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Abstract – Brain-Computer Interface (BCI) is a new technology that uses electrodes and sensors to connect machines and computers 
with the human brain to improve a person's mental performance. Also, human intentions and thoughts are analyzed and recognized 
using BCI, which is then translated into Electroencephalogram (EEG) signals. However, certain brain signals may contain redundant 
information, making classification ineffective. Therefore, relevant characteristics are essential for enhancing classification performance. 
. Thus, feature selection has been employed to eliminate redundant data before sorting to reduce computation time. BCI Competition 
III Dataset Iva was used to investigate the efficacy of the proposed system. A Smart Bagged Tree-based Classifier (SBT-RF) technique is 
presented to determine the importance of the features for selecting and classifying the data. As a result, SBT-RF is better at improving 
the mean accuracy of the dataset. It also decreases computation cost and training time and increases prediction speed. Furthermore, 
fewer features mean fewer electrodes, thus lowering the risk of damage to the brain. The proposed algorithm has the greatest average 
accuracy of ~98% compared to other relevant algorithms in the literature. SBT-RF is compared to state-of-the-art algorithms based on 
the following performance metrics: Confusion Matrix, ROC-AUC, F1-Score, Training Time, Prediction speed, and Accuracy.

Keywords: Brain-Machine Interface; Bagged Trees; Classification; Feature Selection; Optimization; Random Forests 

1. INTRODUCTION

A BCI uses electrodes or sensors to interface machines 
with the human brain [1] based on neurosciences [2]. 
BCI receives and transmits electrical signals, which can 
help doctors to discover more information about brain 
issues and diseases like stroke to use in rehabilitation [3], 
[4]. It can also simulate a human brain to enhance ma-
chine learning and control objects as natural parts of its 
body representation[5]–[7]. BCI helps the medical field & 
health care and plays a crucial role in several areas, such 
as entertainment, education, marketing, and automated 
control [8]–[10]. Freely available datasets relevant to BCI 
can be used to test the suggested technique. 

One of these datasets is BCI competitions. The Brain-
Computer Interface (BCI) Competition was estab-
lished to evaluate signal processing and classification 
methods for BCIs.  BCI Competition III dataset IVa, five 
healthy subjects' brains activated for some MI tasks, 
namely, "aa," "al," "av," "aw," and "ay," were recorded [11]. 
This recording was taken using Brain Amp amplifiers 
and a 128-channel Ag/AgCl electrode cap from Electro-
cerebral Inactivity (ECI) and 118 channels in those five 
healthy subjects by putting 118 electrodes internation-
al 10/20 system [12].

The feature selection algorithm is an important pre-
processing mathematical stage to decrease data size by 
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reducing the dimension of the data set by removing ir-
relevant and unnecessary data and selecting the most 
suitable properties for the data categories. In addition, 
feature selection increases speed and accuracy, thus ob-
taining high performance [13], [14]. Feature selection 
methods can be widely categorized into filter, wrapper, 
and embedded methods[15], [16]. For example, RF is clas-
sified as embedded feature selection because it combines 
wrapper and filters' positive aspects such as high speed 
and high accuracies [17] proposed by Breiman [18].

Data is typically classified into a class or category via 
classification algorithms. There are three types of clas-
sification: binary classification, multiclass classification, 
and multilabel classification. Binary classification tech-
niques are used to classify datasets with only two class-
es: normal and abnormal states, commonly referred 
to as "class 0" and "class 1," respectively. Datasets with 
more than two classes are classified using multiclass 
classification techniques. Some binary classification 
techniques can also be utilized for multiclass classifica-
tion. Finally, multilabel classification techniques classify 
datasets with two or more classes, with one or more 
class labels predicted for each input [19], [20].

The selected features are classified using the Bagged 
Trees algorithm (BT). Researchers bolstered weak classi-
fication accuracies with a combination of classifiers, like 
bagging or kernel additions. A bagging algorithm com-
bines multiple classifiers (Ensemble) proposed by Brei-
man. Bagging is a way to make the poor classifier bet-
ter than the first by sampling the dataset into bootstrap 
samples to prevent the classifier from getting overfitted 
[21], [22] by learning every classifier individually and 
collecting the votes of the classifiers. The class with the 
highest number of votes is the winner. Bagging the deci-
sion tree will produce the BT algorithm [23]–[25].

Based on the details listed above, SBT–RF algorithm 
has been built from the Random Forests (RF) algorithm 
to choose dataset features and then apply the BT algo-
rithm to classify the selected features. As a result, the 
proposed algorithm outperforms all different algo-
rithms in accuracy testing.

The main contributions of this paper are:

•	 Delete superfluous channels by using RF to se-
lect features. 

•	 Bagging the decision trees produces the BT clas-
sifier that will classify the dataset.

•	 Reducing the computational cost and time re-
quired to train and predict BCI datasets classes.

This paper is structured as follows: Section 2 covers 
the relevant work and emphasizes the pros and cons of 
each given input, Section 3 presents the main intend-
ed achievement of solving the previously mentioned 
problems through SBT-RF, Section 4 consists of dataset 
description, the used performance metrics and the ma-
chine results obtained. Finally, section 5 discusses the 
conclusion.

2. RELATED WORK 

Literature on machine learning and feature selec-
tion application to BCI models has increased in recent 
years. For example, Md.A.M. Joadder et al. (2019) [26] 
developed a method to classify mental states for an 
SI-based BCI system. First, they applied several feature 
extraction techniques; Katz Fractal Dimension (KFD), 
Sub-band Energy, Log Variance, and Root Mean Square 
(RMS). After that, they used the obtained features as in-
put to Linear Discriminant Analysis (LDA) classifier, and 
the best average accuracy value is 84.35% by KFD with 
LDA. However, this algorithm needs a large number of 
channels to classify well. 

Yongkoo Park et al. (2019) [27] proposed a new meth-
od; Local Region Frequency Optimized Common Spa-
tial Pattern (LRFCSP). The features are extracted from 
the best local regions by applying Variance Ratio Dis-
persion Score (VRDS) and Interclass Feature Distance 
(ICFD) techniques to optimize CSPs. Unfortunately, 
with a mean classification accuracy of 92.93%, The ap-
proach is ineffective when classifying tiny samples. 

  Amin Hekmatmanesh et al. (2020) [28] proposed a 
technique to enhance a common spatial pattern algo-
rithm to recognize and classify BCI Competition III da-
taset IVa by combining four different algorithms. Those 
were Kernel Linear Discriminant Analysis (KLDA), the 
Kernel Principal Component Analysis (KPCA), the Soft 
Margin Support Vector Machine (SSVM) classifier, and 
the Generalized Radial Bases Functions (GRBF) to cre-
ate methods called DFBCSP DSLVQ SSVM GRBF with an 
average accuracy of 92.70%. Still, this method increases 
the error ratio for multiclass.

Sahar Selim et al. (2020) [29] compare feature rec-
ognition techniques; RMS, Renyi entropy, Shannon 
entropy, Katz fractal dimension, and CSP to minimize 
the number of features used as input to the classifier. 
The classifiers they used are Support Vector Machine 
(SVM) and Linear Discriminant Analysis (LDA) as a clas-
sifier, and the best average accuracy among all those 
algorithms is 79.46%. Furthermore, Renyi entropy with 
LDA and SVM achieved reasonable accuracy with high 
computational speed, which executes faster than CSP 
in computational time but with lower precision.

Yao Guo et al. (2020) [4] proposed two methods. The 
first is the Filtered Band Component Regularized Com-
mon Spatial pattern (FCCSP) to increase the robustness 
of CSP against the small samples by reducing estima-
tions and adding priorities to the spatial filter.  The 
second is Minimum Redundancy Maximum Relevance 
(mRMR) to discard unnecessary features and use the 
rest as input to LDA Classifier, and the highest average 
accuracy obtained was by FCCSP (82.01%). However, 
this approach may not perform well with multiclass 
motor imagery tasks.

Wenlong Hang et al. (2020) [30] proposed a new 
framework that includes a Support Matrix Machine 
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(SMM) as a core part of a deep stacked network to 
build a Deep Stack Support Matrix Machine (DSSMM). 
The framework has been applied to BCI competition III 
dataset IVa and performs effectively with feed-forward 
with an average accuracy of 83.68%. On the other 
hand, executing this method takes a high computa-
tional time.

Research gap: In light of the studies mentioned 
above, it appears that most of these methods suffer 
from the high amount of time spent versus poor qual-
ity in large or small sample settings. Furthermore, they 
have relatively high error margins when attempting to 
classify datasets. Table 1 summarizes the pros and cons 
of these methods.

Table 1. Summaries previously discussed algorithms focusing on various pros and cons

Author Method Mean 
Accuracy

No. of 
Channels Pros Cons

Md.A.M. Joadder et 
al. [26] Katz + LDA 84.35% 118 - This algorithm needs a large number of channels 

to classify well.

Yongkoo Park et 
al. [27] LRFCSP (92.93±3.99) 

% 18 Performs well with 
large sets

This method obtains poor performance when 
classifying a small sample set.

Amin 
Hekmatmanesh et 

al. [28]

DFBCSP DSLVQ 
SSVM GRBF 92.70% 118 Performs well with 

binary classes
This method increases the error ratio for 

multiclass.

Sahar Selim et al. 
[29] CSP+LDA 79.77% 18 Executes fast Low on accuracy.

Yao Guo et al. [4] FCCSP 82.01% 118 Performs well with 
binary classes

This approach may not perform well with 
multiclass motor imagery tasks.

Wenlong Hang et 
al. [30] DSSMM 83.68% 118 - High computational time

3. MATERIALS AND METHODS  

There are four components to a BCI: Data collection, 
Preprocessing, Feature selection, and classification.

3.1. DATA COLLECTION

The BCI Competition III Dataset Iva and other bio-
medical datasets have been used to evaluate the effi-
ciency of the proposed approach.

3.1.1. BCI Dataset

This BCI Competition III Dataset IVa contains Motor 
imagery (MI) tasks of five healthy subjects, namely, 
"aa," "al," "av," "aw," and "ay" [31], which are recorded. 
The EEG data consists of three classes (right hand(R), 
Left hand (L), and foot (F)) [32]. Only cues for the classes 
"right hand" and "foot" were provided. There were two 
types of visual stimulation. The first type, where targets 
were indicated by letters appearing behind a fixation 
cross (which might motivate a little bit of target-cor-
related eye movements). The second and (2) where a 
randomly moving object indicated targets (inducing 
target-uncorrelated eye movements). This dataset was 
acquired from the participants seated on a chair well 
relaxed. Visual cues were displayed for 3.5 s, during 
which the subject had to perform the MI tasks; left or 
right hand and foot [33], as shown in (Fig. 1).

Brain Amp amplifiers, an ECI 128-channel Ag/AgCl 
electrode cap, and 118 electrodes were used [34] as 
defined by the international 10/20 system, as shown in 
(Fig. 2). The BCI Competition III Dataset Iva and other 
biomedical datasets have been used to evaluate the ef-
ficiency of the proposed approach.

Fig 1. Procedure timeline.

Fig. 2. 118-channel positions

The EEG segments representing the MI part were 
separated from the dataset. For that reason, the mark-
er's position that indicated the start of 280 cues and 
the actuality that each movement was 3.5 s long had 
been utilized. Thus, 280 EEG segments were obtained 
for each subject toward the finish of this procedure, as 
described in Table 2.
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Among 280 trials

Subject aa al av aw ay

Size of data with two classes (RH and RF) 298458 × 
118

283574 × 
118

283042 × 
118

282838 × 
118

283562 × 
118

Number of trials considered as a training trial with the class label 168 224 84 56 28

Number of trials considered as a testing trial without a class label 112 56 196 224 252

Table 2. Dataset trials.

The EEG segments representing the MI part were 
separated from the dataset. For that reason, the mark-
er's position that indicated the start of 280 cues and 
the actuality that each movement was 3.5 s long had 
been utilized. Thus, 280 EEG segments were obtained 
for each subject toward the finish of this procedure, as 
described in Table 2.

3.2. SIGNAL PREPROCESSING 

Raw EEG data are cluttered with noise and artifacts. 
Signals are preprocessed to remove artifacts. Among 
the functions are artifact rejection, channel selection, 
and baseline filtering. A Butterworth bandpass filter of 
the fifth order can be used in this case. Preprocessing 
of the signals is not our primary objective in this paper.

3.3. FEATURE SELECTION

Choosing features is a critical part of designing a ma-
chine-learning model. As well as helping to distinguish 
relevant from irrelevant attributes, it decreases the di-
mensionality of the original dataset, which helps im-
prove performance. Furthermore, the selection of rel-
evant attributes helps increase learning performance. 
The application of feature selection allows models to 
be interpreted after a short training period, which is es-
sential for improving brain-computer interfaces based 
on motor imagery [35]. The RF explains the significance 
of each feature [18].

Feature selection using the RF algorithm has two 
targets [36], [37]–[41] first to discover highly related 
feature variables and find features with comparatively 
little data and better capacity to communicate antici-
pating results. An evaluation feature is usually valued 
according to two measures: the Gini index, also known 
as the Gini coefficient or the Gini impurity. It indicates 
the likelihood that a variable will be wrongly classified 
when selected at random. The second measure is the 
error rates of OOB, as shown in Algorithm 1. If z is the 
total number of features {x1, x2,……. xz } then the par-
ticular procedures to calculate feature importance for 
every xj as follows:

•	 Applying the bootstrap method to the original 
training dataset creates stochastic sample sets K 
by fetching them for classification or regression. 
Then, send them back to the original dataset to 
create another stochastic sample set, and every 
time this procedure happens, it makes an OOB 
sample for the unsampled data.

•	 mtry features (mtry ≤ n) are haphazardly extricated 
at every node of every tree in the RF algorithm 
as a randomly produced feature subset by as-
certaining the data contained in each feature 
and calculating it. Feature with the best possible 
classification capability is chosen among the mtry 
features to split the node, which makes decision 
trees more diverse.

•	 Feature importance can be calculated by the 
Gini index as follows: For each feature xj The Gini 
index value can be calculated by getting the av-
erage of the Gini index change amount before 
and after node impurity gets split in whole deci-
sion trees of the RF algorithm as shown in (Fig. 
3). The Gini index can be calculated as follows 
[42],[43], [38]:

(1)

Where GIm refers to the Gini index of node m, and K 
refers to K-categories, and Pmk refers to the category 
k proportion in node m. xj the amount of Gini index 
change calculates the feature importance value at 
node m before and after node m gets split.

(2)

MVI represents the variable importance. GIlrepre-
sents the Gini index of the left branch and GIr represent 
the Gini index also but for the right branch. 

Feature xj in decision tree I and belongs to set M, the 
importance of this feature [18],[44]:

Let N be the number of trees that are created in RF, 
then:

(3)

(4)

Normalize the whole scores of feature importance by:

Algorithm 1: Random Forests 

1  for features xj , j = 1 to z do 

2     for each tree learner in sample k = 1 to |k| do 

3      Find all nodes m that use xj. 

(5)
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4 Obtain feature importance by calculating 
 impurity before and after splitting of xj using 
 the Gini index.

5    Aggregate the enhancements

6     end 

7      Aggregate the improvements of all the decision 
             trees to get feature importance of xj. 

8  end 

1  while developing tree

2       Calculate accuracy for OOB observations and 
 record the prediction

3  end 

4      Do premutation to xj 00B observations to 
            breakdown the relations between the target 
            and the permuted feature xj.

5  for each OOB observation

6     Calculate the accuracy and record the prediction 
            again

7  end 

8  Get the average of the performance reduction that 
        had been happened due to permute xj and utilize 
         it to measure the xj feature importance.

Fig. 3. RF algorithm process

3.4. CLASSIFICATION

A detailed explanation of the main algorithms is pro-
vided in this section.

3.4.1. Cart Decision Tree

The CART algorithm has been proposed by Breiman 
[42] to create generations of decision trees. The CART 
is a decision tree depending on binary methodology 
to generate a decision tree from the dataset [45]–[47], 
as shown in (Fig. 4). Using the CART as a classifier de-
pends on the Gini index. The Gini index is applied on 
each node of the tree to detect the effectiveness of the 
data attribute to choose where the effective split will 

be in the set to provide new subsets [21], [47], as pre-
sented in Algorithm 2. The smaller the Gini value of the 
attribute, the greater the purity of the node, and it will 
be chosen as the best one to do the splitting.  The  al-
gorithm is represented mathematically [43] as follows: 

D refers to a dataset, kth proportion sample of D

Pk (k=1,2…..|k|)

Gini(D) shows the probability between 2 classes that 
have been randomly chosen from D

(6)

Smaller the Gini value, the higher the purity. The Gini 
index of an attribute x can be obtained as follow:

(7)

Where Dv is a subset of D with tuples having value 
(v) For example, x*= arg minxϵA Gini_index(D,x).Where A: 
the candidate attribute set.

Fig. 4. CART decision trees

Algorithm 2: CART

1  if Number of Feature values=k Then 

2         Possible splits =k-1

3  end

4  for each feature(F) in Dataset(D)

5         while Split No. (SN)<k

6                 Find the best split (BS) using Gini Index

7         end

8                 Split the feature at BS
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9         while the Stopping criterion is not satisfied 

10               for each node(N)

11                  Find the node's best split (NBS) 
            using Gini Index 

12               end

13               Split the node at NBS

14       end

15  end

3.4.2. Classification Algorithm 

As Breiman [22] proposed, bagging is an algorithm 
that produces multiple versions of a predictor that can 
be aggregated. For example, aggregation averaging 
the outcome by bagging a regressor algorithm to pre-
dict a numerical value [48], [49]. 

Bagging a classifier algorithm is done by collecting 
the number of votes for each classifier version to pre-
dict the output class. Algorithm 3 shows how the bag-
ging algorithm works in steps on the dataset. First, the 
multiple versions are created by making frequent boot-
straps of the learning set, which will be used as new 
learning sets [50], [51], as shown in (Fig. 5).

In classification [22], [52] a predictor φ(x,L) predicts 
class label j ϵ {1,…,j}

(8)

The meaning of Q(j|x) is this: over many independent 
replicates of the learning set L, ϕ predicts class label j 
at input x with relative frequency Q(j|x) Let P(j|x) be the 
probability that input x generates class j. Then the like-
lihood that the predictor classifies the developed state 
at x correctly is

The total probability of the right classification is

where Px(dx) is the probability distribution of x

Please note this for any Q(j|x)

with equality only if

(9)

(10)

(11)

(12)

The predictor ϕ*(x)=argmaxiP(j|x) (defined as the 
Bayes predictor) conduces to the previous representa-
tion for Q(j|x) and achieves the highest possible correct 
classification rate:

(13)

Call ϕ  order correct at the input x if

(14)

It implies that if input x occurs more frequently than 
any other variable in class j, then ϕ also predicts class 
j at x more regularly than the others. An order-correct 
predictor is not always an accurate predictor. So, the 
aggregated predictor is:

The correct classification probability at x for the ag-
gregated predictor is:

(15)

(16)

I(.) refer to the indicator function. If ϕ is ordered cor-
rect at x, then the previous equation equalsmaxj P(j|x).

Let us assume that C is the set of all inputs x at which 
ϕ is correctly ordered, the expression for the proper 
classification probability of ϕA will be:

(17)

According to the previous equations, if the predictor 
has a good sensation to predict order correct for most 
inputs of x, then aggregation can convert it into an al-
most optimum predictor. In contrast to the numerical 
prediction situation, weak predictors can be converted 
into bad ones. Bagging unstable classifiers improve 
them [22].

Algorithm 3: Bagging 
1  Variables: OD: Original Dataset

 N: Number of bootstrap samples  
 L: Learning Algorithm  
 C*: Bagging ensemble classifier 

2  for j=1 to N

3 BSSj ← bootstrap sample from OD

4         Create Classifier Cj ←L(BSSj) 

5  end 

6  for each new instance, predict the class label 

7         

8  end

In machine learning, Cross-validation is a blind tech-
nique used frequently to enhance model prediction 
and reduce bias. The BCI dataset has been divided ran-
domly into k sets for each subject individually (k-fold 
cross-validation) [53]. In this study, 5-fold cross-valida-
tion has been used. One of these sets was utilized as a 
testing set, while the other four were used as training 
sets. This method is repeated five times, each time with 
a different set.

Previous work has suffered from weaknesses since it 
was designed as an independent algorithm. However, 
such defects can be overcome by combining different 
algorithms. Therefore, this work combines BT and RF al-
gorithms to perform better than operating individually.
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The BT algorithm reduces the pre-steps needed to 
obtain high-dimensional feature data, including di-
mension reduction and feature selections. Thus, from 
the speed evaluation perspective, the BT algorithm 
can speed up the process impressively while maintain-
ing the easiness of creating parallel methods and the 
simplicity of implementation. Furthermore, if things go 
wrong, it can fix the error, as balancing errors occur by 
unbalanced data sets or trying to reduce the impact of 
losing a huge part of features by maintaining accuracy 
despite the current condition.

On the other hand, the RF algorithm focus on getting 
the best feature selection possible by calculating the 
Gini index and OOB error, which leads to judging the 
importance of features and interaction among differ-
ent ones.

Fig. 5. Bagging process

In machine learning, Cross-validation is a blind tech-
nique used frequently to enhance model prediction and 
reduce bias. The BCI dataset has been divided randomly 
into k sets for each subject individually (k-fold cross-vali-
dation) [53]. In this study, 5-fold cross-validation has been 
used. One of these sets was utilized as a testing set, while 
the other four were used as training sets. This method is 
repeated five times, each time with a different set.

Previous work has suffered from weaknesses since it 
was designed as an independent algorithm. However, 
such defects can be overcome by combining different 
algorithms. Therefore, this work combines BT and RF al-
gorithms to perform better than operating individually.

The BT algorithm reduces the pre-steps needed to 
obtain high-dimensional feature data, including di-
mension reduction and feature selections. Thus, from 
the speed evaluation perspective, the BT algorithm 
can speed up the process impressively while maintain-
ing the easiness of creating parallel methods and the 
simplicity of implementation. Furthermore, if things go 
wrong, it can fix the error, as balancing errors occur by 
unbalanced data sets or trying to reduce the impact of 
losing a huge part of features by maintaining accuracy 
despite the current condition.

On the other hand, the RF algorithm focus on getting 
the best feature selection possible by calculating the Gini 
index and OOB error, which leads to judging the impor-
tance of features and interaction among different ones.

3.4.3. Smart Hybrid Algorithm

SBT–RF is implemented by combining the feature 
selection algorithm RF and classification algorithm BT 
to work with the BCI Data set. (Fig. 6) and Algorithm 4 
shows the SBT-RF mechanism, starting with preparing 
each subject's dataset until it gets classified with 5-fold 
cross-validation.

Fig. 6. SBT-RF mechanism
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Algorithm 4: SBT-RF
1 Variables: OOB: Out of bag
                         OD: Original Dataset
                         N: Number of bootstrap samples 
                         L: Learning Algorithm 
                         C*: Bagging ensemble classifier 
2 for each Subject 
3      for features xj, j = 1 to z do 
4         for each tree learner in sample k = 1 to |k| do 
5       Find all nodes m that use xj . 
6      Obtain feature importance by calculating 

 impurity before and after splitting of xj using 
 the Gini index.

7           Aggregate the enhancements
8         end 
9           Aggregate the improvements of all the 

 decision trees to the feature importance of xj.
10    end
11    while developing tree
          Calculate accuracy for OOB observations and 

 record the prediction
12    end 
13    Do premutation to xj OOB observations to 

 breakdown the relations between the target & 
 the permuted feature xj.

14    for each OOB observation
15        calculate the accuracy and record the 

 prediction again
16    end 
17        Get the average of the performance 

 reduction that had been happened due to 
  permute xj and utilize it to measure the xj  
 feature importance.

18     Train BT algorithm using the selected feature 
 with 5k-fold 

19    for j=1 to N 
20             BSSj ← bootstrap sample from OD
21             Create Classifier Cj ←L(BSSj) 
22    end 
23    for each new instance, predict the class label 

24             
25    end 
       Evaluate the model performance 
26 end

4. SIMULATION AND COMPUTER RESULTS 

This section has three parts. The first section de-
scribes the dataset and how it was prepared. The sec-
ond section discusses the performance metrics used. 
The final section displays the results of the proposed 
SBT-RF algorithm and other algorithms. 

4.1. PERFORMANCE METRICS 

Performance metrics indicate how the proposed 
method compares to each state-of-the-art algorithm, 
as shown in (Fig. 7).

Fig. 7. Performance metrics.

Confusion Matrix: A Confusion Matrix is a table fre-
quently used to specify the output of a classification 
model on a set of test data whose real values are known 
[54], [55]. It allows the performance of an algorithm to 
be visualized [56].

Accuracy and Misclassification rate equations are 
given as shown:

(18)

(19)

Where TP: True Positive, TN: True Negative, FP:  False 
Positive, FN: False Negative.

F1-Score: F1-Score is a technique to measure the per-
formance depending on the harmonic way between 
Precision and Recall to grant a balanced measure of the 
misclassified cases than the confusion matrix [56].

(20)

(21)

From equations (20), (21); F1-Score can be calculated 
as shown:

(22)

ROC-AUC: The Receiver Operating Characteristic 
Curve (ROC) is the plot that can show binary classifier 
performance as a function of the cut-off threshold be-
tween True positive rate (Sensitivity) and false positive 
rate (1-specificity) [57], [58]. Area Under Curve (AUC) 
supplies an overall performance measurement among 
every potential classification threshold [59].

Training Time: The overall time required for the mod-
el to learn. 
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Prediction Speed: The number of observations the 
machine learning model can produce per second.

4.2. COMPUTER SIMULATIONS AND RESULTS

The following section will describe the experiment 
that was conducted. First, putting several algorithms to 
use on BCI Competition III dataset IVa., then perform-
ing SBT-RF 50 times on each subject. 

This section will present and apply several algorithms 
to BCI Competition III dataset IVa. All these algorithms 
were tested with 5-fold cross-validations to ensure 
the data's variance and reduce the computation cost. 
However, the algorithm does not need more K-folds 
because the BT algorithm uses bootstrap sampling to 
prevent the machine learning model from overfitting 
by sampling the dataset into random sets and training 
every group alone [18], [22].

Table 3 contains the average results of 50 runs on the 
BCI-competition III dataset IVa using eight different al-
gorithms. The test was carried out using the paired de-
vice's resources. As the key performance indicators in 
our study, classification accuracy and F1-score in each 
run are calculated. Bolded values indicate the best val-
ues for each algorithm. The standard deviation (SD) was 
also calculated to evaluate the algorithm's stability.

Comparing several algorithms and evaluating perfor-
mance metrics on the models for each subject on the 
dataset are shown in Table 3. Regarding training time, 
some algorithms perform better, such as the Coarse Tree 
with all subjects at 38.8s. Others overcome in predicting 
observation per second like medium in (aa and av sub-
jects), Coarse Tree in (al, aw and ay subjects), and Fine 
Tree in (av and ay subjects). The best average prediction 
Speed value belongs to the Coarse Tree algorithm with 
180000 obs/sec, but the accuracy and F1-score for these 
algorithms were extremely low. Therefore, they are not 
reliable for the machine learning model. Although the 
BT algorithm did not achieve a high value in prediction 
speed and training time, this algorithm dominates the 
others in accuracy and F1-score for all subjects with 
a mean accuracy of 97.64% farther than Deep Neural 
Network (DNN) by 15.31% and a mean F1-score 97.58% 
farther than DNN by 14.1%. While dealing with BCI data-
sets, the most important factor is reliability, so according 
to the results, the BT algorithm has been chosen to be a 
classification algorithm for this research. Now BT algo-
rithm has good accuracy and F1 score. However, with av-
erage training time and prediction speed, a dimension 
reduction is made using feature selection to enhance 
computation cost, considering the same accuracy and 
F1-score or better values.

Table 3. Reported performance metrics.

Algorithm Performance Metrics
Subjects

Mean
aa al av aw ay

Tree

Accuracy (%) 64.002 68.019 82.9 74.801 91.701 76.2846

F1 score (%) 58.4 61.286 71.831 74.504 94.179 72.04

Training Time (sec) 139 200 73 47 14 94.6

Prediction Speed (obs/sec) 180000 180000 170000 140000 180000 170000

Standard deviation (±%) 0.227 0.178 0.159 0.193 0.143 0.18

Medium Tree

Accuracy (%) 60.602 60.408 70.904 66.018 85.409 68.6682

F1 score (%) 61.025 59.406 68.702 68.475 90.175 69.5566

Training Time (sec) 105 120 44 27 10 61.2

Prediction Speed (obs/sec) 190000 200000 170000 140000 170000 174000

Standard deviation (±%) 0.157 0.108 0.112 0.15 0.127 0.1308

Coarse Tree

Accuracy (%) 57.702 56.706 67.304 60.009 76.802 63.7046

F1 score (%) 59.921 42.751 61.206 66.775 84.794 63.0894

Training Time (sec) 65 73 31 18 7 38.8
Prediction Speed (obs/sec) 180000 240000 150000 150000 180000 180000

Standard deviation (±%) 0.124 0.096 0.099 0.117 0.13 0.1132

Ensemble boosted trees

Accuracy (%) 66.015 65.306 79.305 72.4 93.411 75.2874
F1 score (%) 60.233 64.53 62.165 73.789 95.401 71.2236

Training Time (sec) 2604 3551 893 1385 194 1725.4

Prediction Speed (obs/sec) 78000 70000 69000 140000 99000 91200

Standard deviation (±%) 0.111 0.057 0.084 0.111 0.126 0.0978

Ensemble bagged trees

Accuracy (%) 96.615 99.109 98.902 95.352 98.261 97.6478
F1 score (%) 96.397 99.475 98.714 96.614 99.018 98.0436

Training Time (sec) 1652 2208 368 282 72 916.4

Prediction Speed (obs/sec) 17000 21000 37000 27000 42000 28800

Standard deviation (±%) 0.128 0.06 0.113 0.146 0.122 0.1138

Ensemble subspace 
Discriminant

Accuracy (%) 76.706 72.608 81.302 89.008 91.802 82.2852

F1 score (%) 70.123 72.65 68.803 89.357 94.322 79.051

Training Time (sec) 929 1207 163 202 47 509.6

Prediction Speed (obs/sec) 4900 4300 7000 6500 7800 6100

Standard deviation (±%) 0.208 0.167 0.173 0.162 0.223 0.1866
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Ensemble RUSboosted 
trees

Accuracy (%) 60.709 60.576 72.905 70.808 91.206 71.2408

F1 score (%) 65.163 59.512 67.086 68.598 93.783 70.8284

Training Time (sec) 3131 4922 771 719 167 1942

Prediction Speed (obs/sec) 89000 83000 66000 100000 110000 89600

Standard deviation (±%) 0.126 0.112 0.118 0.116 0.146 0.1236

DNN

Accuracy (%) 76.24 92.36 64.57 87.68 90.83 82.336

F1 score (%) 78.24 92.42 67.57 89.62 91.83 83.936

Training Time (sec) 1199 990 115 244 212 552

Prediction Speed (obs/sec) 115400 125200 139300 118500 145100 128700

Standard deviation (±%) 0.058 0.06 0.086 0.071 0.065 0.0682

Algorithm Performance Metrics
Subjects

Mean
aa al av aw ay

Boxplots in (Fig. 8) and (Fig. 9) reveal that the data-
set's median is too near to its median after RF. The RF 
algorithm chose the right characteristics to describe 
the data well and rejected redundant ones [60], [61].

Fig. 8. 118-channel boxplot for BCI III Dataset IVa

Fig. 9. RF algorithm selected channels boxplot for 
BCI III Dataset IVa

The second part of the experiment is executing SBT-
RF on each subject 50 times. Again, two primary per-
formance metrics (classification accuracy and F1-Score) 
were deployed to each run. (Fig. 10) and (Fig. 11) show 
that the SBT-RF algorithm is better than the BT algo-
rithm's accuracy and the high F1 score, as shown in Table 

4. Furthermore, (Fig. 12) delivers a decrease in training 
time (4582 to 1209) sec, while (Fig. 13) shows an increase 
in average prediction speed (28,800 to 70,600) obs/sec. 
Furthermore, the rate was increased by 12 times, the risk 
was limited (by reducing the electrodes) [62], and the 
computational and financial costs were decreased.

Table 4. SBT-RF vs. BT
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BT

aa 95.48 96.54 96.001 96.615 1652 17000 0.9

al 99.24 99.00 99.1 99.109 2208 21000 1

av 98.16 98.77 98.461 98.902 368 37000 1

aw 96.07 95.14 95.611 95.352 282 27000 0.9

ay 99.66 97.85 98.748 98.261 72 42000 1

SBT-RF

aa 95.91 97.04 96.397 97.003 475 46000 1

al 99.52 99.41 99.475 99.498 470 82000 1

av 98.48 98.96 98.714 99.073 133 92000 1

aw 97.07 96.18 96.614 96.512 98 59000 0.9

ay 99.69 98.39 99.018 98.682 33 74000 1

Fig. 10. Average accuracy for BT vs SBT-RF
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Fig. 11. Average F1-Score for BT vs SBT-RF

Fig. 12. Training time for BT vs SBT-RF

Fig. 13. Average prediction speed for BT vs SBT-RF

Author Method
Subject Results

aa al av aw ay Mean

Amin Hekmatmanesh et al. [28] DFBCSP DSLVQ SSVM GRBF 93.5% 98.57% 81.78% 93.57% 96.07% 92.70%

Sahar Selim et al. [29] CSP+LDA 79.46% 100% 57.14% 92.41% 69.84% 79.77%

Yao Guo et al. [4] FCCSP 72.32% 98.21% 68.87% 78.57% 92.06% 82.01%

Wenlong Hang et al. [30] DSSMM 75.89% 100% 76.53% 89.73% 76.19% 83.68%

Md.A.M. Joadder et al. [26] Katz + LDA 86.78% 90.35% 68.92% 92.14% 83.57% 84.35%

Yongkoo Park et al. [27] LRFCSP 98.93% 93.21% 81.79% 93.21% 97.5% 92.93%

Proposed Method SBT-RF 97% 99.49% 99.07% 96.51% 98.68% 98.15%

Table. 5. SBT-RF vs related works

Table 5 compares the proposed method SBT-RF with 
related studies that use different algorithms on the 
same data set. SBT-RF outperforms all related work for 
av, aw, and ay subjects by 99.1%, 96.5%, and 98.7%, 
respectively. However, the enhanced CSP + LS-SVM 
method shows better results only in aa with 3%. While 
CSP+LDA and DSSMM methods achieve better results 
only in al, SBT-RF achieves the highest accuracy with 
98.16% on average.

5. CONCLUSIONS 

BCI is an advanced approach that helps analyze and 
recognize human intentions and thoughts that are 
further transformed into EEG signals. However, it is be-
lieved that some signals detected from certain brain 
channels may contain redundant data that decreases 
the classification efficiency. Accordingly, feature se-
lection methods have been applied to evacuate the 
redundant data before the classification process to 
reduce computation costs. Furthermore, scientists usu-
ally combine different classifier combinations to over-
come weak ones to make the classification algorithm 
more accurate. A smart hybrid algorithm (SBT-RF) for 
classifying BCI datasets (SBT-RF) is proposed in this 
work. The proposed algorithm is implemented in two 
stages; firstly, the RF algorithm evaluates the features' 
importance to select the most useful features. Then, 
this algorithm (i.e., RF) measures the extent of each 
feature individually by calculating the lowest impurity 
using the Gini index and obtaining OOB error. The se-
lected features from the previous stage are inputs to 
the Ensemble BT classifier. Next, the BT classifier sam-
ples the processed "BCI Competition III Dataset IVa" 
into bootstrap samples, then classifies every sample in-
dividually using a decision tree. As a result, it prevents 
overfitting and collects the votes of the decision tree 
classifier to predict the class. It is revealed that the pro-
posed algorithm has the highest average accuracy of 
~98 % compared to other relevant algorithms reported 
in the literature.
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