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Abstract – Software Defined Networking (SDN) introduced network management flexibility that eludes traditional network 
architecture. Nevertheless, the pervasive demand for various cloud computing services with different levels of Quality of Service 
requirements in our contemporary world made network service provisioning challenging. One of these challenges is path selection (PS) 
for routing heterogeneous traffic with end-to-end quality of service support specific to each traffic class. The challenge had gotten the 
research community's attention to the extent that many PSAs were proposed. However, a gap still exists that calls for further study. This 
paper reviews the existing PSA and the Baseline Shortest Path Algorithms (BSPA) upon which many relevant PSA(s) are built to help 
identify these gaps. The paper categorizes the PSAs into four, based on their path selection criteria, (1) PSAs that use static or dynamic link 
quality to guide PSD, (2) PSAs that consider the criticality of switch in terms of an update operation, FlowTable limitation or port capacity 
to guide PSD, (3) PSAs that consider flow variabilities to guide PSD and (4) The PSAs that use ML optimization in their PSD. We then 
reviewed and compared the techniques' design in each category against the identified SDN PSA design objectives, solution approach, 
BSPA, and validation approaches. Finally, the paper recommends directions for further research. 

Keywords: Software Defined Networking (SDN), Path Selection Algorithms (PSA), Routing, Quality of Service (QoS), Traffic 
Management, Flow table Management

1.  INTRODUCTION

The proliferation of the Internet of Things (IoT) ap-
plications has significantly increased the number and 
heterogeneity of traffic in modern networks[1]. A prior 
study reveals that active internet devices will rise from 
26.66 billion in 2019 to 41 billion in 2027[3]. The signs 
of these become apparent during the COVID-19 pan-
demic [2]. The traffic arrival rate will increase the traf-
fic volume on the internet and the rate of new path 
setup requests. Furthermore, the traffic flow is het-
erogeneous because they show non-uniform arrival 
rate, duration, and size. The heterogeneity affects their 
quality of service (QoS) requirements and demands of 
network resources. They behave differently en route to 
their destination. 

Large flows like Elephant Flows (EF) are very few, 
about 1 -10 % of total network traffic. However, they 

are Long-Lived (LLF) and tend to consume network 
buffers. Their behaviour consequently imposes con-
gestion and delays to most Mice Flows(MF)[4]. For 
instance, applications like Hadoop demand an enor-
mous amount of throughput to perform an all-to-all 
transfer of petabytes during the shuffle phase. This 
demand is similar to a virtual machine migration that 
consumes high bandwidth. On the other hand, MFs are 
delay-sensitive and require high-priority queues. These 
technologies exhibit characteristic flows that require a 
highly dynamic network technology to meet their re-
quirements[5]. 

However, techniques like Equal Cost Multiple Paths 
(ECMP) [6] do not distinguish among flows during 
routing. It amalgamates flows, irrespective of their re-
quirements, on the same path. Using ECMP can lead 
to switching buffer overflows and inefficient band-
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width utilization. Meanwhile, critical traffic must ar-
rive at their destination free of any delays. In contrast, 
bandwidth-intensive traffics must be assured a high 
throughput. For these reasons, efficient resource man-
agement and optimum path selection specific to each 
traffic are crucial to the operation of modern Data Cen-
tre Networks (DCN)[7], Wide Area Networks (WAN)[8], 
Enterprise Networks [9], and Internet Exchange Point 
Networks (IXP)[10]. This paper studies networks man-
agement applications' ability to adapt to the needs of 
these technologies. 

Routing involves designing network policies and 
configuring devices to send a flow from source to des-
tination. However, a traditional network [11] is unsuit-
able for this task. The unsuitability is because the de-
vices in traditional are distributed and do not have a 
global knowledge of the entire network. As such, the 
network operator must be on-site to adhere to ven-
dor specifications during configuration [12–14]. Thus, 
network management is not flexible and precise [15]. 
Meanwhile, the emergence of Software Defined Net-
working (SDN) [16] provided a new paradigm with bet-
ter flexibility to efficiently manage a network in a way 
that overcomes most of the limitations of traditional 
architecture. This paper explores how SDN architecture 
handles path selection for traffic routing.

The SDN's flexibility comes from separating the Con-
trol Plane (CP) from the Data Plane (DP). With the sepa-
ration, all network control functions are programmed 
centrally as opposed to the traditional network. The 
centralization frees the DP to focus on forwarding 
packets only. The controller abstracts the DP from all 
network applications at Application Plane (AP) and 
communicates only through Northbound (NBi) and 
Southbound (SBi) Interfaces. The controller extracts 
the network statistics from the DP in real-time to feed 
various network applications. Examples of these appli-
cations are routing [1], security [17], congestion [18], 
prioritized services [19], QoS [20], load balancing [21], 
energy [22], and many others. The applications run 
their algorithms to implement new rules simultane-
ously throughout the network seamlessly. So, the con-
troller can dynamically make changes to a network in 
response to events like the arrival of a new flow, traffic 
bursts, or topology changes [23]. Other reasons could 
be intrusion detection, a node, or link failure, which 
may occur every 30min in large networks [2]. In any of 
these situations, a route computation process to select 
another path is triggered to update the DP with new 
rules. The update operation is done proactively using 
protection or reactively using restoration approaches 
[24]. In both cases, the key challenge for the controller 
and the underlying Path Selection Algorithms (PSA) is 
to swiftly complete the DP's operations swiftly with the 
least convergence time and transient congestion. 

The frequency of rules update is 1.5 to 5s in the res-
toration approach[1]. The time spent to complete one 
cycle of update operation consists of (1) the rule com-

putation delay, (2) the transmission and propagation 
delay in distributing the rule to all the switches, and 
(3) the delay in installing the rule. Depending on the 
number of switches along the path, the process can 
increase the network convergence time. It is challeng-
ing for the controller to complete this operation within 
the carrier-grade network requirement of 50ms[24] or 
10ms when dealing with critical data [25]. As reported 
by [26,27], the operation might be even more complex 
within a few milliseconds requirement of a vehicle 
communication system and IoT applications. Another 
factor to consider is the differences in controllers' pro-
cessing abilities. Maestaro[28], and NOX[29] can handle 
600,000 and 30,000 flow requests/s, respectively, but 
Ryu can only support 6000 flow requests/s [30].

Although the aggressive use of wildcards[31–36]  in 
the protection approach may help reduce the commu-
nication overhead and yield faster forwarding perfor-
mance. However, TCAM's limitation to supporting only 
2000 rule entries makes this approach less attractive 
[3]. Thus, the restoration approach is receiving signifi-
cant attention because of its adaptability to contempo-
rary network dynamics [1]. Although at the detriment 
of communication overhead and the challenge of strict 
adherence to the conflicting QoS requirements. Given 
the importance of the field, various techniques have 
been proposed lately. However, flexibility in customiza-
tion to adapt to traffic variabilities in modern-day net-
works is still limited. This limitation calls for exploring 
and reviewing more path selection criteria to provide 
researchers with valuable references in state-of-the-art 
to do more work in the field. This paper critically re-
views the proposed techniques within Ten (10) years.  
Other studies have conducted a similar study. 

For instance, Khan et al. in [5] surveyed QoS provi-
sion techniques in Service-Oriented Architecture SOA 
on SDN. Segment, static, and dynamic link cost rout-
ing based on Fog-Enabled IoT Platform, have been 
surveyed in [23,37,[38] respectively. On the contrary, 
this paper focused on SDN-PSA in various use cases 
in WAN, DCN, and WSN. Karakus and Duresi [39] par-
tially survey routing for multimedia flows. In contrast, 
this paper focused on SDN PSA, classified based on 
path selection criteria. Tomovic et al. [40] and Guck [41] 
compared the QoS routing in large-scale SDN with a 
focus on bandwidth and delay. Guck’s study focused 
on unicast communication and considered only the al-
gorithms that find a single path. This paper compares 
general communication techniques (multicast) and 
multipath algorithms. Likewise, low latency transmis-
sion strategies in SDN have been surveyed in [25]. In 
contrast, this paper covers other QoS metrics, such as 
Delay, Loss, and Bandwidth during path selection. Load 
balancing has been covered in [15], [42–44]. The papers 
discussed approaches such as Controller Placement 
Problem (CPP) [45] and Switch Migration (SM) [46]. On 
the other hand, this paper focuses on PSA techniques 
at csCP and dmCP for load balancing, along with  QoS 
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and practical resource usage. Waziral et al. survey is-
sues related to topology discovery in [47]. SDN's energy 
issues were surveyed in [49–51]. On the contrary, this 
paper covers other PS goals, like Load Balancing and 
Resource Utilization, using various methods other than 
ML. This paper identifies the baseline algorithm used 
for PS and classifies the PS based on Selection Criteria 
(PSC). Then compares them for use cases, design goals, 
selection constraints, solution approach, and valida-
tion techniques. Table 1 provides a comparison sum-
mary to highlight these differences.

The key contributions of this research are as follows:

•	 The paper identified the baseline shortest path (sp) 
algorithms used for path selection in SDN.

•	 The paper Identifies different PSA problem types 
and design objectives in SDN

•	 Provide a classification of PSA based on Link Qual-
ity, Switch role, and Flow characteristics

•	 Finally, the study identifies and discusses potential 
future research directions

Figure 1 provides the paper's organizational chart.  
Section 2.gives an overview of Path Selection Algo-
rithms in SDN. The overview covers how a PSA works 
in SDN, highlighting some baseline algorithms upon 
which many PSAs are built. The section also provides 
design objectives and different PSA problem types. It 
concludes by introducing the PSA classifications. Sec-
tion 3. provided the critical review in four (4) sub-sec-
tions according to Link Quality, Switch role, Flow char-
acteristics, and Machine learning approaches. Section 
4 provides future research directions. Finally, section 5. 
concludes the paper. 

Table 1: Comparison of Related Papers: RP: Routing Path, SA: Solution Approaches, PSC: Path Selection 
Criteria, PSCr: Path Selection Constraints, ML: Machine Learning, IET: Implementation and Evaluation Tools, 

LB: Load Balance, RU: Resource Utilization, FT: Fault tolerance

Ref.

Comm Tech Routing Path Use Case Design Goal (DG) PS Techniques Classification

IET
Missing aspect in 

contrast to this 
paperUni 

cast
Multi 
cast Single Multi Wired Wire 

less IoT LB QoS RU FT

SA & Problem 
Formulation PSCr PSC

ML Others

[5] NA X X SOA X   X X  X X 
Comm Tech, FT, ML, 

PSCr, PSC,

[15] NA   Both X  X X X X  X X X
Comm Tech, QoS, 
RU, FT, ML, PSCr, 

PSC, IEA

[23]  X  L2&3VPN,  DCN X    X Optimization X  
Multi cast, Multi 

path, LB, ML, PSCr

[25] X X Not Stated Not Identified    X   X X 
Comm Tech, Use 
Case, PSCr, PSC,

[37]  X Single Wired X  X X X Optimization   
Comm Tech, Multi-
Path, IoT, LB, RU, FT, 

[38]  X Both Fog, IoT   X X X  X X  Multi cast, RU, FT

[39] NA Not Stated WAN X  X X X Optimization X X X Comm Tech, PSCr, 
PSC Path, IEA

[40] X X Not Stated WAN X  X X X    X Comm Tech, Path, 
IEA

[41]  X  X  X X X  X X X    X IEA, LB, RU

[42] X X X X Both X  X X X X  X X X Comm Tech, QoS, 
RU, ML, PSCr, PSC, 

[43] X X X X Both X  X X X X  X X X
Comm Tech, QoS, 
RU, ML, PSCr, PSC, 

IEA

[44] Not 
Specified X X cSC, dDC, & 5G   X X   X X X Comm Tech, RP, RU, 

FT, PSCr, PSC, IEA

[48] X X X X   X X   X  X X X 
Comm Tech, Path, 

Env, SA,

[49] NA X X Energy, DCN X   X X Optimization X X 
Comm Tech, RP, LB, 
QoS, ML, PSCr, PSC

[50] NA Not Stated Energy  X  X X Optimization X  X
Comm Tech, 

RP, QoS, FT, ML, 
PSCr&IET

[51] NA Sleep 
Schedule Wired X X   X X Optimization X X X Comm Tech, LB, FT, 

PSCr, PSC, IET

This 
Paper                 
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Fig. 1. Organization of the Survey

2. OVERVIEW OF SDN PATH SELECTION 
ALGORITHMS 

2.1. PATH SELECTION ALGORITHM (PSA) 
 IN SDN

SDN controller used an OpenFlow [52] to communicate 
with the DP. The standard uses a Link Layer Discovery Pro-
tocol (LLDP) to discover the DP topology. Upon discovery, 
the controller uses a PSA to compute a rule that guides 
flow to their destinations. It then instructs the switches 
to install the rules in their respective flow tables. In most 
cases, a PSA is invoked whenever a new flow with no 
corresponding entry in the flow table arrives.  Another 
reason could arise from topology changes due to link or 
node failure. In both situations, the PSA must converge 
the network with the new rule to avoid disruptions. The 
controller uses a thread monitoring mechanism to track 
these changes by collecting statistics in a fixed cycle pro-
cessing. The mechanism periodically issues a request to 
switches to get the information. In the Ryu framework 
[53], the issuance of information requests for all the reg-
istered switches is repeated infinitely after a set time in-
terval. The network rules must be regularly updated every 
1.5 to 5s due to traffic variabilities [1].

2.2. BASELINE SHORTEST PATH (SP)  
 ALGORITHMS USED FOR PS IN SDN

Most of the PSA for SDN often use mechanisms of the 
Shortest Path problem as a foundation. Some of these 
are based on algorithms like Dijkstra[54], A* [55], or 
Bellman-Ford[56]. Others are based on k Shortest Paths 
(kSP), like Yen’s algorithm [57]. In contrast, others use 
Restricted Shortest Path (kRSP) or Constrained Short-
est Path (kCSP) like A* Prune [58]. These algorithms are 

proven to be NP-Complete [59]. So some exact algo-
rithms for handling the problem in a brute-force man-
ner or approximation like Lagrangian Relaxation Based 
Aggregated Cost (LARAC) are used.  

Dijkstra [54] is a centralized algorithm that calculates 
the Shortest Path (SP) to multiple destinations in a graph 
with non-negative link weight. It keeps a queue with a list 
of partial paths starting at the source and going through 
intermediate nodes before the destination. The least 
weighted path from the queue is chosen at each iteration. 
So n paths are created by extending the partial paths to 
n external links of the node where the path ends. Only 
routes with a lower weight than the queue's current route 
that led to the same destination are enqueued. Depend-
ing on the weight values, the Dijkstra loosens up by re-
moving a path with a higher weight value. The algorithm 
uses a Breadth-First Search (BFS) to visit a node. 

On the other hand, the A* algorithm [55] is an en-
hancement of [54] by introducing a guess function at 
each node to estimate the path's cost from the refer-
ence node to the terminal node. The priority queue’s 
outlier paths with minimum projected cost are expand-
ed initially. The nearer the estimated cost is to the ac-
tual cost, the faster the algorithm converges. However, 
the overhead brought forth by the computation of the 
guess function constitutes the trade-off to consider. 
Furthermore,  in contrast to [54], a Bellman-Ford (BFA) 
[56] computes the Shortest Path (SP) tree in a network 
with negative edge weight. Unlike Dijkstra, BFA oper-
ates in a distributed manner. The algorithm keeps track 
of the best path connected to V nodes. It performs |V|-
1 number of iterations to update each node's current 
best path. This way, all SPs will ultimately be found 
because the path to any node is only|V|-1. It instantly 
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halted if an iteration yielded no update because suc-
cessive iterations would not result in any change. 

The earliest algorithm to address a k-shortest path 
problem is Yen’s [57]. The algorithm runs in two (2) 
phases. In the first phase, it works based on traditional 
SPA to find the initial path. Then, the other (k-1) shortest 
paths are found regarding the initial path’s intermedi-
ate switches. The algorithm is similar to [55] and always 
stops once the terminal switch is visited k times. Addi-
tionally, the A* prune [58] identifies k-SP from source to 
destination in a communication network. The technique 
is an exact algorithm similar to [55] in using a guess func-
tion for each metric. Paths are considered by adjusting 
the cost estimation and pruning according to the cost 
projection exceeding the corresponding end-to-end 
bound. The process continues to iterate until k-CSPs are 
found or the candidate path container is empty.

To deal with NP-Complete problems such as kRSP or 
kCSP, a Lagrangian Relaxation Based Aggregated Cost 
(LARAC) [62] is used to relax the CSP with a combined de-
lay and link cost to SP problem with a modified cost func-
tion. The method allows dropping some constraints of the 
first problem and introducing them in the optimization 
goal. However, the technique has a duality gap deficiency 
because it does not guarantee the best path return. 

2.3. THE DESIGN GOAL/OBJECTIVES OF PSA

In many cases, PSA algorithms' design goal is three-
fold: QoS satisfaction, Resource Utilization, and Load 
Balancing. 

QoS satisfaction deals with the ability of a network to 
consistently adhere to the performance expected by an 
application in terms of delay, jitter, bandwidth, through-
put, and loss. QoS routing is one of the most critical com-
ponents of a network management framework [41]. En-
suring it in a path is challenging due to network dynamics. 
Users' conflicting interests compound the difficulty, as ex-
emplified by the high demands of pervasive applications 
like VoIP, video conferencing, telemedicine, and online 
game. Many routing strategies are designed to adapt to 
these demands and select a route with optimized QoS 

requirements [5]. Other PSAs are designed with resource 
utilization objectives. These PSA allocate network resourc-
es such as CPU, Memory, and bandwidth to traffic based 
on availability, priority, and requirement [61–63]. 

Lastly, other PSAs are designed to distribute network 
loads for task processing, packet transmission, and stor-
age to network components based on their residual ca-
pacity [42]. The default settings of control algorithms 
are often similar across all CP[25]. In most cases, they are 
based on Shortest Path Algorithms (SPA) such as [54],56]. 
For example, the default setting of the Beacon [64] is [54]. 
The situation conditioned the CP to take the same PSD, 
irrespective of network conditions. However, some paths 
are more appealing than others, thus becoming critical as 
all the switches often select a node connected to them 
as the next hop. Thus, many flows are sent to the same 
path simultaneously. However, suppose the network ex-
periences a traffic burst caused by some hot events. In 
that case, the component already running at full will be 
under added strain. The unbalanced distribution of the 
traffic along paths can lead to some paths becoming con-
gested. Consequently, the network begins to experience 
delay and packet loss, resulting in an ultimate failure if 
the situation persists. Some PSAs are designed with load-
balancing objectives to mitigate this situation at th DP. 
Another thing to note is that load imbalance affects the 
CP in response time delay as it affects the DP[25]. A dmCP 
can be overwhelmed due to an imbalanced distribution 
of flow request processing tasks. At the CP, the problem 
is being addressed through Controller Placement Prob-
lem (CPP) solutions [65–67] and Switch Migration (SM) 
[68–72]. Therefore, the load balance problem is addressed 
through the PSA at the DP and  CPP or SM at CP. This paper 
focused on the PSA for load balancing at the DP.

2.4. PSA PROBLEM TYPE

A PSA is designed to best-effort traffic or for traffic 
with stringent QoS requirements. Similarly, PSA can be 
designed with fixed (non-adaptive) or dynamic (adap-
tive) link costs for the PSD.  The diagram in Figure 2 
shows the distribution of PSA problem types.

Fig. 2. PSA Problem Type
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Best effort PSA does not aspire to guarantee that 
traffic will be delivered to its destination or meet any 
QoS requirements. The shortest path based on a mini-
mum number of hop count with no other constrain 
is often used as the PS metrics. In contrast, PSA with 
QoS makes Path Selection Decisions (PSD) with pre-
defined objectives. It aims to optimize some perfor-
mance metric(s) while keeping others below a pre-
scribed threshold. The metric to optimize is referred to 
as cost or weight. While the ones to be kept below a 
certain threshold are called constraints. Depending on 
requirements, the PSA can be designed to address dif-
ferent problems. For example, a PSA problem can be 
defined as a Single-Constrained Shortest Path (SCSP), 
a Multi-Constrained Shortest Path (MCSP), or a Multi-
Constrained Path (MCP) Algorithm.

Consider a PSA for a network modelled as a graph 
G=(S, E), with S, and E as a set of switches and com-
munication links. The total number of switches and 
links are |S| and |E|. If w∈R+

|E|, is a vector that denotes 
the weight of the links between two adjacent switches 
s∈S . Let c ∈R+

M, denotes another vector to holds M ele-
ments corresponding to the threshold of the constrains 
metrics. Also, let M∈R+

Mx|E| , be a matrix that represents 
the values of the constraints for individual link eij∈E, 
between source i and destination j. Also, let Pij, be the 
complete path between the source s_i and destination 
s_j, in the set of all paths P in G. With these factors, SCSP, 
MCSP, or MCP can be formulated mathematically to op-

timize any QoS metric (Min or Max) represented by the 
weight vector w as:

(1)

(2)

(3)

SCSP finds a route with minimum end-to-end QoS 
metric while keeping another metric below a pre-
scribed bound. It corresponds to a situation where c 
in equation (2) = 0. In contrast, an MCSP is defined to 
optimize many end-to-end QoS metrics constrained by 
individual bounds. It corresponds to a situation where 
c in equation (2) >1. Lastly, an MCP  is a selection prob-
lem defined without an optimization metric. The route 
to be selected while keeping some QoS metrics below 
a prescribed threshold. It corresponds to a situation 
where c in equation (2) > 1.

2.5. CLASSIFICATION OF PSA SOLUTIONS 
 IN SDN 

As shown in Figure 3, Path Selection Algorithms PSA 
considers link quality, switch role (critical node) flow 
characteristics, or a combination of these during path 
selection decision-making. This paper classifies the ex-
isting PSA based on these criteria.

Fig. 3. Classification oF PSA in SDN

2.5.1. Link Quality 

Link quality is estimated in teams of metrics such as 
delay, bandwidth, loss, throughput, or jitter. Depend-
ing on the problem, these metrics can be modelled 
as an objective function of an optimization problem 
while keeping other metrics as constraint(s). These 
metrics are either static or dynamic. Dynamic PSA uses 
metrics such as bandwidth. It is dynamic because the 
metric's value may change each time traffic is routed. 
In contrast, PSA, with a metric like a hop count, is static 
because it remains fixed unless there is a total change 
in topology [58].  The metrics are also classified as ad-
ditive, multiplicative or non-additive. Additive metrics 
are delay, hops, and jitter. They imply that a path's end-
to-end metric can be found accurately by summating 
the weight of different links. The weight of a path with 
non-additive metrics, like bandwidth, can only be es-
tablished by the value of that constraint at the block-
age link.

2.5.2. Critical Node(Switch)

A node/switch in a communication network is criti-
cal if many switches select it as the next hop because 
it falls along the paths of other switches. Consequently, 
because of its position, the communication frequen-
cy of such a switch with the CP for rule installation is 
higher than regular switches due to the number of SP 
passing through it. Such as, a switch tends to generate 
high communication overheads. However, the regular 
switches are responsive and dependent on the efficien-
cy of the critical switch. Tools in graph theory such as 
degree [74], betweenness [75], information [76], close-
ness centralities, and PageRank [77] can be used to 
measure switch importance in a network.

Consider a network G=(S, E), where S is a set of switch-
es and E communication links. The network identifies 
a critical switch in terms of parameters such as switch 
update operations, switch flow table residual capac-
ity or switch port’s residual capacity[73]. The number 
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of rules operations finds the switch update operation 
on each switch. The value reflects the total traffic load 
between different sources to destination switch pairs. 
For instance, a switch sΩ∈S serving many intermedi-
ary switches through, |Psp | number of shortest paths 

between si to sj switch pairs is considered more criti-
cal than regular switch sω∈S. Switch sΩ will be heavily 
loaded with a high number of rules in its flow table in 
comparison to sω. See Table (2) for a comparison of dif-
ferent measurement metrics.

Metric Description

N
od

e 
an

d 
ed

ge
 C

en
tr

al
it

y

Eigenvectors EV EV measures the importance of a node in a network. It is based on the principle that connections to nodes 
with a high degree contribute more to its score than connections to nodes having a low score.

PageRank PR The score computed by PR is higher for nodes that are highly connected with nodes that are highly 
connected themselves. PR score is iterated until convergence. PR is a variant of the EV centrality measure.

Hyperlink-Induced Topic 
Search: HITS

•	 HITS calculates two scores: Hub and Authority

•	 The more a node has outgoing links, the higher the Hub score. While the more a node has incoming 
links, the higher its Authority score.

•	 Initially, every node is considered a Hub

•	 Authority scores are fixed to a constant. The scores are updated and converge after a few iterations.

Degree Centrality DC A DC-based measure of individual centrality corresponds to how well-connected the individual is within 
their local environment.

Closeness Centrality CC CC measures centrality on a global scale based on how close a node is to all the other nodes. The idea is 
that a switch is central if it can interact with all others quickly

Betweenness 
Centrality BC

Geodesic

BC of a node measures the extent of the role of the intermediary node in interacting with others.Path/flow

Random 
path

Information Centrality IC
IC metric is based on the concept of efficient propagation of information over the network. IC of a node 
is the relative drop in the network efficiency caused by the removal of the node from the network. It 
combines the idea of CC and BC measures.

2.5.3. Flow Characteristics

A flow has been defined differently based on the 
research context [3]. Most definitions convey that a 
flow is a set of packets sharing common identification 
properties while passing an observation point during a 
specific period [78]. These properties, in most cases, in-
clude five tuples like protocols such as (TCP, UDP, ICMP), 
source-destination IP, and port numbers.

Network traffic is made up of different types of flows 
[52]. Examples are EF and MF. EF are typically very few, 
about 1 -10 % of total network traffic. However, they 
are Long-Lived flows(LLF). As such, they tend to rapidly 
consume network buffers which consequently impose 
congestion and queuing delays to the minor majority 
of MF [4]. Each of these traffic types has specific QoS 
demand and behaves differently en route to destina-
tions. Therefore, considering flow features during PSD 
is necessary because of their potential impact on net-
work performance. 

Flow statistics such as packet counts, bytes count, 
duration, per-flow packet size distribution (PSD), rate, 
or burst [81,82] are used to classify flows. These metrics 
can be used in isolation or combination to classify the 
flows using a threshold or threshold-less approach. 

•	 Flow Size fS: is the number of bytes transmitted 

in a flow. It can be quantified using byte or packet 
count. With fS, flows are classified using a threshold 
Th such that if the fS>Th, then the flow is an EF and 
an MF otherwise.

•	 Flow Duration fD: This is the elapsed time between 
the first and the last packet of a flow. In a thresh-
old-based, any flow with fD<Th are tortoises, while 
flows with fD≥Th are dragonflies. 

•	 Flow Arrival Rate fR is found by dividing the size 
fS of the transmitted data by the total flow dura-
tion fD.fR=fS/fD. If fR>Th, it is a cheetah and snail 
otherwise.

•	 Burst: Traffic burst investigates the extent of traf-
fic and connection dominance in a network. Burst 
traffic involves packets with a short inter-arrival pe-
riod. If packets inter-arrival time iAT>Th are called 
porcupines and stingrays otherwise [78]. 

However, there is no unanimous settlement among 
the proposed flow classification approaches on what 
flow feature to adopt. However, the majority of the ap-
proaches used flow size [79], [84–87]. To set up the clas-
sification threshold, many other techniques used dura-
tion [88], rate [89–91], or burst as well. So, many PSA in 
SDN designed their solutions while considering these 
factors.  These algorithms are reviewed in section 3.3 
and summarised in Table 6

Table 2. Comparison Table of Node Importance Evaluation Metrics
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3. REVIEW OF PATH SELECTION  
 ALGORITHMS IN SDN 

3.1. PSA WITH LINK QUALITY AWARE 

To choose a path for traffic in an SDN-Edge com-
puting network, Hu et al.[92] considered loss 
and latency to design a Path Selection Meth-
od (PSM). The edge node at the SDN boundary 
is configured to assign network resources, such 
as bandwidth, according to flow requirements. 
Flows are directed via a path with lower packet loss. At 
the same time, delay-sensitive flows are routed via a 
path with minimal delay. Likewise, Alnajim and Salehi 
[93] proposed an incremental scheduling QoS-aware 
path selection technique to quickly redirect real-time 
applications with time-bound flows. The technique 
avoids bottleneck links causing scheduling impasses 
by selecting a path with enough residual bandwidth 
from the list of candidates’ paths. Before the optimum 
PS, the technique incorporates an offline pre-routing 
where initial K paths are formed using Yen’s [57]. The 
run time of this stage is high. The authors controlled 
it by coupling a Fibonacci Heap with Dijkstra [55] 
and [57]. However, in [92], [93], the switch load was 
not considered when choosing the path. Hence, QoS 
parameters like latency and the PDR should also be 
considered to ensure the quality of the link choice. 
In a similar technique in [31],  switch port capacity in 
terms of data Transmission (Tx) and Receive Rate (Rx) 
is monitored. The data is pulled to determine the max-
imum capacity or load the port can accommodate. 
The statistics are fed to an application on a Floodlight 
[96]. The controller defines rules that send a flow via 
a port with Least Loaded Path LLP. In the validation, 
the authors used Mininet and Iperf to generate traf-
fic. However, the constant gathering of statistics may 
significantly increase the controller overhead, thus in-
creasing flow setup latency. 

On the other hand, a QoS-driven and SDN-assisted 
Multipath Selection Scheme (QSMPS) was proposed 
in [94] to address the adaptability problem of tradi-
tional MPTCP. The method checks and assesses the 
network status using a scalable SDN- technique to 
gather statistics. Based on the data, an optimal num-
ber of sub-flows are found by QSMPS, which are dis-
tributed along the routes with short delays. The au-
thors validate QSMPS in topology on Mininet using a 
Ryu framework. However, a best-case scenario based 
on residual bandwidth might not always ensure that 
distinct flows' requirements are met. Besides, the 
proposed scheme did not classify traffic according 
to its uniqueness. Because other flows can choose a 
short setup latency and a link quality that decreases 
the number of times links change due to topology 
changes. To compute the best paths while taking 
the QoS criteria for each flow into account, Saha et 
al.[95] introduced a greedy heuristic based on Yen's 
[57]. Multiple metrics are jointly considered in formu-

lating the problem to get the best paths. The multi-
constraint QoS-aware route is solved using Integer 
Linear Programming (ILP). The authors validate it on 
POX [96] using a Mininet with D-ITG [97] to generate 
IoT- traffic. However, in large networks with frequent 
topology changes, the ILP-based method may slow 
the convergence of the routing rules [88]. Perner 
and Carle [98] study the effects of various optimiza-
tion on network link utilization and latency. A path 
selection technique was designed and bounded with 
some constraints to meet its requirements. One of the 
constraints is TCAM's size limitation. The constraint 
is modelled such that the number of outgoing flows 
does not exceed the maximum number of forwarding 
table entries. However, the switch update operation is 
not considered. Similarly, just like [87], the technique 
may suffer from high routing convergence time due 
to the ILP model. 

Khalili et al. [99] designed a mechanism that deter-
mines a controller's flow setup latency by crafting and 
sending Special Ping Packets (SPP) between source-
destination pairs. The Round-Trip Time RTT of the pack-
ets is measured. The time is attached to the individual 
path to get the total path setup latency. The technique 
is designed for scCP. Accordingly, Ravuri et al. [100] con-
sider using dmCP to improve [99] overhead, scalability, 
and Single Point Failure SPOF experience in scCP. The 
paper emulates the DP on Mininet and implements the 
dmCP with floodlight[101], ONOS [102], and Kandoo 
[103]. However, both schemes may experience a high 
flow table operation, affecting path setup and switch-
ing time. 

Intersection-based routing using SDN and Fog com-
puting is proposed in [104] to address communication 
coverage holes in VANET. The controller's global net-
work knowledge is leveraged to collect street score 
information from fog nodes and feed it into Dijkstra 
[54] to build the routing path. In a similar approach, 
[105] uses SDN to propose a dynamic routing to cope 
with the problem of frequent changes in a Flying Ad 
Hoc Network (FANET) of a drone (UAV) network. The 
technique Hybridizes a traditional OLSR with an SDN 
controller to perform topology discovery, statistics 
gathering, and route computation. OLSR and SDN al-
ternate network control depending on the network 
status. However, [106] note that the conventional 
routing commonly used in DCN, like OSPF, incurs sig-
nificant overhead with high convergence time. For 
this reason, controller-side Regular Topology Routing 
(cRetor) is proposed. cRetor differs from other topol-
ogy–aware routing in compatibility with various other 
topologies. Including topology description language 
in the scheme ends the need for LLDP to run first. 
The action frees and relieves the scarce bandwidth 
and processing loads on the controller, respectively. 
The authors claim that the route calculation time of 
the technique is fast, which makes the convergence 
time shorter. The overheads and the failover perfor-
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mance are admirable. Alidadi et al. [109] proposed a 
low-complexity SDN-MPLS algorithm encompassing 
a quid pro quo between load balancing, hop count, 

Ref

Path Selection Criteria Use Case Design 
Objective

Solution 
Approach & BLA

Validation & 
Implementation 

ToolsParameters No of Constraints
Custom/ 
Others DCN WAN IoT LB QoS RU AI MM / 

OthersLink 
QoS

Critical 
Switch

Flow 
Features MCP SCSP MC 

SP

[92]  X X X X     X  Simulation

[93]  X X X   Random X X X X  X X Fibonacci, 
Yen,Dijkstra,

[31]  X X X  X Fat Tree X X X X  X X Dijkstra[54] Floodlight Mininet, 
Iperf

[94]  X X X  X  X X X X  X X  Ryu,[53] NetworkX

[95]  X   X X X X X  X  X X ILP, Yen POX, Mininet [107]

[98]   X X X  Critical X X X X   X ILP ITZ

[99]  X X X  X csCP X X X X  X X
Polling 

method

Floodlight, Mininet 
[107]

Floodlight, ONOS, 
Kando[100]  X X X  X dmCP X X X X  X X

[104]  X X X  X VANET X X  X  X X Dijkstra SUMO,NS2[108]

[105]  X X X X  FANET X X  X  X X Hybridized

[106]  X X X X  DCell  X X X  X X A*[58] Floodlight, Mininet

[109]  X X X X  Mobile X  X    X ------ MIRA

Table 3. Comparison of PSA with Link Quality Aware

3.1.1  Multipath PSA With Link Quality Aware 

Megyesi et al. [110] proposed a mechanism for mea-
suring Available Bandwidth (ABW) during path selec-
tion. The authors substitute the distance metrics of [54] 
with the link ABW to decide which path to select. The 
method is modelled as a max-flow problem to adapt 
to different use cases requiring the choice of the best 
available path among multipath. A Ford-Fulkerson al-
gorithm is employed for the max-flow problem. Anoth-
er technique is proposed by Dutra et al. [111]. Where, 
for each of the ingress traffic in DCN, the technique pro-
vides it with the required end-to-end bandwidth and 
effective use of the switches along the selected path. 
The action leads to a reduction in path use cost and ex-
ecution time.

Similarly, in the work of Celenlioglu and Mantar 
[112], a pre-established multi-paths (PMP) between 
each source-destination switch is used to visualize an 
underlying DP topology to design a PSA with resource 
management through Admission Control (AC), Load 
Balancing(LB), and Path Resizing(PR). In another ap-
proach, [113] and [114] proposed GridFTP for the paral-
lel transfer of a large amount of scientific data along 
multiple paths based on the Dijkstra[54]. Equally, us-
ing a multipath approach, Tariq and Bassiouni [115] 
extended their initial design of a QoS Aware Multipath 
(QAMO) [116] for a traditional optical network to SDN. 
The extension supports adaptive QoS differentiation 

with a priority factor for burst traffic and link state. It 
uses a Dijkstra [54] to find K paths between the source-
destination pair.

Furthermore, [117] proposed a multipath forward-
ing approach for next-generation networks using SDN. 
The technique addresses the need for a conducive 
inter-networking environment for future data-centric 
applications. The technique exploits the edge diversity 
of transit ISPs available across many IXPs to propose 
cross-layer coordination with SDN flexibility. The au-
thors use [118] to discover the initial K-shortest paths. 
Before invoking a route reconciliation and update strat-
egy to re-evaluate the initial choice at the Control eX-
change Authority (CXA) Controller implemented with 
Ryu[53] SDN framework. Likewise, in a similar effort, 
A Dynamic Multipath Scheduling Protocol (DMSP) for 
identifying and isolating congestion-susceptible links 
in DCN using SDN is demonstrated in [119]. DMSP split 
the flow traffic among multipath to reduce the conges-
tion. However, the splitting is done identically among 
the available paths. To address the problem of the un-
equal split of DMSP [119]. Farrugia et al. [122] proposed 
a Globally Optimised Multipath Routing (GOMR) algo-
rithm that splits a flow traffic equally among multiple 
paths using a stochastic mechanism. GOMR leverages 
the global knowledge of network topology and its 
traffic statistics to formulate the problem as linear pro-
gramming LP to optimize per packet multipath routing 
proposed.

and power consumption in mobile –SDN with restrict-
ed bandwidth during PS. 
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Ref

Path Selection Criteria Use Case Design Objective Solution 
Approach & BLA Validation & 

Implementation 
Tools

Parameters No of Constraints
Custom / 

Others DCN WAN IoT LB QoS RU AI MM / 
OtherLink 

QoS
Critical 
Switch

Flow 
Features MCP SCSP MCSP

[110]  X X X  X X  X X X  X X
Dijkstra, 

Ford 
Fulkerson

Floodlight, 
Mininet, DITG

[111]  X X  X X X X X X X X  X X

[112]  X X  X X Intra 
Domain X X X    X  

MM
Floodlight, 

Mininet Ditg

[113]  
[114]  X X X  X Virtual & 

Real Env X  X X   X Dijkstra OvS

[115]  X X X  X DCN  X  X  X X Dijkstra C++

[117]  X X X X 
Next-Gen 
ISP, IXPs X  X X  X X EPPStein 

KSP[118] Ryu, Mininet

[119]  X X X X  Fat Tree  X X X   X EPPStein 
KSP[118] Ryu, Mininet

[120]  X X  X X Butterfly, 
G´EANT   X   X X LP Ns-3, GLPK, 

LEMON

Table 4. Comparison Table for PSA with Multipath

3.2. PSA WITH CRITICAL SWITCH AWARE

Yan et al. [24] employed a TCAM-aware flow rerout-
ing approach to address the fault tolerance problem. 
The authors formulate the problem as optimization with 
an objective function that finds a set of backup paths 
with TCAM and bandwidth as constraints. Solutions are 
sought using Forward Local Rerouting (FLR) and Back-
ward Local Rerouting (BLR) heuristics. The two heuristics 
are used alternatively depending on the network state. 
However, the coexistence of the multiple heuristics at 
the controller may introduce an extra computational 
complexity. SwitchReduce[37] presents another inter-
mediate switch state and controller participation tech-
nique. The technique is founded on wildcard identical 
action flows, RouteHeaders (first hop-based routing), 
and division of labour principles. SwitchReduce ensures 
the number of rules in the flow table is decided by the 
corresponding actions taken on flows going through it 
and does not increase linearly according to the flows. 
However, the technique is not adaptive to topology 
changes and has not been validated on large DCN.

In a similar effort, Perner and Carle [98] study the ef-
fects of various optimization objective functions on net-
work performance metrics, such as link utilization and 
latency. Path selection technique bounded with some 
constraints is designed to meet the network require-
ments. One of the constraints considered is the TCAM 
size limitation. The constraint is modelled such that the 
number of outgoing flows does not exceed the maxi-
mum number of forwarding table entries. Astaneh et al. 
[121,122] proposed another work to restore SDN failures 
by rerouting disrupted flow with several switch update 
operations. The technique finds the switches with a 
small number of flow table entries to reroute the flows 
during the path restoration process. It is designed as a 
local restoration plan problem formulated as an ILP to 
trade-off between path cost and the switch update op-
eration. Dijkstra [54] is leveraged to select a path with a 
minimum hop count. However, the technique may suf-

fer from high routing convergence time due to the ILP. In 
another technique, Malik et al. [123], [124] proposed an 
alternative way to reduce switch update operation and 
preserve the limited size of the flow table during rerout-
ing at the time of failure. They proposed an optimum 
path selection while looking at shared links across paths. 
The shared links have a higher tendency to bring down 
the consumption of flow table spaces. The technique 
picks a route with the most shared links from the paths 
list. it is validated with POX[96] on the Mininet. However, 
when the switch utilization rate rises, there is a greater 
likelihood of load imbalance and possible overflow. 

Incidentally, Yu et al. [125] presented a path selection 
method based on node significance and flow prediction. 
The authors use Deep Neural Networks (DNNs) Q-Lean-
ing [126] to balance the network load. The scheme com-
prises three algorithms running as the intelligent centre 
on the controller. The identification of the critical nodes 
is made using H-index.  Flow forecast is achieved with 
DNN, and path selection is based on Q-leaning accord-
ing to node importance.  However, despite the benefits, 
the TCAM space constraint might limit the potential use 
of DNN[127] and Q-Leaning [126] that so much relies on 
historical data. In another work, Gotani et al. [128], [129] 
proposed a technique to reduce the effect of switch 
processing latency during path setup. Since the time to 
add flow entries is different for different switches. The 
paper designed a scheme of three methods to select 
an optimized path while minimizing the total switching 
time. The authors made path selection decisions based 
on path-switching delay in multiple paths with varying 
switch processing times. In this manner, path screen-
ing took place, and the one with the set of switches that 
requires the least processing time was selected. In a 
large-scale network, the solution might not deliver the 
best performance. Also, in the work of Isyaku et al. [1], 
[73] link quality and switch update operation is consid-
ered for path selection. However, the authors ignore the 
heterogeneity of the traffic traversing the network at the 
point of the path selection decision. 
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To minimize the impact of high demands of flow rule 
updates in space-hungry TCAM, the work in [130] con-
siders the diversity of instruction types and switch be-
haviour to propose the RuleTailor algorithm. RuleTailor 
is an efficient, measurement-based optimization frame-
work for SDN flow routing rules updates. Different from 
the consideration of switch behaviour in RuleTailor, 
the techniques proposed in [131,132] adopt the con-
cept of aggregation of the routing rules. The approach 
aims to trim the number of possible rules in the table. 
[131] classify paths into two, one for popular flow and 
the other for non-popular flow. On the other hand, Jia 
and Wang [132] translate the Destination Address and 
Source-Port on Demand (DATSPToD) so that aggregate 
routing rules are taken to minimize entries in the flow 
table. The technique is meant for Large-scale SDN with 
scattered address space allocation. Similarly, DATSPToD 
is founded on address modification and port rewriting 
to address the problem of inefficient routing due to 
interleaved allocation of a non-contiguous IP address. 
Similarly, using Mixed Integer Non-Linear Program-

ming (MINLP), Guo et al. [133] introduce path cardinal-
ity constraints on a PSA to prune the number of rules in 
TCAM. Dijkstra [54] is applied to find initial paths. Then 
passes them through a route optimization function 
before invoking an H-Permissible to prune and select a 
path based on the cardinality constraints. However, the 
inclusion of the optimization function adds up to the 
complexity by order of (LP(N2+L, L)) ⁄ 2 [77]. Maaloul et 
al. [134] proposed a technique for SDN-based CGN to 
optimize energy. The controller dynamically turns on or 
off a network component while considering their resid-
ual space. The authors formulate the problem as Binary 
Integer Linear Programming (BILP) with TCAM and link 
usage as constraints. The aim is to minimize the power 
consumption of links and switches. A First-Fit Heuristics 
(FFH) is designed to solve the problem based on traffic 
demands. Dijkstra [54] is used as the baseline algorithm 
to identify, sort, and select paths according to First-Fit 
Most-Power (FFMP), First-Fit Least-Power (FFLP), and 
First-Fit Random (FFR). 

Ref

Path Selection Criteria Use Case Design 
Objective

Solution Approach 
& BLA Validation & 

Implementation 
Tools

Parameters No of Constraints
Custom DCN WAN IoT LB QoS RU AI MMLink 

QoS
Critical 
Switch

Flow 
Features MCP SCSP MCSP

[24] X TCAM Size X  X X Failure GLPK, Internet2

[36] X  X X X X ITZ  X X X X  X NoX OVS, Mininet

[98]  TCAM Size X X X 
Critical 
system X X X X   X  

ILP
ITZ

[121], 
[122] X Update 

Operation X X X  ITZ X X X X X  X ILP, Dijkstra ERnet USnet

[123], 
[124] 

Size & 
Update X X  X  X X X X  X X 

POX Mininet 
NetworkX

[125] X Node Role  X X  Random X X X   X DNN 
Q-L X ---

[128], 
[129] X Switch CPU X  X X Disaster X X X X  X X  NA

[1],  
[73]   X X X  Custom X X X X   X  Ryu, Mininet

[130] X Switch Role  X  X

Flow rule 
update

X X X  X  X  Ryu OVS, Iperf

[131] X TCAM 
compression X X X X X X X X X  X Aggregation 

Markov
Floodlight  

OVC MATLAB

[132] X TCAM X X X X X  X X X  X  NA

[134] 
TCAM power 

cost X X  X Energy 
CGN X X X  X  X BILP, Heuristic 

Dijkstra
SNDlib, CPLEX 

MATLAB

[133]  TCAM X X  X ITZ X X X X X  X MINLP 
Dijkstra,ARA C++

Table 5. Comparison Table of PSA with Critical Switch Aware

3.3 PSA WITH FLOW CHARACTERISTICS 
 AWARE

Several PSAs have been proposed to support the 
streaming of video flows [135–139].  Civanlar et al. [135] 
formulate the problem as Linear Programming (LP) to 
minimise weighted route length and packet loss. The 
technique finds the best path to accommodate video 
and the shortest path for the best effort. Harold et al. 
[136] designed the Routing Module (RM) of their pro-
posed Video scheme based on the A* Prune [58]. The 

technique returns a list of paths that satisfy bandwidth, 
jitter, and delay constraints. It includes three modules 
for policy, admission control, and path reservation, with 
adequate resources for traffic control. However, the poli-
cies cannot guarantee the reservation of paths for all 
requests made. Thus, delay and packet loss might be 
experienced. The authors attribute the limitation to the 
scalability associated with a single controller. In a similar 
effort, [137] proposed an adaptive technique to reroute 
video with QoS support using LARAC [140]. The authors 
implement the algorithm on a Floodlight [101]. In a dif-
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ferent approach, [138] improves the QoS provisioning 
of video services from the server side. The authors pro-
posed a framework for load-balancing over a single-op-
erator network to improve the QoS of video streaming. 
The framework monitors the load of the servers to track 
packet loss and delay variation. It redirects streaming re-
quests using LARAC to a video server with a lighter load. 
In another work, a technique of PS for multi-media flows 
is proposed by Chooprateep et al.[139]. The authors de-
signed a Video (VPSA) that finds a path based on Yen's al-
gorithm using the controller's data of the link's past and 
present bandwidth utilization. Depending on whether 
a suitable path exists, video flows are either refused or 
allowed upon arrival. However, the coefficient used in 
the problem model is not adaptive to the characteristics 
of the traffics. Moreover, the algorithm considers only a 
single dynamic QoS metric while ignoring static metrics 
such as link latency and video holding.

In Egilmez et al. [20], an OpenFlow controller applica-
tion, OpenQoS, implemented on a Floodlight [101], is 
proposed to handle multimedia traffic separately with 
end-to-end QoS assurance. OpenQoS is designed based 
on LARAC [140] approach. The algorithm uses the packet’s 
header field in the MPLS structure of every incoming traf-
fic to classify and separate multimedia traffic from data 
traffic. Network statistics are collected via feature_request 
messages every 1ses to enable the calculation of the QoS 
of each available route. With the separation and QoS 
knowledge of all routes, each traffic class is handled differ-
ently. The multimedia flows are placed on the route with 
the required QoS resources. At the same time, the data 
traffic is handled with the best effort forwarding. Saha [95] 
took the QoS metric specific to each flow into account to 
propose a greedy heuristic based on Yen's k-SP algorithm. 
The algorithm selects the ideal path for each flow. Mul-
tiple metrics are considered in formulating the problem as 
Integer Linear Programming (ILP). The model is validated 
using POX [96] controller and Mininet with D-ITG[97] to 
generate an IoT-based use case traffics. However, in large 
networks with frequent topology changes, using the ILP-
based method may result in slow network convergence 

[88]. Kotani and Okabe [141], employed a packet filtering 
technique to separate the most critical flows from others 
at the level of packet-in messages. The filtering protects 
CP from a high packet rate and reduces the load on DP 
switches. An experiment reveals that with the mechanism, 
switches could significantly moderate the CPU loads, 
thereby preserving the space constraint of TCAM. Howev-
er, the rate restriction mechanism in the technique pres-
ents some cases of packet lost and slight overhead. HiQoS 
[142] is also proposed by Jinyao et al. as a Multipath QoS 
solution. The PS scheme includes a module for the dif-
ferential handling of flows with QoS requirements and a 
module that finds multiple paths based on a modified Di-
jkstra[54]. The controller uses the IP address of the source 
switch to separate several types of services and supplies 
diverse bandwidth assurances to each class. Bandwidth 
guarantee to specific traffic is achieved through the queu-
ing mechanisms provided by the Openflow protocol [52]. 
HiQoS is bench marked with LiQoS and MiQoS.

The work in [143] proposed a framework for service 
differentiation support in SDN. It ensures the necessary 
QoS level for all multimedia applications. The approach 
leverages the controller's monitoring ability to get traf-
fic statistics and network status every 3s. However, the 
controller might be overwhelmed with high overhead at 
this monitoring rate. The authors try to minimize that by 
restricting the statistics query to ingress switches only. In 
the work of Assefa and Ozkasap [144], a Machine Learn-
ing Framework for traffic aware energy efficient routing is 
proposed. The goal of MER-SDN is twofold, energy usage 
optimization and network performance. In a similar effort, 
Deng and Wang [145] applied Simulated Annealing (SA) 
Optimization to design a PSA to meet the specific QoS 
requirements of SDN-based IoT applications. AQRA classi-
fies traffic into high, medium, and low priority using Class 
Identifier (QCI) obtained from the application profile set 
by the service providers. The initial path is determined us-
ing Dijkstra but updated later for each flow and placed in 
the switch flow table with rules designed by the SA-based 
routing module according to the application profile.

Ref

Path Selection Criteria Use Case / Aim Design 
Objective

Solution 
Approach & BLA Validation & 

Implementation 
Tools

Parameters No of Constraints
Custom DCN WAN IoT LB QoS RU AI MMLink 

Quality
Critical 
Switch

Flow 
Features MCP CSP MCSP

[135] X X  X X X X X X X X  X X LP NOX

[136] X X  X  X X X X X X  X X A* Prune FlowMonitorNS3

[137]  X  X  X  X X X X  X X LARAC Floodlight Mininet

[138] X X  X X X X X X X   X X LARAC ODL

[20]  X  X  X X X X X X  X X LARAC Floodlight VLC MP

[95] X X  X  X X X X X  X X Yen X

[139]  X  X  X  X X X X  X X Yen ITZ

[141] X   X X X X X X X  X X X --- OVS

[142]  X  X  X  X X X X  X X Dijkstra Floodlight, Mininet

[143]  X  X  X X X X X X   X Dijkstra POX

[144]  X  NA NA NA X NA NA NA NA NA X  NA POX, SNDlib

[145]  X  X X  Campus X X    X SA Dijkstra Ryu, D-ITG

Table 6. Comparison of PSA with Flow Features Aware
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3.4. PSA WITH MACHINE LEARNING  
 TECHNIQUES 

Forecasting and classifying flow traffic is crucial to 
efficient resource utilization and QoS provisioning 
during PS for routing traffic in a modern network. The 
parameters included in the QoS specifications are usu-
ally captured in the SLA between service providers and 
subscribers. These parameters, described in section 
2.4.2, are monitored and acquired from switches, ports, 
and flows using the OpenFlow built-in data collection 
module. Other metrics, such as residual bandwidth, link 
utilization, delay, and jitter, require extra effort to be ac-
quired. There is a compelling need to efficiently mea-
sure these metrics and map each traffic with appropri-
ate network resources to meet users’ needs. Thus, ad-
ditional intelligence is necessary to execute these tasks 
as desired. Thus, researchers have leveraged different 
Machine Learning (ML) techniques to synthesize net-
work statistics controllers for traffic classification, rout-
ing, resource management, and load balancing. Traffic 
classification can be based on application or flow be-
haviours. The reason for using the former parameter 
is based on the need to separate Delay-Sensitive (DS) 
applications from Non-Delay-Sensitive (nDS). The DS 
application always required speedy detection and re-
distribution on the network to avoid SLA violations. 
However, with the wild upsurge of applications on the 
internet, it would be unrealistic to identify all the appli-
cations, especially in a large-scale network.  The latter 
parameter help in separating EF from MF because the 
long-lived features of EF hurt the MF significantly. (See 
section 1.1 for detail). Different AI techniques can help 
detect, classify, and schedule each flows class as appro-
priate. Refer to Table 7 for a comparison summary of 
these techniques. 

Cui and Xu [146] propose a PSA with load balancing in 
SDN based on multiple path features fed into Artificial 
Neural Network (ANN) model. ANN integrates the infor-
mation and selects a path with a minimum aggregate 
load. The choice of the ANN to process the collected net-
work statistics is due to its support for an infinite number 
of input vectors with undefined distribution in contrast 
to logistic regression and other probability methods. The 
technique goes through a Forward Propagation Learn-
ing (FPL) phase where the ABW, PLR, TL, and HC with a 
pre-set weight are supplied as input neurons. A Weight 
Adjustment (WA) phase is to adjust this weight until the 
fittest neural node is returned. This way, the controller 
finds a Least Loaded Path (LLP) to route traffic.  Assefa 
and Ozkasap [144] propose a Machine Learning Frame-
work for energy efficient routing and QoS optimization. 

In a similar effort, Deng and Wang [145] applied Simu-
lated Annealing (SA) to design a PSA to meet the specific 
QoS requirements of SDN-based IoT applications. AQRA 
incorporates a traffic classification module to categorize 
applications into high, medium, and low priority. The 
classification is according to QoS Class Identifier (QCI) 
obtained from the application profile set by the service 

providers. An initial path is determined using Dijkstra 
but updated later by SA for each flow. The SA-based 
module designs the routing rules according to the ap-
plication profile.  In another work [147], Energy Optimize 
Routing with Congestion Control for SDN WBAN is de-
veloped using Spider Monkey Optimization techniques. 
The network's weight/cost of available paths is mod-
elled with residual energy level, link reliability, path loss, 
and queue length. Therefore, an optimum path among 
the paths is selected using the SMO algorithm. In a dif-
ferent approach, Naïve Bayes is used by El-Garoui et al. 
[148] to solve a routing problem. The solution optimizes 
Communication Overhead (CO) and Transmission Laten-
cy (TL) between pervasive nodes in SDN-VANET. The MLT 
influences CO reduction between the controller and RSU 
by predicting vehicle location as per RSU.

3.4.1. Genetic Algorithm (GA) Approach

Yu and Ke[149] acknowledge that video streaming is a 
pervasive killer application in the modern internet that 
require a highly efficient routing method to meet users' 
QoS demand. For this reason, they exploit the Genetic 
algorithm (GA) to develop a routing algorithm (GA-SDN) 
that can enhance video traffic over SDN. GA-SDN model 
the network as a connected graph with candidate paths 
from the source to the destination represented as (si, list, 
sj). For any ingress traffic, the algorithm identifies a vid-
eo in two ways; (1) ToS/DSCP bits of the packet and (2) 
Port number. If any packets whose information matches 
any video stream protocol, GA-SDN will not forward it 
according to the default SP. Instead, the algorithm will 
check the link utilization to determine whether the avail-
able bandwidth can provide the required QoS support. 
The technique is benchmarked against BF Algorithm[56]. 
Similarly,[150] deploys a secured GA-Based module in an 
SDN controller to perform a route calculation task that 
selects a path with optimized energy-consumed nodes 
in an IoT environment. Block-Chain technology is used 
to maintain a list of malicious activities of nodes in the 
DP, which the GA-Based routing module consider when 
taking a PS decision.

In contrast to GA-SDN, Li et al. [151] use Non-domi-
nated Sorting Genetic Algorithm (NSGA II) to model a 
multi-objective optimization PS decision in SDN. It con-
tains Monitoring (NMM), Awareness(NAM), and Recon-
figuration (NRM) Modules. NRM receives instruction 
from NMM to reroute traffic to a better path when link 
utilization is high, or AVB is less than the flow require-
ments. The authors claimed that using NSGA II influ-
ences the reduction of forwarding latency and packet 
loss ECMP [6]. The work in [152] is another example of 
a routing problem solved with NSGA II. The authors ap-
plied the algorithm to propose a secure routing with 
untrusted DP switches.

3.4.2. Reinforcement Learning Approach

Reinforcement Learning (RL)[153] leverage the moni-
toring module of OpenFlow to gather comprehensive 
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network statistic to build state representation space for 
the reward and action tuples to use in SDN. RL variants 
like Q-Leaning, Q-routing, and SARSA-Leaning have 
been applied in SDN to optimize different PS problems 
[154]–[159].

Conversely, [154] propose Q-FDBA to address video 
streaming problems related to Quality of experience 
(QoE) fairness. A Q-Leaning is used as the cluster de-
cision algorithm to maximize the QoE. Other work by 
[155] combined State-Action-Reward-State-Action 
(SARSA)- with variable ɛ-Greedy function to solve SDN 
PS problems concerning congestion, packet queue 
waiting time, and transmission speed. In another ap-
proach, Huong et al. [157] combine RL with Deep Neu-
ral Network to develop a scheme called RLLP to address 
a load balance problem during PS. The reward function 
that guides the RLLP for load-balancing decisions con-
siders the link delay, standard deviation, utilization, and 
discount rates. Whereas [158] uses RL components to 
propose a framework for traffic-aware energy-efficient 
routing HyMER.  Similarly, in Shi et al. [159], the SARSA 

version of RL is also applied to develop a delay-aware 
PSA for SDN-supported power distribution application 
in an IoT environment (SDRS). SDRA uses an RL agent to 
adapt to the fluctuating network state and make a PS 
decision that improves system performance in terms of 
delay. Furthermore, an energy-efficient routing prob-
lem in large-scale SDN-IoT is also handled [160]. The 
authors propose two-level control mechanisms involv-
ing Multi-hop clustering MHC-RPL and a Q-Routing 
version of RL. However, in addition to its high conver-
gence time, the requirement of a Q-learning algorithm 
to maintain a Q-table for storing state, action, and re-
ward space information greatly limited its applicability 
to solving routing problems in SDN. Thus, to address 
the shortcomings of RL as experienced in Q_FDBA, Yu 
et al. [161] introduced a Deep Deterministic Policy Gra-
dient (DDPG) mechanism to replace Q-table use with a 
neural network. The authors proposed Deep Reinforce-
ment Learning (DROM) to optimize the routing proce-
dure. DROM is benchmarked with OSPF concerning 
convergence time, delay, and throughput metrics. 

Ref

Path Selection Criteria Use Case / Aim Design 
Objective

Solution Approach 
& BLA

Validation & 
Implementation ToolsParameters No of Constraints

IoT DCN WAN Others LB QoS FT RU AI MM / 
OtherLink 

Quality
Critical 
Switch

Flow 
Features MCP CSP MCSP

[146]  X X  X X X  X   X X X ANN
[144]  X  X X X X  X Energy X X X   X POX, Mininet SNDlib

[145]  X  X X   X X Campus 
Network   X X SA Dijkstra Ryu, Mininet-WiFi, 

D-ITG

[147]  X X  X X  X X WBAN X  X 
Spider 

Monkey MATLAB

[148]  X X X  X  X X VANET X  X X Naïve 
Bayes X Ryu, Mininet SUMO 

[149]  X   X X X X X  X  X X GA X Ns2, [108]myEvalSVC

[150] X  X X  X  X X Security 
&Energy  X X GA X MetaMask Ganache

[151]  X X X X X X X X    X  NSGA-II X Ryu, Iperf, Mininet 

[152] X RL, 
Untruth X X  X X X X Security X  X NSGA-II LP Matlab

[154]  X   X X X X X  X  X X Q-Leaning X ODL Mininet 

[155]  X X  X X X X X    X 
SARSA & 
ɛ-Greedy X Mininet [107]

[157]  X X  X X X X X    X  RL X Ryu, Mininet, DITG

[158]  X X  X X X  X Energy  X X 
RL, 

Leaning X POX, MininetSNDlib

[159]  X X X  X  X X PLC X  X X SARSA X --

[160]  X X X  X  X X Energy X  X 
RL 

Q-Routing X Cooja, Contiki, RPL

[161]  X  X  X X X X  X  X X DRL X TensorFlow 
Keras,,OMNeT

[162], 
[163]    X  X X  X X X  X  DRL X OMNeT

[164]  X X X  X X  X Backbone 
Network X  X X DRL, SA X OMNeT++

[165]  X X X  X X  X Sprint X  X X DRL X OMNeT++

[166]  X X X X  X X X NSF 
NetARPANet X  X X DRL Yen Ryu, Mininet 

[167]  X X  X X  X X Security X  X  DRL X Tensorflow
[168]    X X   X X FASNET  X X ACO X TinyOS, MintRoute

[169]  X X  X X X  X Energy   X  ACO LP Floodlight, Mininet, 
Iperf3

Table 7. Comparison Table of PSA with Machine Learning
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The works in [162][163] also did a similar thing with 
DRL to address the problem of amalgamating EF with 
MF on the same path. The authors consider multiple 
network resources such as switch cache, link band-
width to map, and schedule flow according to QoS 
requirements. In another effort, Maheswari et al. [164] 
also involved DRL to optimize routing procedures in 
SDN. The techniques aim to optimize network delay, 
network operation, and maintenance costs. The Traffic 
Matrix (TM), link weight, and network delay are rep-
resented by the state, action, and reward tuples. Like-
wise, in the work of Xu et al. [165], a DRL technique is 
integrated into SDN PSA to optimize performance con-
cerning delay, hop count, and throughput. Chen et al. 
[166] formulated a traffic engineering problem in SDN. 
They developed an RL-Routing, based on DRL to find 
an optimized solution. Network delay and throughput 
are modelled in the state representation space of DRL. 
The reward function taps these metrics from this space 
to build an action space. The action space comprises a 
list of all paths and their associated cost (reward). Fur-
thermore, the vulnerability of PSA in SDN to dynamic 
change of flow control rules at the time of malicious 
activities motivates Gou [167] to propose a DRL-based 
QoS- Aware security routing algorithm (DQSP) for IoT 
applications. DQSP is modelled to be immune to Gray 
Hole Attacks (GHA) and DDoS attacks. DQSP is evalu-
ated in terms of PDR, E2E Delay, and probability of path 
attack (PA).

However, the state space of RL is overpopulated with 
many metrics, whose extraction and calculation from 
the MM might overwhelm the controller.

3.4.3. Ant Colony Optimization Approach

Ant-Colony Optimization (ACO) technique is ex-
ploited to develop a Traffic Differentiated Routing 
(TDR) [168]. The authors formulate a transmission 
reliability and prediction model as an LP.  The model 
considers link availability and node forwarding abil-
ity to develop a TDR to guarantee the QoS of Flying 
Ad-hoc Sensor Networks (FASNETs). The also model 
seeks to arrive at a spanning tree that minimizes the 
average delay and improves data integrity for reliabil-
ity-sensitive applications. The NP-hard nature of the 
problem compels the authors to seek a solution from 
the ACO. Torkzadeh et al. [169] incorporate an energy 
optimization constraint for a load-balancing routing 
problem in SDN. The authors propose a two-phase 
solution to solve the problem. A minimum graph 
ACO is employed in the first phase to prune the net-
work topology. All inconsequential DP switches are 
discharged during routing, leaving only an energy-
minimized sub-graph. In the second phase, a QoS-
weighted PS technique is developed to route the 
traffic along paths with a balanced load based on a 
dynamic threshold value. 

4. OPEN CHALLENGES FOR FUTURE RESEARCH

4.1. PSA WITH LINK QUALITY AWARE 

4.1.1.  Network State Information Problem

All PSA considering link quality parameters, wheth-
er static or dynamic (See section 2.4 for details), de-
pend on Network State Information (NSI) for the PSD. 
The controller collects the NSI from the DP at time 
intervals and feeds it into the PSA to make the deci-
sion. PSA assumes this information to be accurate 
and adequate to make the right decision. The NSI is 
collected through sampling or polling techniques. 
However, if the former technique is used, the NSI 
might be inadequate or inaccurate at the time of PSD. 
However, it is a big challenge to maintain a high level 
of statistic collection accuracy in practice due to the 
periodic manner of the collection. Depending on the 
collection interval, the PSA might be called upon to 
take PSD during this interval. In this circumstance, the 
PSA must use the old information available. However, 
this might mislead PSA to make false positive or false 
negative decisions. Selecting the sampling period de-
pends on the topology size and density if an overhead 
reduction is critical in the network. Therefore, it will 
be interesting to undertake further study to explore 
how the NSI collection period by the controller can 
dynamically adapt to topology and traffic changes. 
The study should provide a balance between ad-
equate NSI for accurate PSD and message collection 
overhead on the controller. The idea of modelling link 
cost as a probabilistic metric is an exciting possibility 
in addressing inaccurate NSI. 

Furthermore, it is essential to note that PSA with 
multiple constraints might not necessarily be an NP-
complete problem. Instead, it further depends on 
other factors, such as topology size. Therefore, solution 
searching using an exact algorithm approach should 
be able to distinguish the scenario for which the com-
plexity of the problem is polynomial to refine the solu-
tion searching approach.

4.1.2. Service Level Agreement (SLA) 
 Evaluation Inconsistency 

Subjectivity in evaluating satisfaction and compli-
ance level of the QoS requirement captured in SLA by 
customers and service providers affects the trust and 
future relationship between them. The situation might 
sometimes lead to substantial financial loss for both 
parties [5]. This scenario is possible due to the lack of a 
QoS satisfaction measurement framework that can me-
ticulously verify, audit, and validate the guarantee level 
pledged to each as defined in the SLA. Therefore, it is 
an exciting research concept to imagine a quantitative 
and unified technique to objectively provide a detailed 
evaluation of such agreement. Incorporating AI tech-
niques might be helpful.   
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4.2 PSA WITH CRITICAL SWITCH AWARE

Several initiatives for different use cases have been 
proposed in recent years to solve a path selection prob-
lem for SDN. However, only a few have examined how 
SDN performs in dynamic, large-scale telecommunica-
tions networks, where heavy traffic flows are constantly 
generated. Similarly, the limited switch memory influ-
ences SDN performance in large-scale networks due to 
increased update operations and security-related risks. 
It is proven that in such an environment, many flows 
carry many packets in a short amount of time. Switch 
memory cannot hold the necessary amount of flow en-
tries. This limitation remains one of the research prob-
lems that need additional studies. i.e., managing mas-
sive flows with many packets in the power-hungry tiny 
switch flow table.

4.2.1. Rule Update Operation on Switch flow table 

Flow-table TCAM uses exact and wildcard matching 
rules for update operations [1]. Therefore, an effective 
PSA should understand the suitability of each possibil-
ity while formulating an optimization objective. Unlike 
exact rules, which must provide individual flow rules 
for each entry in a switch flow table. On the other hand, 
the wildcard rules allow multiple flows to be composed 
as one. This way, all identical entries can be recycled 
among various flows, thereby minimizing the number 
of entries and the overhead of frequent flow setup re-
quests. PSA should also consider that TCAM operates 
slowly during an update operation. Therefore, packets 
may experience delays, especially in large networks. 
Hence, failure recovery must strictly comply with the 
CGN latency requirements. 

4.2.2. Reactive and Proactive Rule Installation  
 Hybridization

The number of critical switches in a network can be 
reduced by hybridizing reactive and proactive flow 
rule installation approaches. Employing a proactive ap-
proach for time-constraint applications is a preference. 
In contrast, best-effort or applications without dead-
line violation can embrace the reactive approach. For 
PSA to effectively utilize the limited TCAM space and 
decrease overhead and packet delay, efficient flow rule 
allocation should incorporate both reactive and proac-
tive approaches. Therefore, designing a PSA while tak-
ing traffic variations along with these approaches will 
be an intriguing research topic. Re-routing rules should 
be executed in under 25ms to satisfy the strict QoS 
specifications of real-time applications.

4.3. PSA WITH FLOW CHARACTERISTICS  
 AWARE

Traffic management has become essential to com-
puter network design requirements [170]. The concept 
impacts various computer network areas of concern. 
E.g., Security issues such as intrusion and violation de-

tection, glitch discovery such as TCP incast [171], and 
anomaly tracking such as DDoS [172]. Other areas are 
Traffic Engineering (TE), Quality of Service, Resource 
Management, Energy, PS Optimization and flow rerout-
ing, Service Level Agreement (SLA) Appraisal, and Au-
diting. Most of the PSA with traffic awareness involves 
detecting and classifying a  flow according to priority, 
size, or duration. The following issues are areas of con-
cern that call for further investigation.

4.3.1. Flow Feature Selection Dilemma

Flow statistics such as size, duration, rate, or burst are 
used to compare a flow against a pre-defined thresh-
old to classify flows accordingly. The threshold value 
can be fixed or adaptive. Selecting the flow feature for 
flow classification depends on the design objectives of 
the problem. There is no unanimous settlement on 

4.3.2. Threshold Value Determination Challenge

The selection of a threshold value by most of the ex-
isting flow-aware PSA lacks a specific and systematic 
justification. Both static and adaptive threshold values 
run into this problem. Most of the papers reviewed in 
section 3.3 cited previously published works, for which, 
at the end of the citation chain, there is no justification 
for the chosen threshold. That trend is observed across 
numerous works. As a result, rather than being system-
atic, threshold selection in existing studies appears ad 
hoc. A study in [79] suggests that the preconfigured 
fixed threshold parameter for EF detection incurred 
high detection error rates because of its ability to adapt 
dynamically in real-time to constant traffic variability in 
a contemporary network. The tendency to report false 
positive and false negative errors is significant. The 
techniques do not adequately consider the dynam-
ics of network traffic. Instead of being static, network 
traffic is dynamic. It may alter over time in response 
to variables such as the time of day, configuration 
changes, failures, or adjustments to the topology and 
instrumentation. Every time the threshold needs to be 
adjusted, the classification must be repeated to reflect 
the dynamic nature of the network. Manual threshold 
adjustment is nonetheless impossible due to the non-
deterministic and frequent changes in network traffic 
conditions.

4.3.3. Flow Identification Overhead  
 and Accuracy challenge

Flow detection mechanisms incorporated in PS 
schemes incurred some overhead in the stage of statis-
tics gathering. Statistics-gathering techniques can be 
through sampling, polling, triggering, or hash functions. 
Each of these techniques has specific strengths and 
weaknesses regarding application areas and scenarios. 

Sampling is one of the most adopted methods to ac-
quire and profile networks for traffic analysis. Popular 
sampling method such as sFlow [35] has been incor-
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porated by several (EFDM). It is scalable and adaptable 
to traffic heterogeneity in DCN [79], as several switches 
can be monitored efficiently by the sFlow protocol. In 
contrast, polling techniques deal with every flow entry 
in the flow table. A prior study [79] reveals that 64kb 
or 88bytes messages will return to the controller for 
each polling request. This data might not seem much, 
but if the average DCN size with 100 edge switches is 
factored in, that can reach up to 10mf/s on average. 
Summing up that for 88bytes, the total data to return 
will be up to 65GB. This data will dominate the limited 
bandwidth of the northbound interface. Therefore, em-
ploying this method to gather network statistics for EF 
identification in DCN will cause significant overhead 
and bandwidth mismanagement. Ref [4] suggests that 
EF are few in a DCN; thus, it is inefficient to accumulate 
data on each flow to detect EF in the network.

On the contrary, the triggering approach sets up a 
sniffer agent or applications at the end host [84]. The 
technique detects and classifies flows before transmis-
sion directly and precisely. Once the dimensions of a 
flow (e.g., socket buffer, flow size) surpass a set-up 
threshold, the EFDM decides that the flow is indeed an 
EF. The method reduces the overhead. However, it is 
impractical in DCN due to the requirement of changing 
the operation of each end host. For these reasons, it is 
interesting to conduct further studies in that direction.

4.4. PSA WITH MACHINE LEARNING 
 TECHNIQUES 

One of the significant challenges of employing ML 
techniques to solve real-life problems is the data set 
availability for model training. Privacy and confidenti-
ality issues associated with computer networks make 
sharing this data difficult and scarce. The situation is 
worse in SDN because the technology is still emerging. 
For this reason, future research should be directed to-
ward building and expanding the existing Opensource 
data set, such as SDN ITZ.

Secondly, PSA sought through ML should be adapt-
able to factors like communication mediums and ap-
plicable to technologies like Low-power and lossy net-
work (LLNs) use in WSN. The forms of communication 
such as unicast, multicast, or broadcast applications 
(use case) like fog computing, DCN, and 5G. Likewise, 
traffic heterogeneity should be considered along with 
prediction patterns to guide the adaptation. Thus, NSI 
must be obtained regularly for accurate prediction and 
PS policy formulation. Thirdly, the ML model should in-
corporate safe mechanisms to preserve NSI integrity. 
This mechanism inclusion is necessary to avoid inac-
curate findings or inconsistent decisions because the 
data collection could be impeded or even altered. 

4.4.1. Training Dataset Scarcity Problem

One of the significant challenges of employing ML 
to solve real-life problems is the data set availability 

for model training. Privacy and confidentiality issues 
associated with computer networks make sharing this 
data difficult and scarce. The situation is worse in SDN 
because the technology is still emerging. For this rea-
son, future research should be directed toward build-
ing and expanding the existing Opensource data set, 
such as SDN ITZ.

4.4.2. Intelligent Flow Table Management

In large networks, many flows arrive regularly, neces-
sitating the installation of relevant rules in a flow table to 
occupy substantial storage space. Most SDN TCAM-relat-
ed solutions in the literature are only evaluated on small 
networks [173]. What works for these networks cannot 
be compared to the number of devices in an extensive 
network such as WAN, DCN, or (IoT).  ML techniques are 
handy for managing devices like switches and control-
lers. Many ML approaches, however, concentrate on flow 
classification and flow monitoring. Most research focus-
es on selecting the optimum traffic flow to be installed 
in advance rather than forecasting traffic flow for real-
time applications and best-effort traffic. OpenFlow pro-
vides built-in data collection that stores flow-statistic like 
packet counts. This statistical data shows how frequent 
traffic flows. It will be interesting to develop a plan that 
takes advantage of this built-in data collection to reduce 
TCAM space usage. So the flow matching rate can speed 
up. Perhaps by applying fuzzy theory in the choice of re-
currently used flow rules to be placed in the flow table.

5. CONCLUSION

SDN provides flexibility in managing the complexity 
and demand of our modern network, which was unable 
to be provided by traditional architecture. In this paper, 
we picked the network management task of path selec-
tion for routing traffic and reviewed the existing algo-
rithms under four categories. (1) To guide their PSD, the 
PSAs with static link quality under different traffic condi-
tions or dynamic link quality. (2) The PSAs that evaluate 
the criticality of a switch in terms of an update operation, 
flow table, and port capacity to guide PSD. (3) The PSAs 
that consider the traffic flow heterogeneities in terms of 
size, duration, burst, and priority to guide PSD. (4) The 
PSAs that use ML for PSD decisions. For each category, 
the papers were reviewed considering their path selec-
tion criteria, use case, design objectives, solution ap-
proach, baseline algorithms, and validation approaches. 
A comparison summary table is given at the end of each 
category. Based on the review, some persistent chal-
lenges related to each category are identified and rec-
ommended for further study. For instance,  inaccurate 
and inadequate NSI in PSA with dynamic link quality and 
SLA evaluation are challenges that need further study. 
Secondly, rule update operations overhead is a chal-
lenge in PSA with critical switch awareness. The paper 
suggests hybridizing reactive and proactive rule instal-
lation approaches to optimize PSA convergence. Thirdly, 
the paper identifies flow feature selection and threshold 
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value challenges during flow classification. Furthermore, 
the paper identifies flow identification overhead and ac-
curacy as issues requiring further research efforts associ-
ated with PSAs considering traffic dynamics. Lastly, the 
paper identifies training dataset scarcity as a problem 
faced by PSA employing ML.  
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