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Abstract – Significant attention is paid to static analysis methods for Worst Case Execution Time Analysis of programs. However, major 
effort has been focused on WCET analysis of sequential programs and only a little work is performed on that of multithreaded programs.  
Shared computer architectural units such as shared instruction cache pose a special challenge in WCET analysis of multithreaded 
programs. The principle used to improve the precision of shared instruction cache analysis is to shrink the set of interferences, from 
competing threads to an instruction in a thread that may be accessed from shared instruction cache, using static analysis extended to 
barriers. An Algorithm that address barrier synchronization and used by the simulator is designed and benchmark programs consisting 
of both barrier synchronization and computation task synchronization are presented.  Improvements in precision upto 20 % are observed 
while performing the proposed WCET analysis on benchmark programs.
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1. INTRODUCTION

Today Real Time Embedded Systems (RTES) are vastly 
used in avionics, automotive and tele-communications 
domains. In RTES, correctness of a system not only 
depends on its logical behavior but also computation 
time. In hard real time systems, missing deadlines can 
cause catastrophic damage. Multicore architectures 
are used in RTES domain due to their high processing 
power and concurrency in applications. For example, 
in night view assist multi-threaded in automotive envi-
ronment, reading data from sensors, processing video 
streams and raising warning when an obstacle is de-
tected on road happen concurrently.  

Schedulability analysis is used to verify the capa-
bilities of RTES to meet deadlines. All schedulabil-
ity analyses assume that upper bound of execution of 
each program i.e., Worst Case Execution Time (WCET) 
is known. However, deriving tight and safe WCET of a 
program on multicore architecture is difficult because 

of shared hardware resources such as cache memory, 
buses and Input/Output. There may be unpredictable 
delays in the execution of the program due to conten-
tion at shared resources. One of the main factors of un-
predictability is due to cache memory. There are two or 
three levels of cache memory placed between core and 
main memory to bridge the gap of high-speed proces-
sor with low-speed main memory. L1 cache memory is 
the smallest cache memory close to the processor and 
it is private for each core, while larger L2 is shared be-
tween cores. In the case of an L1 cache miss (requested 
memory block not in L1 cache memory) then, memory 
block may be fetched from higher level of memory 
hierarchy(L2 cache). The memory access latency to be 
computed due to conflicts from other cores resulting in 
the removal of memory block from shared L2 instruc-
tion cache plays a critical role in the estimation of pre-
cise WCET of a multithreaded program. The problem of 
estimating worst case latency in turn to estimate WCET 
of a multithreaded program is motivated in this paper 
for shared instruction caches. 
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A static analyzer is designed in [1] using Hoare’s Com-
municating Sequential Processes (CSP) [2] to compute 
WCET of a multithreaded program and is based on syn-
chronized parallel processes arising from synchroniza-
tion calls to wait() and notify(). A reference thread is one 
for which WCET is being estimated and instruction ac-
cesses in it encounter competition for shared instruction 
cache from parallel processes in other threads. The con-
flicts for any instruction I in reference thread are encoun-
tered only from the identified parallel processes that run 
parallel with I. A gap identified in the static analyzer 
[1] is that it does not deal with barrier synchronization 
processes. This paper extends Interference Partitioning 
algorithm in [1] to address the class of programs using 
barrier synchronization as well. User defined abstrac-
tions are linked to the program code using PragMatics 
approach in [3]. The approach is based on an annota-
tion language comprising of all features to address indi-
vidual loops, application context and function calls with 
optimization awareness. However, pragMatics does not 
support recursive applications. The structure of parallel 
program along with its target platform is considered to 
obtain tight contention delays in [4]. The main drawback 
of the approach is that it is limited to blocking commu-
nication. Fork-join parallel model is employed in [5], in 
contrast, the proposed method employs fork-join, Single 
Program Multiple Data (SPMD), Multiple Program Mul-
tiple Data (MPMD), producer - consumer model in paral-
lel programming. An Integer Linear Programming (ILP) 
based approach is proposed in [6] that maximizes the 
WCET of a program. It is also proposed that algorithmic 
approaches scale better for larger programs than ILP 
based approach. A parallel execution graph is employed 
in [7] to explore all possible execution interleavings of 
a parallel task and an exclusion criterion is proposed to 
prove that certain interleavings can never occur to make 
precise and feasible WCET analysis of parallel periodic 
tasks. Communication between the tasks in concurrent 
software is through message passing and life time es-
timates of concurrently executing tasks on multicore 
are improved progressively in [8]. Automatic timing 
analysis of parallel applications is performed in [9] by 
considering synchronization stall time associated with 
each instruction and each basic block in Control Flow 
Graph (CFG) for WCET estimation process.  The approach 
considers a simple time predictable architecture to esti-
mate WCET. Loop bounds are provided as user annota-
tions to the WCET analyzer [10]. WCET computation of 
a multithreaded program is proposed in [11] and com-
munication edges are introduced between threads in a 
multithreaded program in micro architectural modelling 
phase of WCET estimation. 

The instructions that can cause or suffer from timing 
interferences are extracted in [12]. Based on the extract-
ed instructions, the real time tasks are separated into a 
sequence of time intervals. The ILP solver uses the time 
intervals to minimize the WCET of the application. Con-
current execution of programs is simulated to cause con-
flicts resulting in the eviction of memory block from the 

shared instruction cache, being accessed by program in 
reference thread in [13]. A hardware mechanism is pro-
posed to reduce the number of interfering accesses by 
forcing certain accesses to bypass shared cache. WCET 
analysis of parallel code can be performed using UP-
PAAL model checker [14]. The approach in [14] considers 
granularity at instruction level that increases the size of 
the state space compared to the basic block level granu-
larity. Scheduling model for real-time tasks is presented 
in [15] and concurrency during task execution is not con-
sidered explicitly. In contrast, in the proposed approach 
in our paper, concurrency among the threads is consid-
ered explicitly. Interference Partition (IP) Algorithm [16], 
computes WCET of a multithreaded program by consid-
ering partial order information [17] of the multithreaded 
program based on wait and notify synchronization. IP 
Algorithm partitions the Control Flow Graph (CFG) each 
thread of a multithreaded program into parallel process-
es Pm_i (m is process id and i is thread id) based on partial 
order information derived using wait/notify synchroni-
zation primitives. The partitioning enables computation 
of a precise WCET of the multithreaded program. The re-
search question addressed in this paper are:

•	 What parameters need to be considered during 
WCET analysis of a multithreaded program to pro-
vide precise estimates of WCET to designers of Re-
al-time embedded applications?

•	 How can shared instruction cache memory be 
modelled by a WCET analyser for precise WCET es-
timation?

The main contributions are

•	 Extension of the interference partitioning algo-
rithm in [16] for multithreaded programs to incor-
porate barrier synchronization calls

•	 Investigation of the effectiveness of the extended 
interference partitioning algorithm on benchmark 
programs adapted from Malardalen [18] bench-
mark suite

•	 WCET estimates of multithreaded programs with 
barrier synchronization calls and computation task 
specific synchronization calls (using wait() and no-
tify())

•	 Parameters such as Number of conflicts, Conflict 
ratio, Overestimation ratio, Precision Improvement 
in Number of conflicts and Precision Improvement 
in WCET are proposed for performance evaluations

2. WCET ESTIMATION OF MULTITHREADED 
PROGRAMS

Typical WCET estimation framework of sequential 
program mainly comprises of three phases [10]: pro-
gram flow analysis to obtain structural and functional 
constraints from the control flow graph of the program, 
micro-architectural modelling to obtain WCET of each ba-
sic block by considering underlying architectural features 
like cache, pipeline, branch prediction etc. and WCET cal-
culation phase to obtain WCET of the program by maxi-
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mizing the objective function comprises of execution 
time and execution count of each basic block. The above 
WCET estimation framework is not quite appropriate for 
WCET estimation of a multithreaded program because of 
complex interactions between threads in the program, 
mapped to different cores. A novel method is proposed 
and incorporated into simulator to obtain WCET of a mul-
tithreaded program implemented to run on a multicore 
architecture with shared instruction cache, by reducing 
the set of interferences to be considered to a minimal safe 
subset, from an interacting thread during the execution of 
an instruction in a reference thread.

Existing IP algorithm [16] does not deal with barrier syn-
chronization processes and it is extended to obtain mini-
mal safe subset of interferences from interacting threads 
using barrier synchronization primitives. All the functions 
from n threads of a multithreaded program have to reach 
the barrier before they proceed and barrier node counts 
the arrival of all the threads and once all the threads ar-
rived it issued the proceed messages [19].  Real time em-
bedded applications perform computation in k phases. 
The requirement of the application is that all the threads 
need to begin the computation of the ith phase, i<=k, only 
if i-1th phase is completed by all threads. For such an ap-
plication typically barrier synchronization is used and all 
K barriers will be designed and programmed. It may be 
considered that the computation processes, in threads 
following the i-1th barrier until the ith barrier, are parallel to 
each other. In fact, the above-mentioned parallel process-
es are special kind of synchronized parallel processes [1]. 
The parallel processes inside a barrier may also perform a 
computation task specific synchronization using wait and 
notify synchronization primitives at a lower level while 
there is higher level parallelism between threads using 
barrier synchronization processes. 

Definition of computation Processes

Computation processes arise when two threads inter-
act using wait() and notify() synchronization calls. We 
refer to them as synchronization parallel processes in 
the paper. There is an order between processes imposed 
by the partial order wait<notify. There exist code regions 
(synchronized parallel processes) in the two threads that 
may be parallel to each other. Here synchronization calls 
are used in threads simply to wait and notify and not for 
barrier synchronization. What is important for the Inter-
ference Partitioning algorithm is that synchronized paral-
lel processes in two threads compete with each other for a 
shared resource such as the shared instruction cache.

For example, BSP2_2 || BSP2_3 in Fig.1.b are identified as 
computation processes because they interact using wait() 
and notify() synchronization calls. There is order between 
processes imposed by the partial order wait < notify.

Definition of computation task  
specific synchronization calls

A computation task specific synchronization calls are 
defined with respect to two interacting threads. The inter-
action is based on synchronization using calls to wait () 

and notify (). It is assumed that the there is no notification 
loss as the program is validated before WCET analysis is 
performed. Therefore, for corresponding synchroniza-
tion calls, wait < notify.  Computation task specific syn-
chronization calls identify not only which computation 
in a thread happens before the computation in another 
thread but also which computations happen in parallel. 

For example, BSP2_2 || BSP2_3 are identified as compu-
tation task specific synchronization calls in Fig.1.b. In 
general, a multithreaded program may contain mul-
tiple barriers as shown in Fig.1.a. for a group of threads 
to synchronize on completion of tasks one after the 
other. When it comes to barrier synchronization paral-
lel processes, two or more threads may participate in 
barrier synchronization and they cross the barrier for 
further computation together irrespective of the rela-
tive speeds until they reach the barrier. From the per-
spective of the Interference Partitioning algorithm, if k 
threads participate in the barrier, for a reference thread, 
(k-1) barrier synchronization parallel processes com-
pete for the shared instruction cache along with the 
reference thread.

Definition of barrier synchronization  
parallel processes 

Barrier synchronization parallel processes, two or more 
threads may participate in barrier synchronization and 
they cross the barrier for further computation together 
irrespective of the relative speeds until they reach the bar-
rier.  From the perspective of the Interference Partitioning 
algorithm, if k threads participate in  barrier synchroniza-
tion, for a reference thread participating in the barrier syn-
chronization, (k-1) barrier synchronization parallel pro-
cesses compete for the shared instruction cache.

For example, BSP2_1 ||BSP2_2 || BSP2_3 are identified as 
barrier synchronization parallel processes in Fig.1.a. If 
there are no task specific synchronization calls between 
two barrier lines, entire code region between the two 
barrier lines for each thread is a competing process that 
can cause shared instruction cache interferences to 
code of other threads in between the barrier lines. All 
the functions from n threads of multithreaded program 
need to reach the barrier before they proceed further.  
The barrier nodes shall keep track of the arrival of all the 
participating threads and once all the threads arrive at 
the node or barrier line, the threads proceed beyond.

Definition of Parallel Processes

Parallelism may exist between threads that simply 
arises out of no particular order between executions of re-
gions of code in the threads, which we in general term as 
parallel processes. Parallel processes also compete for the 
shared instruction cache.

Competing processes refer to barrier synchronized 
parallel processes or synchronized parallel processes or 
only computation processes that run parallel with a cor-
responding process in the reference thread Ti. Compet-
ing processes cause conflicts to an instruction I in the 
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reference thread. The IP algorithm creates the mapping 
of the competing processes for all barrier synchroniza-
tion parallel processes in Fig.1.a. as shown in Table 1. 

Barrier Synchronization 
Parallel Processes BSPm_i

Competing processes

BSP1_1 BSP1_2 ||BSP1_3 || BSP1_4

BSP2_1 BSP2_2 ||BSP2_3 || BSP1_4

BSP3_1 BSP3_2 ||BSP3_3 || BSP1_4

Table 1. Mapping of competing processes for each 
Barrier Synchronization Parallel Processes BSPm_i

In general, a thread is a composition of computation 
processes interacting using wait() and notify() calls, 
barrier synchronization processes and simply parallel 
processes. The interference partitioning algorithm ad-
dresses the problem of determining competing pro-
cesses for a reference thread for each of the three cate-
gories of processes. Micro-architectural modelling uses 
competing processes to identify conflicts to any barrier 
synchronization parallel processes BSPn_j to compute 
WCET of each basic block referred as node in this paper.

Fig. 1. a. Identified barrier synchronization parallel 
processes

Fig. 1. b. Task specific synchronization calls between 
two barrier synchronization parallel processes

Fig.1. Multithreaded program with Barrier 
Synchronization Parallel Processes

WCET calculation uses Implicit Path Enumeration 
Technique (IPET) that combines program flow informa-
tion along with its execution time of each basic block 
to compute WCET of each thread of multithreaded pro-
gram. The subsection 2.1 explains mathematical repre-
sentation of cache mapping function in detail.

2.1. CACHE MAPPING FUNCTION

The motivation for discussing Cache Mapping Func-
tion is to determine the instruction accesses, in shared 
instruction cache, made by a thread for which WCET is 
being estimated(reference thread) that are potentially 
evicted due to interferences from competing threads. 
The Cache Mapping Function is used by the Interfer-
ence Partitioning algorithm. In this paper, barrier syn-
chronization processes cause interferences that can 
evict instructions in shared instruction cache required 
by the reference thread.   This paper extends Interfer-
ence Partitioning algorithm to multithreaded pro-
grams using barrier synchronization. The three com-
monly used cache architectures are direct mapped 
cache, fully associative cache and A-way set associative 
caches [20]. An A-way set associative mapping archi-
tecture contains A cache lines for all S cache sets. Each 
cache line is capable of holding LS consecutive bytes 
of a memory block. Direct mapped cache, is a 1-way 
set associative cache where a cache block can appear 
in only one place in cache memory. Fully associative 
cache, is a A-way set associative cache where a cache 
block can be placed anywhere in the cache memory 
having only one set. A cache line may be valid (contain-
ing a memory block) or invalid (currently free). 

This paper considers Harvard architecture i.e., L1 in-
struction cache is separated from L1 data cache and L2 
shared instruction cache is a share resource for all cores. 

•	 Cache size CS: Represents cache memory size in bytes

•	 Block size or Line Size LS: Represents number of bytes 
to be loaded in to cache for each memory access

•	 LS_L1: Represents line size of level 1 cache memory

•	 LS_L2: Represents line size of level 2 cache memory

•	 Associativity A: Accessed memory block can be 
placed in A cache lines in cache memory

•	 Cache Set S:  S={ s1,s2,... ,s(CS/LS)/A)  } A cache set si is a 
sequence of cache lines where memory blocks are 
stored 

•	 S_L1: Represents number of cache sets in level 1 
cache memory

•	 S_L2: Represents number of cache sets in level 2 
cache memory

•	 Number of cache lines CL : CL = {l1,l2, ..., lA} 

•	 Memory block: Sequence of consecutive instruc-
tions based on block or line size

The set of ages for A-way set associative caches are 
A= {0,1,2,...  ,A-1}. The block replacement method con-
siders only the age of the memory block. 
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The most recently used memory block is given age 
0 and least recently used memory block is given maxi-
mal age A-1. For each cache miss, the accessed block is 
placed in a particular cache set based on cache archi-
tecture with age as 0, age of all other memory blocks 
in particular cache set is increased by 1 and memory 
block with age A-1 is evicted from cache memory. For 
access to a memory block that is currently in cache 
memory with age a, its age is changed to 0 and the 
ages of memory blocks lesser than a are increased by 1 
and ages of memory blocks greater than a remains the 
same. Instructions in each memory block are classified 
as Always Hit (AH), Always Miss (AM) or Not Classified 
(NC) based on Cache analysis using Abstract interpre-
tation (AI) [20]. Abstract Interpretation based cache 
analysis does not require execution of the program to 
study cache behavior of the program; through appro-
priate abstraction, cache behavior for a program can be 
inferred using static analysis [20]. Each memory block is 
mapped to a particular cache set in L1 cache memory 
based on cache mapping function CMF_L1. The equa-
tion 1 and 2 shows the Cache Mapping Function of L1 
and L2 cache memory respectively.

CMF_L1=((Memory address / LS_L1) % S_L1 (1)

Similarly, mapping function of shared L2 instruction 
cache is,

CMF_L2=((Memory address / LS_L2) % S_L2 (2)

The Instruction I mapped to cache set si having 
Cache Hit Miss Classification (CHMC) categorized as 
AH for shared L2 instruction cache is affected by a set 
of instructions { I1’, I2’,...  ,Ik’ } from interacting threads 
that mapped to same cache set si [20][21][22]. To com-
pute where to place the memory block in L1/L2 cache 
memory, the following notations are used. Suppose 
instruction I7_1: addiu $29,$29,-72 in Fig.3. of reference 
thread is stored at the memory address 0x400220. Each 
memory block is mapped to a particular cache set in L1 
cache memory based on cache mapping function CMF_
L1 and it is used to compute the instruction’s location in 
L1 cache memory having cache size CS as 256 bytes, line 
size LS_L1 as 16 bytes and Associativity A as 1. Another 
parameter in CMF_L1, which is number of cache sets 
S_L1 in L1 cache memory, is computed using (CS/LS_
L1/A) of L1 cache memory. The instruction in memory 
address 0x400220, is mapped to cache set number 2 of 
L1 cache memory.

CMF_L1=((Memory address / LS_L1) % S_L1
CMF_L1=((0x400220 / 0x10) % 0x4

Interference Partition Algorithm  
for Barrier Synchronization

Each reference thread Ti is viewed as a composition 
of barrier synchronization parallel processes, commu-
nicating with other barrier synchronization parallel 
processes in interacting threads Tj in Fig.1.a. In general, 
a thread is a composition of computation processes 
interacting using wait() and notify() calls, barrier syn-

chronization processes and simply parallel processes. 
The interference partitioning algorithm addresses 
the problem of determining competing processes for 
a reference thread for each of the three categories of 
processes. The Interference Partitioning Algorithm ac-
cepts as input a Message Sequence Chart (MSC) repre-
sentation of the Communicating Sequential Processes 
(CSP) specification of the multithreaded program. An 
MSC representation consists of lifelines for threads in 
the program as shown in Fig1.a. Interactions between 
threads are through computation task specific syn-
chronization calls (wait(), notify() ) or barrier synchro-
nization calls.  A partial order based on wait < notify 
is constructed from the multithreaded program while 
transforming it to an equivalent CSP specification. The 
Interference Partitioning Algorithm (addressing Barrier 
Synchronization) traverses through MSC representa-
tion looking for synchronization calls step by step. The 
WCET analyser identifies computation task synchroni-
zation parallel processes based on synchronization calls 
wait() and notify(). The WCET analyser identifies barrier 
synchronization region in each thread using barrier 
initialization and barrier related calls. Simply parallel 
processes are identified by the WCET analyser based 
on partial order through which neither less than nor 
greater than relation is observed for parallel regions. It 
may be noted that for uniformity, WCET analyser con-
siders a sequential process in a thread to be parallel to 
an empty process in an interacting thread. In this way 
all processes are considered to be parallel.

Algorithm for Interference Partitioning 
identifying barrier synchronization processes

While there exists next set of syncCalls in Thread(T)

{
 listOfSyncCalls = getNextSetOfSynchronizationCalls(T);

 if listOfSyncCalls contains barrierSyncCalls

 barrierSyncProcesses=identifyNextBarrierSynchronizatio

 Processes(T);

 else if listOfSyncCalls contains computationTaskSyncCalls

 computationSyncProcesses= 
 identifyNextSynchronizedParallelProcesses(T);

 else  if  (listOfSyncCalls is empty)

 onlyComputationProcesses=identifySolelyComputation

 Processes(T);

 CreateMappingOfCompetingProcessesToCurrentProcessIn

 Thread(T,barrierSyncProcesses,computationSyncProcesses, 
 onlyComputationProcesses)

}
The Interference Partitioning Algorithm that identi-

fies competing Barrier Synchronization processes is an 
extension of the basic Interference Partitioning Algo-
rithm [16] that deals only with Computation Task Syn-
chronization calls.  The algorithm considers an abstract 
view of the multithreaded program as a Message Se-
quence Chart(MSC) as shown in Fig.1.a. The first thread 
T1 may be considered a reference thread T for which 
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WCET is being estimated and with other threads com-
peting for shared resources such as the shared instruc-
tion cache. The same procedure is applicable for each 
and every thread(as a reference thread). The Interfer-
ence Partitioning algorithm uses thread T as the argu-
ment or input and the competing process set is deter-
mined for each process in T. The algorithm is applied 
on each thread to estimate the worst case latency in 
accessing shared instruction cache with competition 
of access from other threads. A benchmark program 
is considered to explain the estimation of worst case 
latency in accessing shared instruction cache which in 
turn is used in WCET estimation of each thread. Fig.1.a. 
shows generic structure of a benchmark multithreaded 
program with functions from Malardalen benchmark 
programs[18]. The Control Flow Graph (CFG) of each 
thread is constructed from the assembly code of the 
multithreaded program. After constructing individual 
CFGs of threads, the procedural call graph of the pro-
gram is traversed to construct a global flow graph 
called Transformed Control Flow Graph (TCFG).

The existing approaches to determining conflict set in 
accessing shared instruction cache during the WCET 
analysis of a multi-threaded program are not quite 
exploiting the order and concurrency information be-
tween regions of code in threads [10] [13]. The Interfer-
ence Partitioning algorithm uses the order and concur-
rency information inferred from partial order of execu-
tion of threads. As a consequence, a larger conflict set 
is used  while accessing shared instruction cache when 
partial order between threads is not used. On the con-
trary, conflict set that Interference Partitioning algo-
rithm uses, by exploiting partial order information be-
tween threads, is only a subset of the conflict set used 
without partial order information.

The instruction sequence of BSP2_2 and BSP2_3 in Fig.1.b 
is shown in Fig. 2. In the case of IP algorithm, conflicts 
arising for any instruction Ii_2 in BSP2_2 are from any in-
struction in BSP2_3 ,mapped to the same cache set Sl. In 
contrast, in existing approaches [10][13], conflicts are 
from all the instructions in the entire program region. 
In Fig. 2. the same is shown for instruction Ik_2 in BSP2_2. 
The parallel process or code region BSP2_3 is a subset of 
the entire code region and hence the conflict set gen-
erated using partial order information is smaller.

Let BSPm_1 is the region of code in T1 between barrier 
sync lines i and i+1. Fig. 3. shows CFG of a simple bar-
rier synchronization parallel process BSPm_1 along with 
Cache Hit and Miss Classification table (CHMC) of all 
instructions in BSPm_1 following L2 cache analysis. The 
instruction I2_1 in BSPm_1 is categorized as AH in L1 in-
struction cache memory. Therefore, I2_1 will never ac-
cess shared L2 instruction cache. The instruction I7_1 
in BSPm_1 is categorized as AH in L2 instruction cache 
memory. Therefore, I7_1 will be affected by accesses to 
instructions made by threads running on other cores 
referred to as conflicts. Let BSPm_1 is the region of code 
in Ti between barrier sync lines i and i+1. 

Fig. 2. Conflict Region for Existing approaches and 
IP Algorithm

Definition of conflicts in IP Algorithm

The conflicts for an instruction I accessed by thread  
Ti, mapped to cache set Sl, that belongs to any barrier 
synchronization parallel process BSPm_1 are from the in-
struction set {I1’, I2’, ..., Ip’}, mapped to same cache set 
Sl  and that belongs to competing processes of BSPm_1.

Fig. 3. Control Flow Graph of BSPm_1

In the existing approaches, the conflicts for an in-
struction I in Ti mapped to cache set Sl is from entire 
program region of Tj mapped to same cache set Sl. 
For example, as shown in Table 2, the conflicts for in-
struction I13_1 in T1 mapped to cache set s1 in shared 
L2 instruction cache are from all the instructions in T2 
mapped to same cache set s1. In IP Algorithm, the con-
flicts for any instruction are obtained based on partial 
order information derived using barrier synchroniza-
tion primitives. Let BSPm_1 and BSPn_2 are barrier syn-
chronization processes that belong to the same barrier 
region in threads T1 and T2 respectively. Therefore, the 
conflicts for instruction I13_1 in Fig.3. of barrier synchro-
nization parallel process BSPm_1 of T1 mapped to cache 
set s1 in shared L2 instruction cache are from instruc-
tions {I1’, I2’, ..., Ip’}  in BSPn_2 that belongs to competing 
process in T2 mapped to same cache set s1.

IP algorithm performs inter thread shared instruction 
cache analysis by considering conflicts only from the 
instructions in barrier synchronization parallel process-
es BSPn_2 that run parallel with BSPm_1. Based on those 
analyses, the age of each instruction is updated.
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The Age Update Function (AUF) for any instruction I 
in shared instruction cache analysis is

AUF:Age(I) = Age(I) + conflicts

If age of instruction I is greater than or equal to as-
sociativity of shared L2 instruction cache memory, then 
instruction I that is currently in cache memory is catego-
rized as NC for shared L2 instruction cache accesses. For 
example, the instruction I7_1 in Fig. 3. is categorized as 
AH following the application of AUF and I9_1 is catego-
rized as Not Classified (NC) as shown in Table 2 for IP al-
gorithm. The reduction of conflicts for each instruction 

leads to reduction in number of consolidated number 
of conflicts for each node which in turn leads to reduc-
tion in number of consolidated conflicts for a parallel 
process and finally leading to a reduction in consolidat-
ed number of conflicts of a thread in a multithreaded 
program. The above leads to precision improvement 
in statically estimating WCET for a multithreaded pro-
gram that may use barrier synchronization. This is made 
possible as an abstract view of parallelism in threads is 
not at whole thread level in our WCET analyser but at 
smaller process level which is arising from code in bar-
rier synchronization regions in threads.

Table 2. Number of conflicts and worst case latency

Instruction: 
Address

Cache Set 
Number Age

Number of Conflicts Cache Hit/Miss Classification Worst Case Latency in Clock Cycles

IP 
Algorithm

Existing 
Approaches IP Algorithm Existing 

Approaches IP Algorithm Existing Approaches

I7_1:400220 2 1 2 13 AH NC 7 37

I9_1:400230 3 1 3 13 NC NC 37 37

I11_1:400240 0 1 2 14 AH NC 7 37

I13_1:400250 1 1 3 14 NC NC 37 37

I15_1:400260 2 1 2 13 AH NC 7 37

I17_1:400270 3 1 3 14 NC NC 37 37

I19_1:400280 0 1 3 14 NC NC 37 37

I21_1:400290 1 1 3 14 NC NC 37 37

Number of Conflicts

As discussed, the conflicts for an instruction I in Ti, 
mapped to cache set Sl that belongs to BSPm_i, are from 
the set of instructions {I1’, I2’, ..., Ip’}, mapped to the same 
cache set Sl, which belongs to BSPn_j (i.e. competing 
process of BSPm_i in Tj.

Number of conflicts Caused  
by a Competing Thread 

The number of conflicts encountered by a node n 
in a barrier synchronization parallel process BSPm_i is 
the sum of number of conflicts encountered by each 
instruction {I1’, I2’, ..., It’} in n. Therefore, the number of 
conflicts of a barrier synchronization parallel process 
BSPm_i  is the sum of consolidated number of conflicts of 
each node {B1, B2, ..., Bk} in BSPm_i. Hence, the consolidat-
ed number of conflicts of a thread Ti is the sum of num-
ber of conflicts of each barrier synchronization parallel 
process {BSP1_i, BSP2_i,… BSPq_i} in Ti. It may however be 
noted that precision improvement in Worst Case La-
tency in accessing shared instruction cache takes place 
as the worst case execution time of each instruction, 
as simulated, becomes more precise due to reduction 
in conflicts. Thus, reduction in consolidated number of 
conflicts caused by a competing thread using IP algo-
rithm is just an indication of the superiority of the ap-
proach even when barrier synchronization is used.

As a consequence of reduced number of conflicts for 
instruction I, CHMC of I remains AH in shared L2 instruc-
tion cache that leads to reduced worst case latency of 
instruction. There are a few instructions having reduced 

number of conflicts with CHMC categorized as NC due to 
its age in shared L2 instruction cache that leads to maxi-
mum worst case latency of instruction. Table 3 shows 
the number of conflicts of an instruction I, node n con-
taining I, barrier synchronization parallel process BSPm_i 
containing node n and instruction I, thread Ti of I associ-
ated with its WCET for both approaches. 

Inst 
Id Parameters IP 

Algorithm
Existing 

Approaches

I7_1

Number of 
Conflicts

Instruction 2 13

Node 5 26

Barrier synchronization 
parallel process 21 109

Thread 511 4365

WCET in 
Clock Cycles

Instruction 7 37

Node 45 75

Barrier synchronization 
parallel process 2571 15300

Thread 2910490 3506290

I9_1

Number of 
Conflicts

Instruction 3 13

Node 5 26

Barrier synchronization 
parallel process 21 109

Thread 511 4365

WCET in 
Clock Cycles

Instruction 37 37

Node 45 75

Barrier synchronization 
parallel process 2571 15300

Thread 2910490 3506290

Table 3. Number of Conflicts and WCET of I7_1 and I9_1
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Number of conflicts as is being talked about is only an 
indirect pointer to precision improvement. WCET esti-
mate depends on better estimate of worst-case time for 
each instruction. Number of consolidated reductions in 
conflicts from a competing thread to shared instruction 
cache is an indication and explanation on why WCET es-
timate for a thread improves. It is also evident from Table 
3 that reduction in Number of conflicts of an instruction 
I does not necessarily leads to reduction in WCET of I. In 
this paper, L1 cache miss latency is assumed as 6 clock 
cycles and 30 clock cycles for L2 cache miss latency.

Conflict ratio

The next parameter considered to evaluate the per-
formance of IP algorithm is Conflict ratio. Conflict ratio 
of a node n in barrier synchronization parallel process 
BSPm_i computed for IP algorithm is always lesser than 
or equal to Conflict ratio of a node n in barrier synchro-
nization parallel process BSPm_i of existing approaches.

Definition of Conflict ratio 

Conflict ratio of a node n in barrier synchronization par-
allel process BSPm_i is calculated by dividing number of con-
flicts of a node n by the total number of instructions in n. 
Similarly, conflict ratio of a barrier synchronization parallel 
process BSPm_i in thread Ti is calculated by dividing num-
ber of conflicts of a barrier synchronization parallel process 
BSPm_i by the total number of instructions in barrier syn-
chronization parallel process BSPm_i. Likewise, conflict ratio 
for a thread Ti is calculated by dividing number of conflicts 
of a thread Ti by the total number of instructions in Ti.

Over Estimation Ratio of WCET

CMP-SIM simulator (a multi-core extension of simple 
scalar tool set [23]), used to evaluate the accuracy of 
the static analyzer experimentally. All the experiments 
are performed in 2-cores with different architectural 
parameters. The estimated WCET obtained using IP al-
gorithm is compared with the simulated WCET.

The simulated WCET of the program is highly un-
derestimated than actual WCET. The worst-case input 
of some benchmarks is difficult to obtain because of 
branching and other complex mathematical calcula-
tions. The over estimation ratio of existing approaches 
is computed as WCETExisting Approaches/WCETObserved WCET sim-
ilarly, overestimation ratio of IP algorithm is computed 
as WCET Interference Partition algorithm / WCET Observed WCET. 

Precision Improvement in Number of conflicts 

The reduction in number of conflicts is considered 
as one of the major parameters of performance evalu-
ation. The precision improvement in Number of con-
flicts is computed as ((Number of conflicts Existing Approaches 
- Number of conflicts Interference Partition algorithm) / Number 
of conflicts Existing Approaches) *100. The precision improve-
ment in number of conflicts varies from 60-90%, this is 
mainly due to minimal safe subset of conflicts from an 
interacting thread during the execution of an instruc-
tion in a reference thread. 

Precision Improvement in WCET 

The precision improvement in WCET is computed 
as ((WCET Existing Approaches - WCET Interference Partition algorithm) /
WCET Existing Approaches )*100. The precision improvement 
in WCET varies from 15-20%, this is due to shared L2 
instruction cache hits inside loops. Though there is a 
huge precision improvement upto 90 % in number of 
conflicts, the precision improvement in WCET is 20% 
and the reason for the same is discussed in section 3. 

3. RESULTS AND DISCUSSION

The simulator multi-core chronos [24] [25] is extend-
ed to incorporate Interference Partition Algorithm for 
barrier synchronization. Multi-core chronos tool is ex-
tended to make it aware of threads with synchroniza-
tion information, that is, to identify barrier synchroniza-
tion parallel processes to be used by the IP algorithm. 

Design of Simulator

Multi-core Chronos Simulator [24][25] is extended to 
keep track of the code regions in other threads that com-
pete for shared instruction cache through conflicts or 
interferences as an instruction in a thread T is being ac-
cessed from the shared instruction cache. WCET is being 
estimated for thread T and hence simulator needs to con-
sider shared instruction cache misses encountered during 
the simulation of execution of thread T due to competing 
instruction accesses by other threads from shared instruc-
tion cache. The code regions in other threads that compete 
for shared instruction cache are Barrier Synchronization 
Processes, if the code regions along with the instruction 
under access in T are engaged in barrier synchronization. 
The code regions may be synchronizing processes(tasks) 
in two or more  threads using calls to wait() and notify(). 
The code regions along with the instruction under access 
in thread T from shared instruction cache may be sim-
ply parallel processes without being engaged in any any 
form of synchronization. The Control Flow Graphs along 
with partial order information of the input multithreaded 
program are transformed into Hoare's CSP from which a 
Message Sequence Chart is visualized. Competing pro-
cesses for each instruction in a thread are computed by 
the Interference Partitioning algorithm and are fed as in-
put to the extended simulator.  The Interference Partition-
ing Algorithm aids the simulator determine an abstract 
set of competing accesses to shared instruction cache as 
an instruction in thread T is accessed. The simulator can 
decide whether an access is a shared instruction cache 
miss based on the abstract set of competing accesses. A 
simulator that does not use Interference Partitioning al-
gorithm handling barrier synchronization processes can 
only consider set of competing accesses to be the entire 
code regions of competing threads. On the contrary, our 
simulator based on Interference Partitioning Algorithm 
uses a much more precise set of competing accesses to 
shared instruction cache.

A simplified version of the typical multi-core architec-
ture is assumed where each core has a small private L1 
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cache and comparatively larger L2 instruction cache, 
shared by all the cores. The access latency of shared L2 
instruction cache is higher than that of L1 cache. The ex-
ecution time of a multithreaded program is increased by 
the impact of the interfering shared cache accesses run-
ning on other cores. Performing cache analysis for a mul-
tithreaded program on a multicore architecture statically 
is a non-trivial task. It is essential for a real-time embed-
ded application to obtain tighter WCET estimates pre-
cise analysis of latency due to accesses to shared cache. 
To evaluate the performance of existing approaches and 
IP algorithm, a few parameters are proposed and consid-
ered for analysis. The proposed parameters are 

•	 Number of conflicts

•	 Conflict ratio
•	 Overestimation ratio
•	 Precision Improvement in number of conflicts 
•	 Precision Improvement in WCET 

Number of Conflicts

Fig. 4. shows number of conflicts of benchmark pro-
gram for both IP algorithm and existing approaches. It 
is evident that number of conflicts in IP algorithm is al-
ways lesser than or equal to number of conflicts in the 
existing approaches due to reduced minimal subset of 
conflicting region. This leads to more precise latency 
computation for an instruction accessing shared L2 in-
struction cache memory.

(a)

(b)

(c) (d)

Fig. 4. Number of conflicts of benchmark program; a) of each instruction, b) of each node, c) for each 
Parallel Process, d) for various Approaches

Conflict Ratio

Consider that an instruction I in node n of barrier 
synchronization parallel process BSPm_i in Ti can have a 
maximum of x conflicts from interacting thread Tj for 
IP algorithm and let it be y for existing approaches and 

it is proved experimentally that x<=y. As shown in Fig. 
5.b., the conflict ratio of BSP2_1 is slightly higher than 
conflict ratio of other parallel process in T_i, this is due 
to the fact that the conflicts for BSP2_1 are from paral-
lel process having long calculation sequence and more 
number of branching statements.

(a)

(b)
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(c) (d)

Fig. 5. Conflict Ratio of multithreaded program; a) of a node, b) of a parallel process, c) of a multithreaded 
program, d) WCET of overestimation ratio

Overestimation Ratio of WCET

The main reason for reduction in overestimation 
ratio is due to impact of IP algorithm on architectural 
parameters of cache memory. IP algorithm reduces the 
number of conflicts that leads to a significant reduc-
tion in number of shared L2 instruction cache misses. 
Compulsory misses remain misses even with an infinite 
cache memory and possible way to reduce compulsory 
misses is by larger block size, but larger block size in-
creases conflict misses due to fewer cache lines/blocks. 

Fig. 6 .a. Block Size and Overestimation Ratio

Fig. 6. b. Associativity and overestimation ratio

Fig. 6. Impact of block size and associativity on 
overestimation ratio

Fig. 6.a. shows the impact of various block sizes on 
overestimation ratio of WCET. One possible way to 
reduce conflict Misses is to have n-way set associative 
mapping. In n-way where n>1, set associative mapping 

cache memory, each set has n cache blocks so there 
are less chances of conflict between two addresses 
mapped to same cache set. It is evident from Fig. 6.b. 
that for n-way set associative mapping where n>1, 
overestimation ratio is same. It is also observed that 
smaller block sizes do not take maximum advantage of 
spatial locality that results in a greater number of com-
pulsory misses as shown in Fig. 6. a. 

Precision Improvement 
in Number of conflicts and WCET  

Though there is a huge precision improvement up to 
90 % in reduction in number of conflicts, the precision 
improvement in WCET of a multithreaded program is 
only up to 20% which is still significant but not com-
mensurate with the former. The reason for the same is 
discussed in this subsection. Significant improvements 
are observed when barrier synchronization parallel 
process size is considerably greater than that of L1 
cache size. This is because under the stated condition, 
interferences to shared instruction cache from compet-
ing processes are significantly less than those from in-
teracting threads. This is a direct consequence of static 
identification of barrier synchronization parallel pro-
cesses in interacting threads. If the size of a barrier syn-
chronization parallel process in a thread is similar to the 
size of L1 instruction cache, then the need to use shared 
instruction cache may be quite less for the execution 
of the barrier synchronization parallel process in the 
thread. WCET precision improvement varies based on 
cache architectural parameters and benchmark charac-
teristics. In Table 4, a few more benchmark results are 
shown by varying L1 cache size. Greater the number of 
threads, higher the number of conflicts, causing more 
cache misses, resulting in an increase in WCET estimate 
with greater imprecision. In contrast, the increase in 
WCET estimate using IP algorithm remains smaller by 
a fraction when compared to existing approaches. For 
the benchmarks when run on for 4-core architecture, 
IP algorithm gave lower WCET estimate over existing 
approaches, with the average precision improvement 
of 10%. It is noticed that, as the degree of parallelism in 
threads increases, there is reduction in percentage of 
precision improvement.
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Table 4. Precision Improvement in Number of conflicts and WCET

Test Cases Benchmarks Characteristics L1 cache Size Precision Improvement in 
Number of Conflicts (%)

WCET (Precision 
Improvement %)

TC1 Inner loop dependent on outer loop,  
Array and Matrix calculation

256 bytes 65.89% 19.58%

512 bytes 60.1% 16.4%

1 KB 55.8% 15.7%

TC2
Input dependent loops, Nested IF statement, 

Long calculation sequence, Automatically 
generated code

256 bytes 91.38% 21.8718%

512 bytes 88.25% 18.1%

1 KB 80.1% 16.8718%

TC3 Input dependent loops,  
Automatically generated code

256 bytes 92.69% 22.20%

512 bytes 88.6% 19.7%

1 KB 82.4% 16.8%

TC4 Multiple calls to same function,  
Nested Function calls

256 bytes 88.57% 24.6%

512 bytes 83.9% 21.5%

1 KB 78.2% 20.12%

4. CONCLUSION

Worst Case Execution Time Analysis of real-time em-
bedded applications is a challenging task. In this paper, 
Interference partitioning (IP) algorithm is extended to 
obtain minimal safe subset of interferences from inter-
acting threads using barrier synchronization primitives. 
Computation task specific synchronization inside bar-
rier synchronization processes is also identified by IP 
algorithm. Investigation of the effectiveness of the ex-
tended interference partitioning algorithm on bench-
mark programs adapted from Malardalen benchmark 
suite is performed. Parameters such as Number of 
conflicts, Conflict ratio, Overestimation ratio, Precision 
Improvement in Number of conflicts and Precision 
Improvement in WCET are proposed for performance 
evaluations. There is a huge precision improvement 
upto 90 % in reduction in number of conflicts and the 
precision improvement in WCET is upto 20% due to IP 
algorithm.
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