK

Several implementations of resource-shared AES 
with AES-like hash functions have been presented 
in the literature. Authors in [1] proposed a resource-
shared crypto-coprocessor of AES with SHA-3, in which 
they fit four non-pipelined AES-128 units with SHA3-
256 by integrating lookup tables and sharing the uni-
fied XOR sections. However, this design is limited in 
terms of AES throughput because it is non-pipelined. 
Also, the Six Input Equation optimization used cannot 
take advantage of other devices with different LUT in-
put sizes. In [6], a resource-sharing design of AES and 
Fugue was outlined. However, Fugue was a second-
round candidate that got eliminated due to security 
flaws and its average throughput-to-area ratio [7]. Oth-
er studies [8-11] have implemented resource-shared 
AES with Grøstl-256 on different FPGA platforms. Com-
pared to Keccak, Grøstl-256 has relatively small secu-
rity margins, lower throughput, throughput/area, and 
energy consumption-per-bit on FPGAs and ASICs [12]. 
Also, many of these designs are non-pipelined, which 
results in low area usage with relatively low through-
put. Furthermore, the hashing units are of fixed output 
lengths and security parameters, which in turn limits 
their suitability for different applications. HLS (High-
Level Synthesis) was used in [13] to implement a dy-
namically configurable SHA-3 accelerator in terms of 
digest length and capacity. However, the use of HLS is 
relatively less efficient than pure HDL (Hardware De-
scription Language) design flow. High-speed pipelined 
SHA-3 designs were presented in [14-18]. However, 
they support no flexibility, and hence a narrower ap-
plication scope.

Authors in [19] proposed an ultra-high throughput 
fully pipelined AES operated in CTR mode. A 60Gbps in-
ner and outer pipelined AES architecture was proposed 
in [20]. More sophisticated timing optimization tech-
niques were described in [21] where an 82Gbps pipe-
lined AES was designed using 2-slow balancing tech-
niques. While these works provide ultra-high through-
puts, the area usage is not proportional to the increase 
in throughput, hence, a low throughput-to-area ratio. 
In [3], a highly customized VLSI (Very Large Scale Inte-
gration) design of an advanced AES Cryptoprocessor 
is presented. The design supports multiple modes of 
operations targeting the European Processor Initiative 
(EPI) that features multiple hardware cryptographic ac-
celerators, including SHA, which are controlled by a se-
cure RISC-V processor.

PRNGs are well studied in the literature. FPGA stream 
cipher/LFSR-based PRNGs were proposed in [22], [23]. 
Chaos-based PRNGs were presented in [24], [25] where 
the three-dimensional chaotic systems were imple-
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mented digitally, which implies a deterministic fully 
predictable system with no sensitivity to initial condi-
tions. Bits from the three variables were post-processed 
to generate pseudo-random numbers. The above-stat-
ed works provide very compact hardware implementa-
tion and good performance. On the other hand, hard-
ware and software designs of cryptographically secure 
PRNGs were proposed. Authors in [26] demonstrated 
high throughput and low power FPGA implementa-
tions of two PRNGs, one of which is the computation-
ally secure Blum Blum Shub generator. In contrast to 
the algorithmic nature of PRNGs, TRNGs are physical. 
However, an algorithmic debiasing step performed on 
the digitized bits is required; also referred to as TRNG 
post-processing. Authors in [27] relied on SHA-256 to 
debias bits generated by ring oscillators which is fun-
damentally different from chaotic systems.

3. bACKGROUND

3.1. AES AlGORIThM

AES can provide up to the TOP SECRET level of secu-
rity with high performance on both software and hard-
ware. It features multiple key lengths of 128, 192, and 
256 bits each with the number of rounds 10, 12, and 
14 respectively. Initially, the encryption starts by XOR-
ing the key and the input data before feeding the result 
through the rounds. Each round consists of four steps: 
SubBytes, ShiftRows, MixColumns, and AddRoundKey, 
except for the last round which requires no column 
mixing. SubBytes step is a nonlinear byte-to-byte cor-
respondence described by the S-BOX which is ob-
tained by calculating the multiplicative inverse of the 
input byte followed by an affine transform. ShiftRows 
is a transformation of the state via circular shifts with 
different values at each row. The previous two steps 
provide the required confusion to avoid any differen-
tiability between the input and output. MixColumns is 
a transformation that operates on the State column-by-
column, treating each column as a four-term polyno-
mial [28] to ensure diffusion. The AddRoundKey step 
consists of XORing the resultant state from Mixcolumns 
with the RoundKey provided by the key expansion.

CTR is a feedback-free block cipher mode where the 
ciphertext is a result of XORing the plaintext with the 
output of encrypted successive counter values concat-
enated with a nonce. The use of a single XOR operation 
on the plaintext results in a symmetry between the en-
cryption and decryption. Unlike feedback modes, CTR 
mode is highly parallelizable, random read accessible, 
and suffers no error propagation problems making its 
implementation straightforward.

3.2. ShA-3 AND KECCAK FAMIly

AES SHA-3 is a subset of the broader cryptographic 
primitive family Keccak of hash functions. It is based on 
the novel Hermetic Sponge Construction approach. Al-

though it features various state widths b = {25, 50, 100, 
200, 400, 800, 1600}-bit, only permutation of b = 1600 
bits was submitted [29]. The Sponge Construction is di-
vided into two phases: absorption and squeezing phase 
as seen in Fig. 1. It uses b = r + c bits of state, where r is 
the rate at which states are updated with message bits 
between each application of the permutation function, 
c is the capacity and defines the security level. Increas-
ing the capacity results in a higher security level with a 
performance penalty and vice-versa [29]. Its value is set 
by the user depending on the application. The input 
state of Keccak-f[b] is arranged in a three-dimensional 
matrix of 5×5×w, where w defines the length of the 
lane and equals b/25.

Fig. 1. The Sponge Construction [30]

In the absorption phase, the input block of length r is 
XORed with the state lane-wise. If the length of the cur-
rent input block is less than r, padding is required. After 
the input data is completely absorbed, the output is 
obtained by truncating the state. The output length is a 
user choice in certain applications. For hash functions, 
the lengths are 224, 256, 384, and 512-bit. If the re-
quired output length is greater than the bitrate, it is ob-
tained by truncating the outputs after feeding through 
Keccak-f until the required length is satisfied, which is 
known as the squeezing phase [31]. Each round R of 
Keccak-f[b] consists of five-step mappings R = ι o χ o π 
o ρ o θ where:

(1)

where a[x,y,z] represents a particular lane of a state; 
B, C, and D are the intermediate results, and RCi is the 
round constant. Note that π and ρ steps are combined 
because they are merely two consecutive permuta-
tions of the state. The values of this permutation are 
hardwired in the rp array. The number of rounds to be 
executed nr is calculated as 12+ 2(log2(b/25)).

3.3. RANDOM NUMbER GENERATION

3.3.1. Sponge-based PRNG: PRNG is a deterministic 
algorithm that, given a truly random binary sequence 



48 International Journal of Electrical and Computer Engineering Systems

of length n referred to as a seed, outputs a binary se-
quence of length N > n that is completely determined 
by the seed and ’looks’ random. Thus, if the seed is 
compromised, the output sequences of the PRNG are 
known. Therefore, a requirement for a seed is random-
ness, hence a common technique is to seed a PRNG 
with a TRNG and then use the PRNG afterward. This 
is because PRNG has superior performance relative to 
TRNG. Another requirement for the seed is a sufficient 
length for it to be insusceptible to brute-force recov-
ery. Moreover, the seed should contain enough entro-
py for the application since the seed entropy defines 
an upper limit for the entropy that the PRNG can de-
liver. Ideally, a PRNG can be constructed with a random 
oracle that responds deterministically to every unique 
query with a truly random response chosen uniformly 
from its output domain. Non-empty seeds are fed to 
the PRNG to update the state and random output bits 
are fetched afterward. It should be known that previ-
ous seeds should be stored, hence the name history-
keeping mode [32]. The history is encoded by seed-
complete encoding function e(h). The encoded history 
is provided to the random oracle during the fetch call 
producing a random sequence that is truncated at 
every feed-fetch cycle and so on (Fig. 2). The memory 
needed for history-keeping mode grows linearly with 
the number of past queries; rendering it impractical.

Fig. 2. History-keeping mode PRNG [32]

Instead of a random oracle, sponge construction can 
be used as in [32], which yields a history-keeping mode 
similar to reseedable PRNG. The sponge construction 
relies on a fixed length state which implies no memory 
growth. Furthermore, sponge construction features 
similarities with the mode; where every input absorp-
tion of length r into the state is a feed request and the 
same goes for fetch requests (Fig. 1). In addition, the 
last c bits of the state are never directly affected by the 
input blocks. Capacity c determines the attainable se-
curity level of the construction.

3.3.2. TRNG: TRNG extracts bits from a non-deter-
ministic physical process. Naturally, the physical pro-
cess produces a continuous-time analog signal, which 
gets digitized uniformly to yield das. Due to their physi-
cal nature, TRNGs are typically a separate piece of hard-
ware connected to the application via an interface (USB 
or PCI bus...). Examples of physical processes used are 
Josephson’s Junction [33], Johnson’s noise [34], and Ze-
ner diode’s shot noise [35]. Unlike PRNGs, TRNGs suffer 
from uneven probabilities of zeros and ones. The dif-
ference of probabilities of 0s and 1s is termed bias b = 

(p(1)-p(0))/2. For that, a post-processing step is needed 
where the digitized data is transformed into uniformly 
distributed random numbers i.e b = 0. Post-processing 
also helps to eliminate other statistical defects intro-
duced by the physical source. While the output’s en-
tropy of the PRNG is bounded up by the seed’s entropy, 
TRNGs’ output entropy increases after each random 
number is generated.

3.4. ChAOTIC SySTEMS AS ENTROPy 
 SOURCES

Chaotic systems are by no means random. They ex-
hibit a deterministic behavior since this class of sys-
tems can be described neatly as a system of nonlinear 
ordinary differential equations. Since the system can-
not be solved analytically, mathematicians resort to 
phase space to have a qualitative rather than quanti-
tative understanding of the system. Solutions to the 
system’s differential equation can be represented as 
a trajectory in phase space. The system being chaotic 
implies that two trajectories will be ||E(t)|| ∼ ||E(t0)||.eλt 
apart from each other, where t > t0 and λ is Lyapunov 
exponent. This encapsulates the sensitive dependence 
on initial conditions resulting from the exponential 
divergence of nearby trajectories [36]. This limits the 
horizon of prediction up to a time th, known as the Ly-
apunov time; which corresponds also to the loss of one 
bit of information [37]. In addition to the sensitivity to 
initial conditions, chaotic systems exhibit nonperiodic 
behavior. In this work, the Lorenz system will be used 
as an entropy source for the RNG, which is a simplified 
mathematical model for atmospheric convection (de-
tails are in Section 4.3.2.).

A successive sampling of the Lorenz system results in 
a seeding material for the PRNG or a das for the TRNG. 
The entropy of the material depends on the sampling 
frequency, sampling resolution, and quantization loss of 
the quantization function. The source entropy should be 
at least equal to the security strength of the instantiation 
[38]. The instantiation shall provide reseeding in case the 
internal state of the PRNG is compromised. Periodic re-
seeding shall reduce the likelihood of a security threat.

4. SySTEM DESIGN AND IMPlEMENTATION

The multi-purpose cryptographic system consists of 
two cryptographic cores. The first is AES-CORE dedicated 
mainly to 128-bit symmetric-key encryption operated in 
CTR mode. The second is a tunable KECCAK-CORE, based 
on KECCAK[b=1600], that supports different modes of 
operation. The normal mode of operation of the KEC-
CAK-CORE is a certified hash function (SHA-3) that out-
puts digests of a fixed predefined length. However, its 
utility can be extended to include an RNG, which can 
be used to generate high-quality keys/seeds required 
by the AES-CORE CTR mode. For that reason, the output 
register of the KECCAK-CORE is not only connected to 
the device output ports but also to the input port of the 
AES-CORE. An overall system diagram is seen in Fig. 3.
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Fig. 3. Multipurpose Cryptographic  
System Overview

The system is synchronized to an external interfac-
ing circuitry by two Double Sided FIFOs (First-In-First-
Out), one for the input ports and one for the output 
ports. The input DSFIFO is a 16-bit write-side and 128-
bit read-side (which is equal to the system’s data bus 
width). The DSFIFO-based synchronization is dedicated 
only to data. Control signals synchronization, on the 
other hand, is performed with register synchronization 
chains. The output DSFIFO’s write-side is 128-bit muxed 
with the output registers of both cores, meanwhile, the 
read-side is 16-bit. 

The on-board ADC is used to provide the system with 
accessibility to physical entropy sources (Lorenz chaot-
ic circuit). It is an 8-channel 12-bit SAR clocked at 1Mhz. 
The system can be adjusted to support any number of 
ADC channels with FIFO synchronization, however, the 
implemented system supports only one channel for 
the sake of simplicity and thus only one of the three 
system's variables can be sampled at once. Interfacing 
the ADC is done using IntelFPGA ADC Controller IP (In-
tellectual Property), which is very straightforward. The 
IP provides parallel access to all channels simultane-
ously. The channel is muxed into the input FIFO of the 
system. The detailed RTL view of the system is shown in 
Fig. 4. The following subsections will explain the imple-
mentation details of each part of the system.

4.1. AES-CORE IMPlEMENTATION

4.1.1. Non-pipelined CTR AES-128: AES-128 re-
quires successive ten rounds that only differ in the 
round key derived from the KeyExpansion. Each round 
key is calculated based on the previous key and a 
unique round constant. The KeyExpansion procedure 
in the ten rounds is also identical. The four round steps 
alongside the key scheduler were implemented as 
combinational logic. SubBytes step was implemented 
as 16 parallel LUTs representing the S-box table. Shift-
Rows is a rewiring of the state, hence, its implemen-
tation is straightforward and requires no hardware. 
MixColumns step requires multiplication by "two" and 
"three" in GF(28) which is achieved easily since multipli-
cation by "two" is a shift to the left while multiplication 
by "three" is a shift and XOR. The AddRoundKey step 
is an XOR operation between the state and the round 
key. Non-pipelined AES128 core is implemented with 
a single block of round encryption and KeyExpansion. 
Round constants are provided by an FSM along with a 
control signal to exclude the MixColumns step from the 

10th round. The ciphertext is a result of the plaintext 
XORed with the latched output of round 10; the 32-bit 
counter of CTR mode is then incremented, concatenat-
ed with the 96-bit nonce, and fed into the round block. 
The 128-bit encryption requires 11 clock cycles and the 
next plaintext should be provided during that window. 
A similar core was used in [39] to enc/dec real-time vid-
eo data as an example application.

Fig. 4. RTL view of the on-FPGA system
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4.1.2. Pipelined CTR AES-128: AES's implementa-
tion has a wide range of requirements and constraints 
on throughput and area. For the implementation to be 
compatible with high-speed applications, high through-
put architectures are required. One method to improve 
the throughput is pipelining. This design is obtained by 
placing registers between the unrolled encryption and 
Key Scheduler rounds. Encryption and KeyExpansion 
rounds are identical to those of the non-pipelined variant. 
However round-key and control signals are hard-wired 
in each round and no FSM control unit is needed, hence, 
minimizing the critical path delay. Encryption rounds run 
parallel to the KeyExpansion. Therefore, timing has to be 
exact for each round key from the RoundExpansion to ar-
rive at its corresponding encryption round. The key, seed, 
and plaintext registers are multiplexed into the input port 
of the core along with the corresponding control signals 
for compactness. The input port itself is demultiplexed to 
the output of the Sponge PRNG and the device input pins. 
Therefore, both seed and key can be obtained from the 
RNG or provided by an external interfacing circuitry. Dou-
ble Sided FIFOs are used to separate the clock domains. 
This architecture encrypts a 128-bit block every clock cy-
cle with a latency of 11 clock cycles.

4.2. KECCAK-CORE IMPlEMENTATION

For the implementation of Keccak-f, the straightfor-
ward unfolded structure was chosen as seen in Fig. 5. 

A multiplexer controlled by a round counter deter-
mines whether the state is updated with the result of 
the round function or with the new input block during 
the absorption phase. The input block is stored in an 
input buffer in a form of a SIPO (Serial-In-Parallel-Out) 
shift register. At every clock, 128-bit input enters the 
register in parallel with Keccak-f computation to avoid 
overhead. The state is stored in a 1600-bit register that 
is updated after each round. The five steps forming the 
round function are implemented using combinational 
logic with no inner round pipelining.

Fig. 5. KECCAK-CORE Implementation

The round constants are provided by an FSM. After 
the last round, the state is truncated to 256-bit to out-
put the hash digest.

The number of rounds nr is user-defined with two 
constraints: it must be at least 24, and the number of 
rounds can only be multiples of 12. The rationale for 
that is not a security concern. It is related to flexibility 
and usability of the implementation in applications 
where slowing down the hash operation is beneficial. 
The user-defined nr mode is obtained by reusing the 
states in the FSM. The control unit will loop indefinitely 
between the 24 rounds’ states as long as a control signal 
is pulled high. The control signal is checked at the 12th 
and 24th states, which explains the multiples of 12. The 
output digest buffer is connected to the output DSFIFO 
of the device and the input port of the AES-CORE.

Four modes of operation for the KECCAK-CORE are 
defined. First of which is a ‘randomized hash function’ 
where data is fed as 16-bit chunks to the input DSFIFO 
of the device and should be padded beforehand. The 
input bits are first registered in the input buffer of KE-
CCAK-CORE before being forwarded to the absorption 
phase of Keccakf [b = 1600,nr = 24]. A digest is then ob-
tained using this configuration. Note that the values of 
c and r have not been stated, even though they define 
the level of security/performance of the hash function 
and the SHA-3 hash variant (output length), because 
they are user-defined. The second mode of operation 
is a ‘slow one-way function/key derivation function’, 
which is obtained by simply increasing nr, hence, slow-
ing down the function. The remaining two modes are a 
‘reseedable PRNG’ and a ‘post-processing unit for TRNG’, 
which are explained in the next subsection.

4.3. RNG IMPlEMENTATION

4.3.1. Sponge-based PRNG: The PRNG design 
should be flexible enough in terms of performance 
and security to suit most cryptographic applications. 
For instance, the requirements of generating random 
bits for nonces are different from those to be used as 
cryptographic keys and so on. Furthermore, since RNGs 
require sources of entropy as mentioned earlier, the 
implemented RNG’s parameters have to be tunable ac-
cording to the available entropy source. Lastly, the RNG 
has to have access to multiple physical entropy sources 
simultaneously while keeping the implementation 
as compact as possible. All of this can be achieved by 
tweaking the Keccak hash function.

First, the security/performance tradeoffs of the PRNG 
should be adjustable according to the application. As 
mentioned earlier, the capacity value determines a 
ceiling to the security level that the sponge function 
provides [29] and defines the resistance of the con-
struction to state recovery attacks; an increase in ca-
pacity c implies a decrease in the bitrate r and a drop 
in performance occurs as a result. One practical way 
to adjust the capacity/bitrate is to alter the input buf-
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fer shift register in KECCAK-CORE by masking the last 
c bits. This method is quite simple and requires minor 
resources. However, a huge entropy loss is conceived 
due to the masked bits being no longer stored in the 
input DSFIFO. This entropy loss is not tolerated in the 
case of large capacities or when a continuous flow of 
entropy from the sources is required.

A better approach is to control the read signal from 
the KECCAK-CORE to the input DSFIFO. By tweaking 
the control unit at a few rounds’ states, the read signal 
is pulled high at a given interval of rounds defined by 
an external 3-bit signal. The featured capacity values 
are {256,1024} with a stride of 128. Secondly, since the 
number of rounds dictates the security margin, it is ad-
justable as mentioned earlier. This may also be helpful 
in the case of entropy sources with high correlations 
even though Keccak’s security margin is already thick 
and should fulfill its security claims even in the case of 
a decrease in the number of rounds [40].

Lastly, the implemented RNG is reseedable, meaning 
that an additional entropy source can be added after 
random bits have been generated. Instead of throwing 
away the current state of the PRNG, reseeding combines 
the current state of the generator with the new seed 
material [41]. The implementation can be operated as 
a reseedable sponge PRNG, using the sponge function 
of KECCAK-CORE in a cascaded way without the state 
being reinitialized. This implementation features two re-
quests: feed and fetch. At first, the seed material is fed to 
the input DSFIFO as chunks of 16 bits before them being 
absorbed by the sponge’s input buffer shift register as 
chunks of 128 bits. When the input seed length l is equal 
to r, where r is user-defined as discussed earlier, the input 
buffer is XORed with the current state and forwarded to 
Keccak-f. This sequence is repeated until the DSFIFO is-
sues a read-empty signal indicating that the seed mate-
rial is completely absorbed. Next, the sponge is switched 
to the squeezing phase where the desired output length 
is obtained [32]. After applying the iterated Keccak-f, the 
state is stored in a shift register that is controlled exter-
nally to iterate through the desired length of the output 
l ≤ r. The output shift register is connected to a 128-bit 
digest buffer that feeds to an output DSFIFO with a 128-
bit write-side and 16-bit read-side controlled by the user 
to fetch the random bits.

One can fetch one random bit directly after feeding 
each seed with length l < r through Keccak-f[b = 1600]. 
In that case, the implementation is operating in the 
duplex construction mode. Unlike a sponge function 
that is stateless in between calls, the duplex construc-
tion accepts calls that take an input string and return 
an output string depending on all inputs received so 
far. The instance of the duplex construction (Fig. 6) is 
known as a duplex object [41]. This can go further by 
letting duplex objects non-identical to one another. 
This asymmetry is supported by the implementation 
and can be obtained by altering the capacity and num-
ber of rounds control signals.

The output of the PRNG is connected to the multi-
plexed input port of AES-CORE to deliver the generated 
128-bit keys and 96-bit nonces required for the current 
encryption session. The Sponge performance/security 
parameters must be chosen accordingly.

Fig. 6. The Duplex Construction [30]

4.3.2. Post-processing the lorenz System: Chaotic 
dynamical systems are chosen as an entropy source for 
their unpredictability over sufficiently long periods. The 
Lorenz system was selected owing to its popularity and 
simple analog implementation. Fig. 7 shows an analog 
Lorenz circuit with non-linear feedback loops from the 
outputs of integrator circuits to two analog multipliers 
AD633. The output of the integrators (implemented us-
ing LM358P op-amps) represent the values x, y, and z of 
the Lorenz system given by Equation 2. It can be noted 
that this system does not exhibit chaotic behavior un-
til a specific range of values for the system parameters 
ρ, σ, and β. These physical parameters are set by the 
values of capacitors and resistors, hence, they can be 
tuned. The range of voltages can be adjusted to suit 
the ADC range by changing the resistance connected 
to the op-amp inputs [42].

(2)

Fig. 7. Analog Lorenz circuit (ρ=28, σ=10, β=8/3)

The outputs x,y, and z can be connected to three ADC 
channels of the FPGA board. In the conducted experi-
ments, only the x output is connected and sampled with 
a frequency of 1Mhz even though the power spectrum of 
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the circuit is concentrated on the lower frequencies. This 
will eventually lead to correlations in the values of x due 
to continuity, which will be more apparent due to SAR’s 
quantization loss. Also, relying on two signals simultane-
ously does not increase the source’s entropy due to the 
high mutual entropy between any pair of variables of 
Lorenz equations. If multiple physical processes are de-
sired, one way is to take advantage of causal chains with 
a high degree of independence [43].

The das suffers from statistical defects, which is a man-
ifest of the system’s continuities and autocorrelations 
due to the system’s memory. Another plausible problem 
is the upper bound limit on entropy which was shown in 
the works of [44], [45] on chaotic univariate maps. Fortu-
nately, the two works are not concerned with continu-
ous chaotic multivariate systems, and no work disproved 
the conjecture for this category. The entropy source may 
eventually produce zero information asymptotically 
[46]. In addition, a good evaluation of the TRNG’s entro-
py takes into account the sampling frequency, the ADC 
resolution, the aging of components that may cause the 
noise source to completely break down, and the non-
ideal behavior of the different components (for instance 
the low-pass behavior of the op-amps used) [43]. Investi-
gating this point is out of the scope of the present work. 
This work, however, provides an assessment of the per-
formance of the KECCAK-CORE post-processing step on 
eliminating statistical defects and examines the results 
of the RNG in non-ideal conditions.

A sponge-based TRNG design is straightforward and 
similar to that of a sponge-based PRNG. The major dif-
ference is that in the process of producing true random 
numbers, the KECCAK-CORE’s sponge function resembles 
a post-processing step. The number of rounds is fixed 
to a minimum of 24 rounds. In contrast to PRNG mode, 
no output is squeezed before the end of absorbing the 
entire input block of the desired entropy, and the state is 
reinitialized afterward. This implies that there is no need 
for the capacity parameter c and the bitrate r to be set to 
meet the performance requirements of the application. 
However, if the user does not discard the state, or if the 
mode is switched to a PRNG seeded with the physically 
generated das, the user should readjust the capacity c to 
provide the resistance required against attacks.

5. RESUlTS AND DISCUSSION

All cores were manually implemented in VHDL (VH-
SIC Hardware Description Language) and synthesized 
using Intel Quartus Prime 20.1 on Cyclone-V FPGA 
(5CSXFC6D6F31C6) using the DE-10 Standard board.

5.1. AES-CORE

The non-pipelined AES-CORE hit an f
max of 215.3Mhz 

which implies a critical path delay of 4.64ns from the 
control unit state register to the datapath register be-
fore the encryption unit. Each round of encryption is 
completed in one clock cycle, which means that the 

entire encryption operation takes 11 clock cycles per 
block. That yields a maximum throughput of 2.33Gbps. 
This core is lightweight with 3% area consumption. The 
synthesis optimization mode was set to ’balanced’ and 
the advanced physical optimization was turned on. In 
general, this core is low-area with good throughput.

The pipelined AES-CORE hit an fmax of 260.92MHz, a 21% 
improvement over the non-pipelined one. This is because 
the signals in the pipelined architecture are hardwired in 
each round and no control unit is needed; thus minimiz-
ing the maximum delay on the critical path. The maximum 
throughput is roughly 31Gbps, which is 13 times faster 
than its non-pipelined counterpart. As seen in Table 1, the 
core utilizes around 25kLEs -Logic Elements- (equivalent 
to 9973ALMs -Adaptive Logic Modules-) which accounts 
for 23% of the device’s total logic elements.

5.2. KECCAK-CORE

The KECCAK-CORE used 8947LEs (3415ALMs) which 
account for 8% of the FPGA, making it lightweight and 
suitable for embedded applications. The usage of dedi-
cated logic registers accounts for over 70% of the total 
logic usage. This is due to the inherited reliance on per-
mutation in the Keccak family. In addition to low-area 
usage and high flexibility, the core clocks at 271.69MHz. 

The maximum throughput of the core is of the form:
(3)

where b = 1600, TPmax is a constant that depends on 
the maximum frequency fmax. It can be viewed as the 
throughput of the core with c = 0 and nr = 1, resulting 
in TPmax =404.73Gbps. Of course, operating the core in 
these conditions is dangerous and never recommend-
ed given that the security margin against distinguish-
ers is coupled with the number of rounds [12], [47], 
[48]. While lowering the capacity decreases the level of 
attainable security in the sponge construction. More-
over, eliminating the capacity introduces a vulnerabil-
ity to length extension attacks in Hash-based Message 
Authentication Codes (HMACs) as well as violating the 
assumptions made by the original authors in [30]. The 
values of nr and b are substituted as defined by NIST’s 
standard [31], and the capacity for each SHA-3 variant 
is equal to twice the digest length l yielding:

(4)

Results obtained for the three SHA-3 variants are 
shown in Table 1.

Core Area 
(lEs)

fmax 
(Mhz)

Thr. 
(Mbps)

Mbps/ 
lE

AES Non-pipelined 3548 215.30 2385.9 0.67

AES Pipelined 25146 260.92 31846.4 1.26

SHA-3 256 8947 271.69 11.00 2.60

SHA-3 384 8947 271.69 8.40 1.98

SHA-3 512 8947 271.69 5.81 1.38

Table 1. Results of the AES/SHA-3 implementations
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5.3. SPONGE-bASED PRNG

The performance of the PRNG depends on the capac-
ity. However, operating the KECCAK-CORE in a reseed-
able PRNG mode is fundamentally different from that of 
a hashing standard mode. Capacity and bitrate can be 
user-defined, but one should set the parameters along 
with a proper limit on the number of output blocks 
squeezed before each seed refresh. For instance, The 
KECCAK[r,c] PRNG provides a resistance of 2c against 
state recovery if the number of output bits between 
times where the state has gained at least c bits of fresh 
seeding material has an upper bound of r.2 r/2 [32].

Pseudo-random numbers are generated using the 
previously implemented KECCAK-f[b=1600], more spe-
cifically KECCAK[r=1088, c=512]. The random sequence 
is obtained by squeezing the state after providing 
the empty string as input. The system is clocked at a 
100MHz clock frequency. Each squeezed block is 256-
bit, taken every 24 clock cycles. If the state is reseeded 
with n high entropy bits, it yields a resistance of 2n to any 
state recovery attack. Random bits are extracted using 
Quartus Prime’s Signal Tap Logic Analyzer as shown in 
Fig. 8. The Figure shows the random number generated 
by the sponge-based PRNG which is the output state 
of sha-3 256-bit core (sha3|in_state[0..255] at the top) 
every time sample (24 clock cycles) and its individual 
output bits (sha3|in_state[i]). These generated bits were 
collected for randomness and entropy analysis.

Fig. 8. Random Bits Extraction via Signal Tap

To assess the quality of the pseudo-random numbers 
generated, the NIST SP 800-22 verification is used [5]. 
Results in Table 2 indicate that the sequence passed all 
tests with all P-values > 0.01, which implies that the se-
quence is random.

On the analog side, the Lorenz chaotic system is im-
plemented using discrete components. Its attractor is 
observed after plotting variables x and y in XY mode 
on a digital oscilloscope as seen in Fig. 9. The x variable 
is connected to an ADC channel. Due to the high sam-
pling frequency which is much higher than the highest 
frequency component in the signal (< 10Khz which is 
the cutoff frequency of the LM358P at unity gain), das 

taken at short periods and fed into the post-processing 
unit can suffer from serious statistical defects. The same 
verification tests were also used to assess the quality of 
the generated random numbers. The verification was 
performed on 450000 bits without an internal state 
reset. Results in Table 2 indicate that the random se-
quence passed all tests.

Test PRNG 
P-value

TRNG 
P-value

Frequency Test (Monobit) 0.01397 0.30962

Frequency Test within a Block 0.12058 0.49488

Run Test 0.56053 0.35807

Longest Run of Ones 0.13052 0.12262

Binary Matrix Rank 0.29228 0.12260

Discrete Fourier Transform 0.69992 0.38835

Non-Overlapping Template Matching 0.36968 0.54103

Overlapping Template Matching 0.84336 0.13222

Maurer’s Universal 0.31458 0.16966

Linear Complexity 0.22099 0.41366

Serial test 0.70625 0.51154

Approximate Entropy 0.17980 0.04060

Cumulative Sums (Forward) 0.01225 0.43620

Cumulative Sums (Reverse) 0.01225 0.54158

Random Excursions 0.14555 0.28605

Random Excursions Variant 0.26355 0.83167

Table 2. NIST’s Statistical tests results

Output bits at each time sample Time samples

Fig. 9. The Lorenz Attractor XY on the oscilloscope

The throughput of the post-processing unit depends 
mainly on the physical process itself and the resolu-
tion of the ADC. If the process’s frequency content is 
assumed to be at frequencies higher than the sampling 
frequency with high entropy, then the TRNG is bottle-
necked by the board’s SAR ADC maximum sampling 
frequency 20Mhz, in this case, the throughput will be 
around 12.71Mbps. If all 8 channels are used (by taking 
advantage of causal chains), the throughput is around 
101.72Mbps. Moreover, if better precision is required, 
a higher-resolution ADC can be utilized. However, the 
sampling frequency is limited by the system’s maxi-
mum clock frequency which is in the order of 100Mhz. 
If the interfacing circuit’s frequency goes higher than 
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that, no timing violation will occur because of the high 
maximum frequency of the FIFO’s BRAM, however, the 
interfacing circuit will be severely bottlenecked.

5.5. INFORMATION ENTROPy ANAlySIS

The entropy of the TRNG sequence is estimated us-
ing Maurer’s universal statistical test [49]. The test is 
performed on a sequence of length n (in this case n 
= 450000 bits). Practically, the compression estimator 
of NIST 800-90B [50] was used, which is an extension 
of Maurer’s test to approximate the lower bound on 
the min-entropy. The algorithm is described in detail 
in [50], [51]. The min-entropy ensures a conservative 
measurement of the per-bit entropy of the source since 
it corresponds to the difficulty of predicting the most 
likely outcome. Finally, the min-entropy value is found 
to be H=5.61 per 6-bit, which corresponds to a per-bit 
min-entropy of 0.935. 

The min-entropy calculated is lower than the ideal 
value of one. However, considering the high-frequen-
cy sampling of the low-frequency implementation of 
the analog Lorenz system, in addition to the low-res-
olution ADCs coupled with the low pass behavior of 
the op-amps used, the achieved entropy result can be 
considered respectable. Also, the sponge-based post-
processing demonstrated its effectiveness in removing 
statistical defects in non-ideal conditions. However, 
better results can be achieved by feeding the system 
with high-frequency physical sources.

5.6. FPGA RESOURCE USAGE

The proposed design is composed of a tunable Kec-
cak core and a pipelined AES-128 core. Individually, the 
cores utilize 3415 + 9973 = 13388ALMs (6024 Slices). 
However, the synthesized complete design consumed 
only 10310ALMs (4639 Slices), a 23% area reduction. This 
indicates an efficient logic packing of the two cores in the 
target device. The post-fitting netlist overall logic usage is 
26 % for the pipelined AES variant and 11% for the non-
pipelined variant, less than 1% of Block RAM, and 10% of 
the device’s total pins. Table 3 summarises the FPGA post-
place-and-route resource usage of the whole system.

Resource Usage %

ALMs used in final placement 10,310 / 41,910 25

Dedicated logic registers 7,167 / 83,820 9

Combinational ALUT usage for logic 12,606
-- 7 input functions 0
-- 6 input functions 6,907
-- 5 input functions 1,540
-- 4 input functions 1,966

-- <=3 input functions 2,193

M10k blocks 8 / 553 1

Total block memory bits 12,288/ 5,662,720 <1

I/O pins 50 / 499 10

Table 3. FPGA resource usage summary

6. COMPARISON TO RElATED wORK

To date, the work presented in [1] is the only study 
that combined AES with SHA3-256 with the design 
being resource-shared. Most reported works on AES/
Hash function designs tend to resource-share AES 
with Grøstl due to their common structure similar to 
the case of Fuge and Whirlpool hash functions. The 
resource-shared implementations are compact and 
generally more hardware efficient. For a fair compari-
son, the Throughput-Per-Slice (TPS) metric is calcu-
lated for the aforementioned resource-shared cryp-
tosystem designs, and then compared with the pro-
posed design herein in both hashing and symmetric 
encryption.

Most of the resource-shared works were synthesized 
on Xilinx Virtex-5/6 families. Meanwhile, the present 
implementation was performed on the IntelFPGA 
Cyclone-V device. Thus, an equivalent conversion be-
tween Slice and Logic Element is necessary. A single 
ALM is equivalent to 0.45 Virtex-5/6 slice and Cyclone-
III/IV’s LE is equivalent to 0.12 Virtex-5/6 slice [52], while 
1 BRAM is equivalent to 128 slices [53]. Another note re-
garding comparing device performance, the Cyclone-V 
FPGA is a speed grade 6 device, meaning that it sup-
ports a maximum global clock frequency of 550Mhz 
which exactly matches Virtex-5’s max frequency, 
whereas, 601Mhz is the maximum global frequency of 
the Virtex-6 devices. This would hint that the obtained 
throughput figures might be higher should Virtex-6 
FPGA be used.

The comparison of the proposed design with other 
AES/Hash-function works is demonstrated in Table 4. 
The proposed design recorded the highest area uti-
lization, a few times higher than the compact AES/
Grøstl designs and 1.89× higher area utilization than 
the highest throughput AES/Grøstl reported in [11], 
and 1.35× higher than that of AES/SHA3-256 design 
presented in [1]. However, the recorded results are an-
ticipated due to the relatively complex nature of both 
cores (pipelining of AES and flexibility of Keccak). More-
over, the works presented in the table are resource-
shared. Consequently, they are supposed to yield more 
compact implementations. However, despite the flex-
ibility of the presented KECCAK-CORE, it yields several 
times higher throughput than all Grøstl, Whirlpool, and 
Fuge hash functions when operating as SHA3-256. The 
throughput of the tunable KECCAK-CORE is close to 
that of the untunable core presented in [1], which is, to 
date, the highest hashing throughput recorded in AES/
hash-function designs on FPGAs. 

The proposed system achieved the second-highest 
TPS of 2.43, which is higher than all reported Grøstl 
implementations. Whereas for AES enc/dec, the high-
est throughput and TPS figures were recorded with 
3.79× and 2.8× higher encryption throughput and TPS 
respectively than those reported in [1].
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Table 4. Results comparison with other unified designs

Study Device Cores Area 
 (lE/Slice+bRAM)

Equiv. 
Slices

TP 
(Mbps)

TPS 
( Mbps/Slice )

 Järvinen  [6] Cyclone-III
Fuge-256

4520LEs 552
972 1.76

AES-128 enc 778 1.41

Kochar [54] Virtex-5
Whirlpool

6742LUTs 2247
410 0.18

AES-128 enc 205 0.09

At [8] Virtex-7
Grøstl-256

185+1 313
98 0.31

AES-128 enc/dec 229 0.73

Pelnar [9] Virtex-6

Grøstl-256

302+0 302

13.24 0.04

AES-128 enc 13.8 0.05

AES-128 dec 9.99 0.03

Guo [10] Cyclone-IV Grøstl-256 + 4×AES-128 enc 15135LEs 1847 3877 2.10

Järvinen [6] Cyclone-III
Grøstl-256

13723LEs 1675
1434 0.86

4×AES-128 enc 2869 1.71

Rogawski [55] Cyclone-III Grøstl-256 + 4×AES-128 enc/dec 23758LEs 2851 2378 0.83

Rogawski [11] Virtex-6 Grøstl-256 + 4×AES-128 enc/dec 2447+0 2447 4212 1.72

Kundi [1] Virtex-6
SHA3-256

1380+16 3428
14876.13 4.34

4×AES-128 enc/dec 8400.64 2.45

This work Cyclone-V
Keccak (tunable)

10310ALMs 4639
11264 2.43

Pipelined AES-128 31846 6.86

7. CONClUSION

A multi-purpose cryptographic design has been pre-
sented consisting of a 128-bit AES-CORE symmetric 
encryption and a tunable KECCAK-CORE that can be 
user-configured by modifying the capacity, bitrate, and 
the number of rounds. The design achieved the second-
highest TPS of 2.43 compared to other works, with an 
area usage of roughly 26% of the low-cost Cyclone-V 
FPGA.  In addition to the basic functions of symmetric 
encryption and hash function, the system was also oper-
ated as a reseedable PRNG and a post-processing unit 
for a chaotic-based TRNG. Both PRNG and TRNG random 
sequences successfully passed NIST’s statistical tests. 
The information entropy analysis performed on the 
post-processed TRNG sequences indicates a respectable 
average of H=5.61 per 6-bit (0.935), suggesting that the 
sponge-based post-processing showed its effectiveness 
in removing statistical defects in non-ideal conditions. In 
future work, a more efficient design could be investigat-
ed by utilizing the sponge as a symmetric key algorithm.
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