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Abstract – Comprehensive assessments of the molecular characteristics of breast cancer from gene expression patterns can aid in 
the early identification and treatment of tumor patients. The enormous scale of gene expression data obtained through microarray 
sequencing increases the difficulty of training the classifier due to large-scale features. Selecting pivotal gene features can minimize 
high dimensionality and the classifier complexity with improved breast cancer detection accuracy. However, traditional filter and 
wrapper-based selection methods have scalability and adaptability issues in handling complex gene features. This paper presents 
a hybrid feature selection method of Mutual Information Maximization - Improved Moth Flame Optimization (MIM-IMFO) for gene 
selection along with an advanced Hyper-heuristic Adaptive Universum Support classification model Vector Machine (HH-AUSVM) to 
improve cancer detection rates. The hybrid gene selection method is developed by performing filter-based selection using MIM in the 
first stage followed by the wrapper method in the second stage, to obtain the pivotal features and remove the inappropriate ones. This 
method improves standard MFO by a hybrid exploration/exploitation phase to accomplish a better trade-off between exploration and 
exploitation phases. The classifier HH-AUSVM is formulated by integrating the Adaptive Universum learning approach to the hyper-
heuristics-based parameter optimized SVM to tackle the class samples imbalance problem. Evaluated on breast cancer gene expression 
datasets from Mendeley Data Repository, this proposed MIM-IMFO gene selection-based HH-AUSVM classification approach provided 
better breast cancer detection with high accuracies of 95.67%, 96.52%, 97.97% and 95.5% and less processing time of 4.28, 3.17, 9.45 
and 6.31 seconds, respectively.

Keywords: Gene expression analysis, Breast cancer, hybrid gene selection, Mutual Information Maximization, Improved Moth 
Flame Optimization, Support Vector Machine, Adaptive Universum learning, Hyper-heuristic algorithm

1.  INTRODUCTION

Breast cancer is widespread among women with a 
high global death rate and has multiple causes, includ-
ing genetic and hereditary factors [1]. The genetic fac-
tors can be estimated only through learning the gene 
expression data for molecular analysis of breast cancer 
pathogenesis. This data is a part of the cancer transcrip-
tome, including the different RNA sequencing data 
types. The transcriptome of an organism is measurable 
using RNA-seq or DNA microarrays. The molecular anal-
ysis of this genetic information from DNA can provide 

all the information about the features and functions of 
all the body cells [2]. The genes also provide the vital 
specification of the phenotypes, which can be identi-
fied by analyzing the gene expression profiles of all 
diseased tissues and healthy tissues for obtaining the 
genetic variables for the pathological process [3]. The 
gene expression data can provide information about 
the cancer cells, the impact of drugs on the tissues 
and genetic variations in the diseased cells. Therefore, 
the gene expression data helps obtain the different 
features associated with breast cancer, which can be 
analyzed using advanced computational methods to 
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identify the gene targets, detect the disease's presence 
and develop suitable drugs [4]. Many studies have used 
gene expression data for obtaining deep tumor charac-
teristics, which provide options for treating, caring and 
monitoring cancer patients. Detection of the genes 
more highly expressive of the tumor characteristics 
than the normal cell characteristics is often challenging 
when selecting the best computation method [5]. The 
gene expression data analysis also has challenges, such 
as high dimensionality of gene features, moderately 
smaller sample size and a higher noise ratio.

Numerous studies have utilized supervised and un-
supervised learning systems for cancer identification 
from gene expression data. The unsupervised cat-
egory includes cluster-based methods and decision 
tree classifiers, while the supervised category includes 
statistical and machine learning (ML) algorithms [6]. 
ML algorithms are predominantly utilized for the clas-
sification of disease data. They have often produced 
efficient results using the algorithms such as support 
vector machines (SVM), Random forests (RF), artificial 
neural networks (ANN), etc. The latest studies have 
used deep learning (DL) methods, the so-called com-
plicated algorithms of the ML family, for cancer classifi-
cation tasks. Algorithms such as Deep Neural Networks 
(DNN), Convolutional Neural networks (CNN), etc., have 
better learning rates and improved deterministic pow-
ers than ML algorithms. Still, these algorithms require 
more training data to learn the deep features. They are 
also mostly limited by the high dimensionality and the 
sparse sample size of the gene expression data [7]. Con-
sidering such limitations of DL methods and the exten-
sive research still needed to integrate them for the ge-
nomics data analysis, ML algorithms are suggested for 
breast cancer classification from gene expression data.

SVM has provided better performance for breast 
cancer classification with reduced training and testing 
time [8]. Yet, SVM also has its share of limitations, name-
ly the limited ability to handle high dimensions, under-
performance when the target classes are overlapping 
or unbalanced, and, most importantly, the parameters 
of SVM do not adapt automatically to the given prob-
lem [9]. This paper has focused on developing an effi-
cient breast cancer classification approach by improv-
ing the SVM classifier's performance and establishing a 
hybrid algorithm for improved gene selection so that 
the high-dimension problem is solved. The proposed 
approach has developed a feature selection method 
in which the filter-based method of MIM is combined 
with the wrapper method of IMFO to form the MIM-
IMFO method. This proposed approach is based on two 
stages; the first is selecting the most important gene 
features using Mutual information. The second stage 
reduces the irrelevant features by the optimal feature 
subset selection using IMFO. Here, IMFO is developed 
by introducing a hybrid exploration/exploitation phase 
to the standard MFO [10] to achieve a good trade-off 
between the exploration and exploitation phases. The 

proposed classifier HH-AUSVM is an improved model 
of SVM in which the Adaptive Universum (AU) learn-
ing approach is applied to provide prior knowledge 
adaptively about the optimal classification problem 
and minimize the class imbalance problem. The Univer-
sum samples are data added to the imbalance classes 
as false data to balance the data distribution for easy 
computation without impacting the final output. Ad-
ditionally, the SVM parameters are tuned using hyper-
heuristics to form optimal SVM configuration with high 
accuracy and reduced model complexity. Evaluation 
of the MIM-IMFO and HH-AUSVM is performed using 
gene expression datasets from Mendeley Data Reposi-
tory for breast cancer. 

2. RELATED WORKS

Recent studies have presented various feature se-
lection and classification methods for breast cancer 
analysis from gene expression data. Feature or Gene 
selection methods can be filter, wrapper or embedded 
methods. Statistical measures such as correlation coef-
ficient and mutual information are used in filter meth-
ods to select genes based on relevancy. Vanitha et al. 
[11] computed MI between genes and class labels to 
select the best genes and applied SVM for classification. 
Recently, Rahmanian and Mansoori [12] developed an 
unsupervised gene selection method using multivari-
ate normalized MI (MNMI) with higher classification 
accuracy. Wrapper methods have mostly utilized one 
or more metaheuristic algorithms. Several algorithms, 
such as GA [13], PSO [14], GSA [15], etc., provided a 
training-based selection of genes. Embedded methods 
are a hybrid of the wrapper and filter methods and se-
lect genes based on relevancy and training accuracy. In 
[16], the authors combined MI and GA to form a hybrid 
selection method and achieved 90% accuracy. Sun et 
al. [17] presented hybrid gene selection using  ReliefF 
and ant colony optimization (RFACO) and achieved an 
average accuracy of 94.3%. Although the embedded 
methods provide a better performance, the complexity 
of these methods must be reduced.

Zhang et al. [18] proposed an efficient feature selec-
tion strategy using an SVM based on recursive feature 
elimination and parameter optimization (SVM-RFE-
PO). Evaluated on GEO and TCGA datasets, this model 
achieved an AUC of 96% but also increased the com-
plexity of training. Kong and Yu [19] presented Forest 
Deep Neural Network (fDNN) model using RF and DNN 
to extract features to increase the classification accu-
racy of gene expression data. This model used GEO re-
pository datasets, namely GSE99095 and GSE106291, 
for evaluation and achieved testing AUC of 0.986 and 
0.778 for the two datasets. But this model has limited 
performance when there are overlapping classes in the 
dataset. Zhang et al. [20] developed an ensemble clas-
sifier based on the principal component analysis (PCA), 
deep Auto-Encoders and AdaBoost algorithm (PCA-AE-
Ada). This model obtained 0.714 AUC and increased the 
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accuracy from 75% to 85%. Yet, this model is prone to 
over-fitting owing to the sparse gene datasets.

Elbashir et al. [21] introduced Lightweight CNN with 
selected hyper-parameters for breast cancer classifica-
tion with Array-Array Intensity Correlation (AAIC) outli-
er removal, filtering and normalization. This model ob-
tained 98.76% accuracy on the TCGA dataset for breast 
cancer gene expression data. However, this method 
has higher computational complexity. Mondal et al. 
[22] developed an entropy-based supervised learn-
ing method of SVM, RF, k-nearest neighbor (KNN) and 
naive Bayes for cancerous breast genes. Among them, 
SVM achieved 91.5% classification accuracy on the 
GSE349 & GSE350 datasets from the GEO repository. 
Yet, this model suffers from a class imbalance problem. 
AbdElNabi et al. [23] developed a cancer classification 
approach using information gain (IG)-grey wolf opti-
mization (GWO) feature selection and SVM classifier 
to overcome the over-fitting problems. Evaluated on 
skewed cancer datasets from Kent Ridge Bio-Medical 
Data websites, this approach obtained 94.87% accu-
racy for breast cancer and 95.935% for colon cancer. 
However, this approach has generated high false posi-
tives due to reduced feature selection. 

Pham et al. [24] established a model for subtyping 
breast cancer from gene expression data using an 
SVM-RFE classifier with GS (SVM-RFE-GS). This model 
achieved an accuracy of 89.40% with an improvement 
of 5.44% on TCGA datasets but did not consider the 
class imbalance problem. Gupta and Gupta [25] pre-
sented an improved SVM-RFE gene selection scheme 
with the Least Absolute Shrinkage Selector Operator 
(LASSO) and Ridge regression for classifying breast can-
cer genes. This method reduced the RMSE values from 
0.15 to 0.24. Yet, this method has limited learning capa-
bility. Hosseinpour et al. [26] developed a Hybrid High-
order Type-2 Fuzzy Cognitive Map Improved RF classi-
fication (HHTFCMIRF) approach. This approach utilized 
the improved RF for classifying the breast cancer gene 
data and achieved 93.5% on the TCGA dataset. But this 
method also increased the false positives in the pres-
ence of the class imbalance problem. Wei et al. [27] pro-
posed generative adversarial networks (GAN) model 
with data augmentation to detect breast cancers with 
an accuracy of 92.6%. Still, the class imbalance problem 
or overlapping class labels is not considered.

Few inferences are obtained from the studies in the 
literature. The main inference is that the ML algorithms 
can be more suited for the sparsely sampled gene ex-
pression data irrespective of the emergence of compli-
cated DL methods. Though DL methods have better 
feature learning, ML methods can avoid over-fitting 
and class imbalance problems more effectively. The 
other main inference is that feature learning methods 
can improve classification accuracy with reduced com-
plexity in high-dimensional data. Considering these 
inferences, the proposed approach has developed the 
MIM-IMFO feature selection and HH-AUSVM classifier.

3. METHODS

The overview of the proposed approach for breast 
cancer classification is shown in Fig. 1. 

Fig. 1. Overview of the Proposed Breast Cancer 
Classification model

The proposed approach for breast cancer classifica-
tion using gene expression analysis includes three main 
steps: pre-processing, feature extraction and selection, 
and classification. The pre-processing step intends to 
offer high-quality gene expression data for investigat-
ing breast cancer physiognomies. The pre-processing 
method has two major processes, namely Weighted 
Fuzzy Score (WFS) based data normalization and Bayes-
ian Independent Principal Component Analysis (BIPCA) 
based missing value imputation [28]. After pre-process-
ing, the gene feature vectors are extracted from the 
datasets, and then the hybrid feature selection method 
is utilized. First, the mutual information values are com-
puted for the gene vector pairs, and the best gene pairs 
are selected based on the maximum mutual information 
values. Then the gene pairs are rearranged using the hy-
brid phase, and the best genes are ranked in descending 
order with respect to the fitness values using the IMFO 
algorithm. Finally, the selected pivotal gene features are 
fed to the HH-AUSVM to train the classifier for obtaining 
accurate breast cancer classification in the testing stage.

3.1. DATASETS

The breast cancer gene expression profiles are col-
lected from the Mendeley Data repository (https://
data.mendeley.com/datasets/v3cc2p38hb/1).
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The main dataset contains four separate datasets: BC-
TCGA, GSE2034, GSE25066 and Simulation Data. Table 
1 shows the data distribution in these datasets. 

Table 1. Distribution of Breast Cancer gene 
expression datasets.

Datasets Number 
of genes

Number of samples

Total Normal 
Class

Cancer 
Class

BC-TCGA 17,814 590 61 529

GSE2034 12,634 286 179 107

GSE25066 12,634 492 100 392

Simulation Data 10,000 200 100 100

Table 2 shows examples of normal and tumor classes 
based on the selected five gene values from the input 
datasets.

Table 2. Example of Normal and Tumor data.

Tissue
Gene Expressions (Gene Names)

Class
ELMO2 PNMA1 MMP2 ZHX3 CHD8

1 0.2043 0.5385 0.7076 -0.117 -0.160 Normal

2 0.0645 0.2335 0.99 -0.468 -0.146 Normal

3 0.2887 0.2327 1.3211 -0.376 -0.162 Normal

4 1.2194 -0.2187 -0.148 0.2108 0.8762 Tumor

5 1.2426 -0.026 -1.073 0.3796 0.3047 Tumor

6 1.1717 -0921 -0.435 0.6231 0.2454 Tumor

3.2. PRE-PROCESSING

The gene expression datasets for breast cancer are 
raw data with limitations in terms of missing values and 
outliers. The high-quality data will ensure efficient dis-
ease classification. Therefore, data normalization and 
missing value imputation techniques are applied to 
the input datasets. WFS-based normalization was de-
veloped by integrating the Minkowski Weighted Score 
Functions into the gene fuzzy score computation. 
This WFS method used these weighted fuzzy scores 
to transform the gene expression data values without 
large variations. Similarly, the missing value problem 
is solved using the BIPCA imputation method, which 
utilizes Bayesian theory applied to a fusion model of 
principal component analysis (PCA) and independent 
component analysis (ICA) to replace the missing values 
through likelihood values of informative genes.

3.3. GENE FEATURE SELECTION 
 USING MIM-IMFO

Gene feature selection is choosing the most informa-
tive features while eliminating the less informative and 
irrelevant features. Feature selection can be performed 
by wrapper, filter and hybrid methods. This study uses a 
hybrid method by combining the MIM method and the 
IMFO algorithm. The gene features are selected quickly 
and efficiently by collaboratively using these two meth-

ods. In this hybrid model, the Mutual Information (MI) 
is used inside the IMFO algorithm and as the metric to 
estimate the importance of the features. Then the IMFO-
based optimization strategy ranks the features based on 
the fitness values and returns the top-ranked features for 
the classification. In this model, the IMFO is developed to 
overcome the limitation of MFO, i.e., the degeneration 
of the global search capability and slow convergence. 
To improve the MFO, a hybrid phase is added between 
exploration and exploitation, which can improve the 
search process and convergence speed.

Initially, the moths’ population is assembled, and the 
initial parameters are defined along with the maximum 
number of iterations. In standard MFO, the moths are 
updated based on the flames, and flames are gener-
ated by sorting the best moths. Yet, this process will 
lead to poor population diversity leading to slow con-
vergence and reduced global search capability. The 
moth population is initialized, and the elite individual 
information of moths is protected to eliminate the loss 
rate. The best solution for the entire population will be 
stored in a matrix form

Here hi, j refers to the best position of the i-th moth at 
the j-th dimension. This equation is an enhanced form 
of the standard MFO initialization step. When the itera-
tion k=1, this equation will equal the initialization func-
tion of MFO. This ensures all the moth individuals have 
a set initial position. These initial positions are updated 
by the logarithmic spiral as

(1)

(2)

Here, Mi
k denotes the position of i-th moth at the 

iteration k, Di
k-1 = |Fi

k-1 - Mi
k-1| denotes the distance be-

tween i-th moth and i-th flame at k-1 iteration and Fi
k-1 

denotes the position of the i-th flame at iteration k-1. 
The parameter b defines the spiral shape, and t denotes 
a random number between [r,1], with r being a linearly 
decreasing function from −1 to −2.

Then the MI is computed for these feature subsets, 
which are mapped with the gene features using Eq. (5), 
and the process will be terminated if the maximum MI 
value is obtained. MI is used to compute the effective-
ness of the features from high dimensional data to ob-
tain higher classification accuracy. It is estimated as the 
amount of information via the reduction in entropy. 
Entropy can measure the diversity in the attributes and 
helps in obtaining the impurity of information to quan-
tify the uncertainty of the prediction results using the 
given variable. Hence the entropy is first formulated to 
compute the MI. Let y denote the discrete random vari-
able attribute with two possible outcomes, i.e., relevant 
(R) and irrelevant (R̅) to the ideal features. The binary 
function H can be expressed as a logarithmic value.



245Volume 14, Number 3, 2023

Here (R, R̅) denotes the possible classes- relevant and 
irrelevant, p(R) denote the probability of the sample 
being y∈(R) and p(R̅) denote the probability of the 
sample being y∈(R̅). Conditional entropy defines the 
quantity of the uncertainties of each feature in the de-
cision process, and it is computed between two events, 
X and Y, where X has the value of feature x,

H(Y | X)=∑x∈X  px (x) H(Y | X=x)= 
∑x∈X  px (x) ∑y∈Y  p(y | x)  log py (y | x)= 

∑x∈X ∑y∈Y  pxy (x,y) logpy (y|x)
(4)

The smaller values of the impurity will result in more 
skewed class distributions. The values of entropy and 
the misclassification errors will be the highest when the 
class distribution is uniform and the minimum when all 
the samples belong to the same class.

The MI of y can be computed using the entropy and 
conditional entropy from a feature x as

(5)

A larger MI defines the higher discriminative power 
for the decision process and determines the relevance 
of the features with respect to the classification prob-
lem. The gene pairs are rearranged in the hybrid phase 
to obtain improved gene features.

IMFO includes a new step compared to the MFO. As 
stated before, the IMFO performs three phases. The 
primary phase pledges an optimal exploration, the in-
termediary phase is a hybrid exploration/exploitation, 
and the final phase improves the exploitation. The it-
erations determine it, and hence the iterations are di-
vided into I1, I2 and I3 for each phase. It is defined as

(6)

Here δ1=αK, δ2=βK with α,β∈[0,1] and N denotes the 
set of numbers.

The hybrid phase has been introduced to avoid an 
abrupt transition between the exploration and exploi-
tation phases. A weighted factor is added to the fitness 
function (accuracy or error rate) to improve the exploi-
tation phase without downgrading the exploration ca-
pability. Weight factor w is given as

(7)

Here, f(Mbest) denotes the fitness value of the best so-
lution, and f(Mi

k) denotes the fitness values of the i-th 
moth at iteration k. The exploitation is improved by us-
ing this factor during the hybrid phase without influ-
encing the exploration phase. The moth positions are 
updated as

(8)

Thus, a good balance is obtained in the trade-off be-
tween exploration and exploitation. The fitness value is 
computed for the new features obtained after the hy-
brid phase using these steps. Then these features are 

ranked based on their relevance with respect to the fit-
ness value (accuracy or error rate) computed in IMFO. 
Thus, the MIM-IMFO gene feature selection helps deep 
explore and decide the best gene subsets.

3.4. Classification using HH-AUSVM

The benefits of using SVM-based classifiers are that 
they have universal optimization and a great simplifica-
tion facility to make the grouping precise. Moreover, it re-
solves over-fitting problems and reduces computational 
complications. However, the standard SVM cannot han-
dle the noises and unknown class samples effectively. 
Hence Adaptive Universum learning is utilized with the 
SVM so that the classifier learns the patterns of unknown 
classes and the known classes effectively with prior 
knowledge. AUSVM constructs the data-dependent ar-
chitecture of SVM based on the set of tolerable functions 
for ensuring adaptability. It is more appropriate to ob-
tain the set of Universum samples for the SVM learning 
process instead of defining the data distributions explic-
itly. This Universum Learning solves the class imbalance 
problem better than the other sampling-based methods 
with good regularization and generalization for the data. 
The Universum samples are the additional samples gen-
erated based on current data but do not belong to the 
current classes. These data are added to the imbalance 
classes as false data to balance the data distribution for 
easy computation without impacting the final output. 
Since the Universum samples do not belong to any pre-
defined classes, the AUSVM hyper-plane will fall inside 
the margin borders determined by C due to the usage 
of the maximal margin procedure. Therefore, the AUSVM 
must utilize a maximal soft-margin procedure and maxi-
mize the number of Universum samples distributed 
around the hyper-plane. 

A training set with given Universum samples is de-
fined as

(9)

Here xj
* ∈ Rn,j=1,2,…,u denote the Universum sam-

ples in Rn search space, xi R
n,i=1,2,…,s and yi∈{1,-1} for 

binary classification and yiR
n, i=1,2,…,s for multi-class 

classification. As the Universum samples provide the 
prior knowledge of the network traffic classification by 
approximating the hyper-plane g(x)=0, the primal op-
timization algorithm of the AUSVM with the maximal 
soft-margin procedure is given as

(10)

Subject to yi (w.Φ (xi) + b) ≥ 1-ξi, - ε - ψt
* ≤ w.Φ (xt

*) 
+b ≤ ε + ψt, ξi≥0, i=1,2,…,s and ψt, ψt

* ≥ 0, t=1,2,…,u.

Here Ct denotes the margin parameter or penalty 
parameter of SVM, Cu denotes the margin parameter 
of AUSVM, ψt, ψt

* denotes the slack variables of AUS-
VM and ε represents the in-sensitive loss function for 
Universum samples. Eq. (13) of AUSVM maximizes 
the margin between the classifying hyper-planes and 
the amount of Universum samples to be distributed 
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around the hyper-plane. If Cu=0, then Eq. (13) will be-
come equivalent to the standard SVM equation. This 
dual problem of USVM is formulated as

(11)

Subject to ∑s
i=1  yi αi ∑u

t=1 (μz-vz) = 0;  0 ≤ αi ≤ Ct, 
i=1,2,…,s; 0 ≤ μt, vt ≤ Cu,t=1,2,…,u.

Here μi and vi are Lagrangian multipliers similar to αi. 

When the classifier is non-linear, the problem in the 
input space from Eq. (13) is defined as

(12)

Here f(x) symbolizes the objective function, αi
* de-

notes control parameter, and b* indicates the bias. 
K(xi, yi) represents the kernel function that creates the 
central product of the feature space. The parameters 
namely Cu, K(xi, yi ) and its parameters are selected opti-
mally using HH. The aim is to choose an SVM structure 
that diminishes the miscalculation error and increases 
the accuracy without manipulating the complication. 
It is exhibited as a non-convex optimization issue con-
veyed as a tuple form

(13)

Where AUSVM is the constructed system, Θ is the 
exploration area of the conceivable SVM structures, D 
is the dissemination of the set of cases, C is the fitness 
utility, and S is the arithmetic data. The objective is to 
reduce C to achieve the resolution set over a set of issue 
circumstances to discover

(14)

Each θ∈Θ characterizes one conceivable structure of 
the SVM, and the result C is attained while analyzing 
the SVM through numerous illustrations. The multi-
constraint optimization is expressed as

(15)

Where f1 (x)=Accuracy; f2 (x) = Model Complexity

Here f1 (x), f2 (x) are the two objective functions of 
SVM, and Model complexity is expressed as the Num-
ber of Support Vectors (NSV). The HH algorithm reduc-
es this function to acquire a lightweight SVM with high 
accuracy and less training time.

Hyper-heuristic optimization consists of high-level 
and low-level heuristics in the SVM design structure 
optimization. HH is the multi-level algorithm that ac-
complishes heuristic interpretations and generates 
low-level policies based on the problem obligation 
from prevalent solutions. The low-level heuristics fol-
low the solution space and regulate the current solu-
tions to create new solutions for assessment. 

The high-level policy chooses the appropriate low-
level heuristics as an alternative to probing the so-
lutions so that the low-level policy can execute its 
functions without any disruptions from the advanced 
search policy. 

4. RESULTS AND DISCUSSION

The proposed MIM-IMFO feature selection and HH-
AUSVM classification approach for the breast cancer 
classification problem is evaluated over the Mendeley 
gene expression datasets. The evaluations are conduct-
ed using the MATLAB tool (R2016b version 9.1) on an 
Intel Core i7 processor, Windows 10 OS with 8GB RAM 
and 512GB SSD. The performance metrics, namely Ac-
curacy, Precision, Recall, F-Measure, Pearson Correla-
tion Coefficient (PCC) and Processing Time, are used for 
the evaluation. These parameters are chosen for evalu-
ation since they can help determine the correctness of 
the models and also detect the linear relationship of 
the variables.

(16)

(17)

(18)

(19)

(20)

Here, xi and yi denote the x and y variables of the 
sample, x̅ and y̅ denote the mean of the values of the x 
and y variables.

The performance of the proposed gene selection 
method is evaluated with other existing gene selec-
tion methods based on the number of selected genes. 
All simulations are performed with the same amount 
of data for fair comparisons. Table 3 shows the perfor-
mance of gene selection methods for the four datasets.

Table 3. Comparison of Gene Selection Methods

Method BC-TCGA GSE2034 GSE25066 Simulation 
Data

Total 
Genes 17814 12634 12634 10000

MI [11] 12540 9875 9833 8101

MNMI [12] 11345 8603 8628 6957

GA [13] 9790 7884 7752 5880

PSO [14] 9176 7542 7267 5541

GSA [15] 9042 7125 6823 5179

MI-GA [16] 7920 6043 6043 4222

RFACO [17] 7775 5779 5450 3980

Proposed 
MIM-IMFO 7108 5369 5122 3338
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Table 4 shows the obtained results for the proposed 
methods over the testing sets of the datasets. The ex-
isting method SVM is used as the base classifier along 
with Adaptive Universum SVM. The proposed HH-
AUSVM classifier is used without the feature selection 
method and with the MIM-IMFO method.

Table 4. Performance comparison of Breast Cancer 
Gene Expression Classification.

Accuracy

Method BC-
TCGA GSE2034 GSE25066 Simulation 

Data

SVM 92.36 91.86 90.02 93.89

AUSVM 93.17 92.99 92.58 94.31

HH-AUSVM 94.49 94.26 95.67 94.94

MIM-IMFO +  
HH-AUSVM 95.67 96.52 97.97 95.5

Precision

Methods BC-
TCGA GSE2034 GSE25066 Simulation 

Data

SVM 91.66 96.15 89.32 95.36

AUSVM 93.27 97.49 92.33 96.67

HH-AUSVM 95.88 98.67 95.69 98.5

MIM-IMFO +  
HH-AUSVM 98.75 99.24 96.38 100

Recall

Methods BC-
TCGA GSE2034 GSE25066 Simulation 

Data

SVM 93.94 92.22 86.25 92.48

AUSVM 94.22 94.67 90.49 94.31

HH-AUSVM 94.89 95.55 92.18 95.96

MIM-IMFO +  
HH-AUSVM 95.72 96.2 95.04 97.78

F-measure

Methods BC-
TCGA GSE2034 GSE25066 Simulation 

Data

SVM 92.79 94.14 87.76 93.9

AUSVM 93.74 96.06 91.4 95.48

HH-AUSVM 95.38 97.08 93.9 97.21

MIM-IMFO + 
HH-AUSVM 97.21 97.7 95.71 98.88

Pearson Correlation Coefficient

Methods BC-
TCGA GSE2034 GSE25066 Simulation 

Data

SVM 0.9012 0.9147 0.812 0.8813

AUSVM 0.9225 0.9381 0.8892 0.9156

HH-AUSVM 0.9467 0.9448 0.9218 0.9271

MIM-IMFO + 
HH-AUSVM 0.9588 0.9633 0.9692 0.9524

Processing time (seconds)

Methods BC-
TCGA GSE2034 GSE25066 Simulation 

Data

SVM 11.98 10.96 13.56 10.55

AUSVM 10.26 10.18 12.40 9.89

HH-AUSVM 8.78 8.11 10.87 8.25

MIM-IMFO + 
HH-AUSVM 4.28 3.17 9.45 6.31

The results in Table 1 show that the proposed HH-
AUSVM classifier with the MIM-IMFO feature selection 
has provided better breast cancer classification than 
the SVM, AUSVM and HH-AUSVM models. Among the 
compared methods, the proposed HH-AUSVM with 
MIM-IMFO feature selection has achieved 1.18%, 2.5% 
and 3.31% higher accuracy, 2.87%, 5.48% and 7.09% 
higher precision, 0.83%, 1.5% and 1.78% higher re-
call, 1.83%, 3.47% and 4.42% higher f-measure, 1.21%, 
3.63% and 5.76% higher Pearson Correlation Coeffi-
cient, and 51.25%, 58.29% and 64.27% reduced pro-
cessing time than the HH-AUSVM, AUSVM and SVM 
methods for the BC-TCGA dataset. 

For GSE2034 data, it has achieved 2.26%, 3.53% and 
4.66% higher accuracy, 0.57%, 1.75% and 3.09% higher 
precision, and 0.65%, 1.53% and 3.98% higher recall, 
0.62%, 1.64% and 3.56% higher f-measure, 1.85%, 
2.52% and 4.86% higher Pearson Correlation Coeffi-
cient, 60.91%, 68.86% and 71.08% reduced processing 
time than the HH-AUSVM, AUSVM and SVM methods. 
For GSE25066 data, HH-AUSVM with the MIM-IMFO 
has achieved 2.3%, 5.39% and 7.95% higher accuracy, 
0.69%, 4.05% and 7.06% higher precision, 2.86%, 4.55% 
and 8.79% higher recall, 1.81%, 4.31% and 7.95% higher 
f-measure, 4.74%, 8% and 15.72% higher Pearson Cor-
relation Coefficient and 13.06%, 23.79% and 30.31% 
reduced processing time than the HH-AUSVM, AUSVM 
and SVM methods. 

For the simulation data, HH-AUSVM with the MIM-
IMFO has achieved 0.56%, 1.19% and 1.61% higher ac-
curacy, 1.5%, 3.33% and 4.64% higher precision, 1.82%, 
3.47% and 5.3% higher recall, 1.67%, 3.4% and 4.98% 
higher f-measure, 2.53%, 3.68% and 7.11% higher Pear-
son Correlation Coefficient and 23.52%, 36.2% and 
40.19% reduced processing time than the HH-AUSVM, 
AUSVM and SVM methods.

The confusion matrix evaluation obtained for the 
four datasets is shown in Table 5.

Table 5. Confusion Matrix of Proposed Method

Datasets Total 
Data

True 
Positive

True 
Negative

False 
Positive

False 
Negative

BC-TCGA 590 59 506 11 14

GSE2034 286 173 103 3 7

GSE25066 492 98 384 4 6

Simulation 
Data 200 93 97 4 6

The proposed method's confusion matrix evaluation 
has shown a good trade-off ratio between the true and 
false values. In Simulation data, the 200 samples are 
classified correctly into 93 True Positives (Normal class) 
and 97 True Negatives (Tumor Class) and wrongly into 
4 False Positives and 6 False Negatives. The confusion 
matrix complements the justification provided by the 
other evaluation metrics.
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This better performance of the MIM-IMFO-based 
gene selection and HH-AUSVM classifier is because of 
the use of effective pre-processing by WFS-BIPCA, im-
proved convergence and global search capability of 
gene feature selection and advanced learning-based 
optimized classification.

They are compared with the methods used in the lit-
erature studies to evaluate the proposed approach fur-
ther. Since the literature methods have used different 
breast cancer gene expression datasets in different ex-
perimental conditions, comparing their results directly 
will not be ideal. Hence, for a fair comparison, the meth-
ods described in those studies are implemented in the 
same environment as the proposed approach over the 
GSE2034 and GSE25066 datasets with an equal amount 
of data. The comparisons are made in terms of accuracy 
and processing time. Table 6 shows the comparison of 
the proposed approach against the literature studies.

Table 6. Performance comparison against methods 
in the literature.

Ref. No. Method

GSE2034 GSE25066

Accuracy 
(%)

Time 
(s)

Accuracy 
(%)

Time 
(s)

[18] SVM-RFE-PO 91.5 7.54 91.87 15.76

[19] fDNN 93.47 11.66 94.98 24.61

[20] PCA-AE-Ada 90.88 12.89 91.45 22.55

[21] CNN 95.25 15.63 95.79 21.8

[22] Entropy-based 
SVM 91.31 6.55 92.67 17.17

[23] IG-GWO + 
SVM 90.15 5.41 91.11 13.2

[24] SVM-RFE-GS 88.91 7.88 89.28 15.78

[25] SVM-RFE- 
LASSO 86.72 8.91 87.4 16.83

[26] HHTFCMIRF 91.2 6.37 90.76 14.56

[27] GAN 93.8 17.88 95.51 23.5

Proposed MIM-IMFO + 
HH-AUSVM 96.52 3.17 97.97 9.45

The comparison of the proposed approach against 
the existing methods in the literature studies also 
shows that the proposed MIM-IMFO and HH-AUSVM-
based breast cancer classification model performs 
better than the other methods for the GSE2034 and 
GSE25066 datasets. There have been accuracy improve-
ments in the proposed approach by approximately 1 to 
10%. The processing time of the proposed method is 
also less than the other methods. This concludes that 
the proposed approach of MIM-IMFO feature selection 
and HH-AUSVM classifier has provided a better analysis 

of the gene expression data for accurate breast cancer 
classification with less complexity.

5. CONCLUSION

This paper aimed to introduce a hybrid feature selec-
tion technique and advanced classifier for reducing the 
dimensionality of the breast cancer gene expression 
data to improve the classification performance. Con-
sidering the existing limitations, this paper presented 
an efficient classifier of HH-AUSVM to overcome the 
class imbalance problem, noisy data, sparse data and 
parameter tuning problems for analyzing the gene 
expression data. Utilized with the MIM-IMFO feature 
selection method, the HH-AUSVM classifier obtained 
breast cancer classification accuracies of 95.67%, 
96.52%, 97.97% and 95.5% for BC-TCGA, GSE2034, 
GSE25066 and Simulation Data, respectively. It has 
also consumed about 1-10% less processing time for 
all four datasets than the existing methods. In the fu-
ture, the possibility of improving the feature learning 
property of HH-AUSVM will be investigated. Although 
the evaluations have been made only on breast cancer 
gene expression datasets, the proposed method is also 
suitable for other cancer gene expression datasets. The 
efficiency of this method for classifying other types of 
cancer will be examined in the future.
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