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Abstract – Spectrum sensing is one of the key tasks of cognitive radio to monitor the activity of the primary user. The sensing accuracy 
of the secondary user is dependent on the signal-to-noise ratio of the primary user signal. A novel Multi-head Attention-based spectrum 
sensing for Cognitive Radio is proposed through this work to increase the detection probability of the primary user at a low signal-
to-noise ratio condition. A radio machine learning dataset with a variety of digital modulation schemes and varying signal-to-noise 
ratios served as a training source for the proposed model. Further, the performance metrics were evaluated to assess the performance 
of the proposed model. The experimental results indicate that the proposed model is optimized in terms of the amount of training time 
required which also has an increase of 27.6% in the probability of detection of the primary user under a low signal-to-noise ratio when 
compared to other related works that use deep learning.
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1. INTRODUCTION

Cognitive Radio (CR) [1] is introduced to mitigate 
the problems of spectrum scarcity and also to provide 
strategies for efficient communication owing to a huge 
increase in wireless traffic. Earlier studies on wireless 
traffic identified the underutilization of the available 
spectrum by licensed primary users (PUs). The idle time 
of PU transmission facilitates the unlicensed secondary 
users (SUs) to dynamically and opportunistically access 
the spectrum of PU without causing any interference 
to its transmission [2]. Through spectrum sensing the 
activity of the PU is monitored continuously by a SU to 
detect the spectral occupancy of the PU. 

The diverse studies published in the area show that 
the accurate detection of the PU by the SU is highly im-
pacted by the signal-to-noise ratio (SNR), fading, mul-
tipath, and shadowing effects [3]. Traditional spectrum 
sensing algorithms like Energy Detection [4-5], Cyclo-
stationary-based detection [6], and Eigen-value-based 
detection [7] have been published earlier in the litera-
ture. The effects of various types of fading, multipath, 
and shadowing on spectrum sensing have been inves-

tigated in [8-10]. The capacity of fading channels and 
the data transmission rate through these channels are 
extremely important for reliable communication be-
tween SU and PU [11]. Reliable, efficient, and secured 
data transmission over wireless channels requires 
physical layer security and a controllable wireless 
propagation environment [12-13]. The requirement of 
an optimal threshold value for different channel condi-
tions is the main drawback of traditional methods of 
spectrum sensing.

With the rapid advancement in technology and 
availability of a huge amount of data, Machine Learn-
ing (ML) based spectrum sensing algorithms are being 
implemented in place of traditional spectrum sensing 
techniques. In the ML-based approach, spectrum sens-
ing is a binary classification to detect the presence or 
absence of PU. The accuracy of detection of PU pres-
ence or absence is significantly impacted by the range 
of SNR on which the spectrum sensing is performed. 
Some of the observations on early implementations of 
the ML models for spectrum sensing are presented in 
[14-19]. 
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One of the limitations of the ML-based approach is the 
extraction of the appropriate features as test statistics for 
accurate decision making. While it is observed that Deep 
Learning  (DL) based approaches help to overcome this 
limitation as they automatically learn features from the 
network. DL-based techniques are further used to de-
tect patterns in various applications of natural language 
processing (NLP), computer vision, and signal process-
ing-related tasks for wireless communications. In recent 
times, DL-based architectures have gained popularity in 
the implementation of spectrum sensing algorithms. The 
various studies that cite DL architectures employ Convo-
lution Neural Networks (CNNs) for spectrum sensing.

Sandeep Kumar et al. [20] proposed a performance 
analysis of Cooperative Spectrum Sensing (CSS) over 
α–η–μ and α–κ–μ fading channels using a clustering-
based technique. The interesting findings in this model 
show the use of an energy feature vector.

Dimpal Janu et al. [21] proposed a novel graph convo-
lution network-based adaptive CSS in a cognitive radio 
network that handles dynamic channel conditions with 
multiple antennas experiencing different types of fading.

Dimpal Janu et al. [22] presented the performance 
comparison of machine learning-based multi-antenna 
CSS algorithms under a multi-path fading scenario. The 
CNN-based CSS method adopted in this model has ob-
tained intriguing results. 

Chang Liu et al. [23] proposed a Deep CM-CNN for 
spectrum sensing in cognitive radio that takes the 
covariance matrix as the input to CNN. The CM-CNN-
based test statistics generated in this model achieved a 
higher detection probability.

Youheng Tan et al. [24] implemented CSS based on 
CNN. Though the model has resulted in better perfor-
mance, its architecture is complex.

Surendra Solanki et al. [25] presented deep learning 
for spectrum sensing in cognitive radio and developed 
DLSenseNet architecture. The authors have not speci-
fied the threshold for detection probability, despite the 
model’s interesting results.

Jiabao Gao et al. [26] proposed DLDetectNet archi-
tecture. The model was not able to achieve the de-
sired probability of false alarm for various modulation 
schemes employed in this work.

Kai Yang et al. [27] proposed a blind spectrum sens-
ing method based on deep learning to handle low 
SNR scenarios using a one-dimensional CNN and long 
short-term memory (LSTM). At a low SNR value, this 
method has a low detection probability percentage.

Jiandong Xie et al. [28] proposed a DL-based spectrum 
sensing in cognitive radio using the CNN-LSTM approach. 
The range of SNR on which the probability of detection is 
performed was not properly specified in this work.

Since spectrum sensing is a signal processing-related 
application that handles time series data, Neural net-

work architectures that can handle and account for the 
chronological order of data are needed. DL-based ar-
chitectures such as Recurrent Neural Networks (RNNs) 
and LSTM are generally used in these applications. 
However, the issue of vanishing and exploding gradi-
ents plagues RNNs. There is a need for DL based archi-
tecture that will be unaffected by these gradients.

Of late Transformer based DL architecture became 
popular and is used in many NLP applications. An ar-
chitecture of a similar nature has been designed and 
deployed for this signal processing related spectrum 
sensing task. The proposed work is motivated by the 
self attention approach implemented in [29], which is 
based on an attention mechanism that primarily at-
tends to those parts of the input that would signifi-
cantly affect the model’s prediction.

This paper proposes Multi-Head attention based 
Spectrum Sensing (MHASS) for CR. An attention func-
tion is applied to the input sequence multiple times in 
parallel in Multi-Head attention (MHA) based on the 
number of heads. The output of the multiple attention 
blocks is concatenated to get the overall attention func-
tion. The performance metrics considered in this work 
are the probability of detection (Pd) which is similar 
to the true positive rate, the probability of false alarm 
(Pf ) which is similar to the false positive rate, precision 
(Pr), the area under the curve (AUC) and F1 score (F1).
The proposed MHASS model is trained, validated, and 
tested on the signal sensed by SU over a wide range of 
SNR from -20 dB to 20 dB.

The main contributions of the proposed work are:

•	 Use of MHASS for the first time in the literature.
•	 Reducing the number of computations and the 

amount of time spent to train the model.
•	 Best performance metrics obtained at low SNR.

The forthcoming sections in this paper are organized as 
follows. Section 2 discusses the DL system model, section 
3 describes the proposed MHASS model, section 4 pres-
ents the experimental setup, section 5 analyzes the results 
& discussions and conclusions are presented in section 6.

2. DL SYSTEM MODEL

The DL system model for spectrum sensing is depict-
ed in Fig.1.It can be seen that the N observation vectors 
are utilized for spectrum sensing.

Fig. 1. DL System Model

Consider X(n) = {x1(n), x2(n), …, xM(n)}T, where M 
represents the signal’s sample length l, n=0,1,…, N-1, 
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(1)

Here R(n) denotes the PU signal samples vector, 
which also suffers from path loss and fading. W(n) is the 
noise samples vector and X(n) is the received SU ob-
servation vector. H1 denotes the PU presence and H0 
denotes the PU absence. 

The received observation vector consists of In-Phase 
(IP) and Quadrature Phase (QP) signal samples. The da-
taset of IP and QP samples is obtained from a Radio Ma-
chine Learning (RML) pickle file 'RML2016.10a_dict.pkl' 
[30] which is composed of eight digital modulations, 
multipath loss, Rician, and Rayleigh fading effects.  A 
noise vector having a similar length of signal samples 
is generated using the Additive White Gaussian Noise 
(AWGN) scheme. 

The real and imaginary parts of the SU observation 
vector are denoted as XI and XQ respectively. The re-
ceived complex signal with both real and imaginary 
parts is given by (2).

(2)

The energy of this received complex signal is calcu-
lated as given by (3).

(3)

To scale all the amplitude values of the signal sam-
ples to a similar magnitude, energy normalization is 
performed as given by (4).

(4)

In the training phase, the proposed MHASS model is 
trained on annotated data of the energy-normalized 
signal samples and noise samples such that the oc-
currence of signal samples can be considered as PU 
presence (Label=1) and the occurrence of only noise 
samples can be considered as PU absence (Label=0). 
The implementation details of the MHASS model are 
discussed in section 3.

3. PROPOSED MHASS MODEL

In the proposed model for spectrum sensing, MHA 
has been used on the input layer consisting of IP and 
QP samples along with the noise samples. It has been 
observed that MHA attends to only those parts of the 
input tensor which are used to compute the decision of 
PU presence or absence. The use of MHA facilitated the 
subsequent convolution layer to have pre-computed 
attention over the input convolution volume. As a re-
sult of this, the network converged in less number of 
epochs. The main operation involved in MHA was the 

Scaled Dot Product Attention followed by concatenat-
ing the attention functions obtained from multiple at-
tention blocks.

3.1. SCALED DOT PRODUCT ATTENTION

An attention function can be described as mapping 
a query (Q) and a set of key-value pairs K and V respec-
tively to an output. Q, K,  and V are matrices represent-
ing the input sequence. The output is computed as a 
weighted sum of the values, where the weight assigned 
to each value is computed by a compatibility function 
of the query with the corresponding key.

Query: The query Q is a feature vector of dimension 
m x n that describes the aspects being looked for in the 
input sequence.

Key: For each input element, a key K of dimension 
m x n is associated which is also a feature vector,  that 
can identify the elements for which attention has to be 
paid based on the query.

Value: For each input element, value vector V of 
dimension m x n, the output can be computed as 
a weighted sum of the values. Each value can be ac-
cessed using the key K.

The scaled dot product attention is shown in Fig.2.

Fig. 2. Scaled dot product attention

Parameters 
/ Hyper- 

parameters
Description Value

m Number of tokens in the input sequence 2 (I, Q)

n Dimensionality of hidden/ embedding layer 128

dk Dimension of Q.K and V 128

Q Query 2x128 matrix

K Key 2x128 matrix

V Value 2x128 matrix

dmodel Model dimension 128

h Number of attention heads 16

wq Query Transformation Matrix 128x128

wk Key Transformation Matrix 128x128

wv Value Transformation Matrix 128x128

denotes the nth received observation vector and xi(n) 
denotes the nth discrete time sample. 

The sensing decision in DL-based spectrum sensing 
has been formulated as a binary hypothesis as repre-
sented by (1).

Table 1. Parameters/ Hyperparameters 
of the MHA model
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The attention function performed on three matrices 
Q, K, and V of order m x n is given by (5).

(5)

In the proposed model, instead of the original input 
sequence, a parameterized form of attention has been 
used as given in (6).

(6)

The steps involved in scaled dot product attention are:

•	 Initialize the three matrices Q, K, and V.

•	 Compute the weight matrix by performing the dot 
product Q.KT.

•	 Apply the softmax on the scaled weight matrix and 
multiply it with V to calculate the attention func-
tion as (7).

(7)

3.2. MHA MECHANISM

In the MHA mechanism, instead of a single attention 
function, linearly project Q, K, and V to a lower dimen-
sion and perform attention in parallel on the projected 
versions of Q, K, and V.Concatenate the output from h 
individual attention functions and perform final linear 
projection.

Fig. 3 illustrates the block diagram representation of 
the MHA mechanism with Attn-1, Attn-2, …., and Attn-
h representing the attention functions of h individual 
heads respectively.

Fig. 3. MHA mechanism

The steps involved in the MHA mechanism are:

•	 Select the value of h as a factor of model dimen-
sion. The value of h in the proposed model is 16.

•	 Calculate the value of dk = dmodel / h.

•	 Perform the linear projection of Q, K, and V each of 
dimension 2xdk, h number of times.

•	 Calculate the individual attention functions Attn-1,  
Attn-2,…, Attn-h.

•	 Compute the overall attention function by concat-
enating the individual attention functions.

•	 The concept of MHA for h=2 is illustrated as follows:
•	 Calculate dk= dmodel / h =128/2=64
•	 Let Attn-1 and Attn-2 will be the individual atten-

tion functions and they are computed as (8).

(8)

•	 Concatenate Attn-1 and Attn-2 to compute the 
overall attention function.

3.3. ARCHITECTURE OF MHA

The architecture of MHA used for the experimental 
evaluation is shown in Fig. 4.

Fig. 4. Architecture of MHA

A 2 x 128 length sequence of the RML dataset serves 
as a training source for the input layer. Multi-Head at-
tention is applied on the input layer followed by addi-
tive attention of the MHA layer with the input layer. The 
MHA attention input is then fed to the convolution layer, 
where the entire network will be trained end to end and 
validated on the dataset to build a well trained model as 
shown in the DL system model presented in section 2. 
The well trained model is tested on unseen samples of 
the dataset to predict the sensing decision of PU pres-
ence or absence at the output layer. The hyperparam-
eters of the convolution layer are listed in Table 2.

Table 2. Hyperparameters of the convolution layer

Hyperparameters Value

Number of filters in the convolution layer 64

Kernel size of convolution layer 5x5

Dropout ratio 0.25

Max Pooling kernel size 2x2

Batch Size 256

Optimizer Adam

4. EXPERIMENTAL SETUP

The specifications of the dataset and the perfor-
mance metrics used are discussed in this section. The 
proposed model makes use of the RML dataset, the pa-
rameters of which are tabulated in Table 3.
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Table 3. RML Dataset Parameters

Parameters Value

Modulation scheme 8PSK,BPSK, CPFSK, GFSK,PAM4,QAM16, 
QAM64, QPSK

Fading effects of the 
channel Rician, Rayleigh

Sample Length 128

SNR Range -20 dB to 20 dB in 2 dB increments

Training Samples 112000

Validation Samples 32000

Test Samples 16000

4.1. PERFORMANCE METRICS

The proposed model is trained and validated on the 
RML dataset, and the performance metrics like Pd, Pf, 
AUC, and F1 are observed to evaluate its performance. 
Pd denotes the probability of PU presence when PU oc-
cupies the spectrum, and Pf denotes the probability of 
PU presence when PU is not utilizing the spectrum. AUC 
is the overall area occupied by the receiver operating 
characteristics (ROC) and the quality of the model is indi-
cated by F1 which is dependent on precision and recall. 

4.2. TEST STATISTIC

The threshold (TH) value for various values of prob-
ability of false alarm (PFA) is calculated and it is com-
pared with the test statistic T as in (9).

(9)

Where P(H1) and P(H0) represent the probability of 
PU presence and absence respectively. The proposed 
model predicts the likelihood of PU presence or ab-
sence using the two approaches listed below.

•	 A standard threshold value of 0.5 is used in all bi-
nary classification ML/DL algorithms.

•	 T>TH denotes the PU presence and T < TH denotes 
the PU absence.

5. RESULTS AND DISCUSSIONS

The proposed model’s novelty and its effectiveness 
are discussed in this section The results of the valida-
tion and test evaluation metrics are used to assess 
the performance of the proposed MHASS model. The 
additive attention signal pattern of the MHA layer is 
discussed in section 5.1. In section 5.2 the proposed 
model’s performance is compared to that of a DL CNN 
model. The ROC of the proposed model is shown in 
section 5.3. Analysis of the results and improvement in 
the performance over the previous work is discussed in 
sections 5.4 and 5.5 respectively.

5.1. ADDITIVE ATTENTION SIgNAL PATTERN

The pattern of the input sequence that is added to 
the attention weights which are obtained from the MHA 
layer for the various modulated signals at various SNR 
values is considered as an additive attention signal pat-
tern. The novel nature of the proposed model is evident 
from this pattern. An additive attention signal pattern 
for QPSK modulation at SNR= 12 dB is depicted in Fig. 5.

Fig. 5. Additive Attention Signal Pattern

In Fig. 5 the additive attention signal pattern is repre-
sented as a 16x16 image which is symmetric for both the 
IP and QP samples. Different colors in the image repre-
sent the signal intensities at each location of the image. 
The range of signal intensities represented by the verti-
cal colour bar indicates the parts of the input sequence 
that should be considered for improved prediction.

The following inferences can be drawn from the ad-
ditive attention signal pattern:

•	 A large part of the input has non-zero attention 
weights, which indicates that different parts of the 
input sequence are attended to increase the likeli-
hood of PU presence.

•	 The peak levels of the signal at specific locations of 
the input have a very high magnitude, indicating 
the presence of PU.

5.2. PERFORMANCE COMPARISON

A DL CNN model without MHA is contrasted with the 
MHASS model's performance. Both models were com-
pared for training, validation loss, and detection prob-
ability at low SNR.

The training and validation loss with respect to the 
number of epochs is shown in Fig. 6. MHA_TRAIN and 
MHA_VAL represent the training and validation loss 
of the MHASS model respectively. CNN_TRAIN and 
CNN_LOSS denote the training and validation loss of 
the CNN model respectively.

Fig. 6. depicts the fast convergence of the proposed 
MHASS model with optimized training time in com-
parison to CNN.
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Fig .6. Loss VS Epochs for MHASS, CNN

The above figure depicts the fast convergence of the 
proposed MHASS model with optimized training time 
in comparison to CNN. 

The plot of SNR and percentage of detection probabil-
ity (Pd %) of the MHA and CNN models is shown in Fig.7.

Fig. 7. SNR VS Pd

Fig.7 is an indication of the increased probability of 
detection of the proposed model when compared to 
CNN at low SNR.

5.3. ROC OF THE PROPOSED MHASS MODEL

The ROC of the MHASS model is given in Fig. 8.

Fig. 8. ROC of MHASS model

The ROC of the MHASS model for SNR= - 20 dB and 
SNR = - 6 dB is shown in Fig. 9.

Fig. 9. ROC for SNR = -6 dB and SNR = -20 dB

Table 4 displays the proposed model’s test evaluation 
metrics for different SNR values.

Table 4. Performance Metrics for Different SNR

SNR(dB) Pd Pr AUC F1

-20 0.22 0.863 0.717 0.351

-18 0.23 0.868 0.744 0.364

-16 0.243 0.874 0.745 0.38

-14 0.353 0.91 0.795 0.51

-12 0.383 0.916 0.814 0.54

-10 0.6 0.945 0.89 0.734

-8 0.76 0.956 0.937 0.847

-6 0.91 0.963 0.982 0.936

-4 0.9823 0.966 0.995 0.974

-2 0.993 0.966 0.999 0.979

0 0.993 0.966 0.999 0.979

2 0.998 0.966 0.999 0.981

4 0.995 0.966 0.999 0.980

6 0.995 0.966 0.998 0.980

8 0.995 0.966 0.997 0.980

10 0.99 0.966 0.998 0.978

12 0.998 0.966 0.999 0.982

14 0.993 0.966 0.998 0.98

16 0.998 0.966 0.999 0.982

18 0.998 0.966 0.999 0.982

The impact of modulation schemes on percentages 
of detection probability (Pd %) and false alarm prob-
ability. (Pf %) at SNR = - 20 dB is displayed in Table. 5.

The Pd% of the proposed model to a varying range of 
SNR for different values of PFA based on the second test 
statistic mentioned in section 4.2 is shown in Fig. 10.
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Fig.10. SNR VS Pd for different values of PFA

Modulation Scheme Pd (%) Pf (%)

8PSK 19 0

BPSK 23 0

CPFSK 18 0

GPSK 14 0

PAM4 24 0

QAM16 23 0

QAM64 28 0

QPSK 25 0

All modulations 22.5 4

5. 4. ANALYSIS OF THE RESULTS

The following observations can be made after ana-
lyzing the results :

•	 From Table 4 the values obtained for Pd, AUC, and 
F1 are 0.91, 0.982, and 0.936 respectively at SNR= -6 
dB. These values indicate that the proposed model 
has a high detection probability at a low SNR.

•	 Fig. 9 denotes the best AUC values obtained for low 
SNR of -20 dB and -6 dB respectively.

•	 Table 5 indicates that the best values of Pd are ob-
tained with zero percentage of Pf for various mod-
ulation schemes at a low SNR = -20 dB.

•	 Fig.10 shows that for various values of PFA best 
performance metrics are obtained for the pro-
posed model at a low SNR.

5. 5. IMPROVEMENT IN PERFORMANCE 

  The proposed MHASS model's performance in com-
parison to prior work is shown in Tables 6 and 7.

Table 6. Comparison of the Pd and Pf at SNR=-20 dB

Model Modulation Scheme Pd (%) Pf (%)

Gao et al. 
[26]

QPSK <20 7.81

QAM16 <20 6.54

QAM64 <20 7.82

Proposed 
MHASS

QPSK 25 0

QAM16 23 0

QAM64 28 0

Table 7. Improvement in Pd % of the proposed model

SNR (dB) Model Pd (%) % Improvement 
in Pd

-6
Kai Yang et al. [27] 80

13.8
Proposed MHASS 91

-12
Kai Yang et al. [27] 30

27.6
Proposed MHASS 38.3

From Table 6, it is observed that various modulation 
schemes used in the proposed model resulted in in-
creased Pd % with 0% Pf when compared to the previ-
ously reported model.

  Table 7 indicates that the proposed model has re-
sulted in an improvement of 13.8 % and 27.6 % in the 
value of Pd for SNR values of -6 dB and -20 dB respec-
tively when compared to the previously developed 
model.

6. CONCLUSION

Multi-Head attention based spectrum sensing for 
cognitive radio has been implemented in this work. The 
implemented model resulted in the best performance 
metrics such as Pd, Pf, AUC, and F1 over a wide range 
of SNR. The ROC and other plots obtained indicate that 
a higher value of detection probability is achieved at a 
low SNR for various modulations of the dataset used in 
this model. The use of multi-head attention has resulted 
in faster convergence of the proposed model with less 
number of computations. There is an improvement of 
27.6 % in Pd (%)  when compared to one of the previ-
ous works in deep learning. This work can be further 
extended by proposing a cooperative spectrum sensing 
scheme in which the secondary users are experiencing 
different levels of fading and other multipath effects.
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