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Abstract – Fluid clot below the retinal surface is the root cause of Central Serous Retinopathy (CSR), often referred to as Central Serous 
Chorioretinopathy (CSC). Delicate tissues that absorb sunlight and enable the brain to recognize images make up the retina. This 
important organ is vulnerable to damage, which could result in blindness and vision loss for the affected person. Therefore, complete 
visual loss may be reversed and, in some circumstances, may return to normal with early diagnosis discovery. Therefore, timely and precise 
CSR detection prevents serious damage to the macula and serves as a foundation for the detection of other retinal disorders. Although 
CSR has been detected using Blue Wave Fundus Autofluorescence (BWFA) images, developing an accurate and efficient computational 
system is still difficult. This paper focuses on the use of trained Convolutional Neural Networks (CNN) to implement a framework for 
accurate and automatic CSR recognition from BWFA images. Transfer Learning has been used in conjunction with pre-trained network 
architectures (VGG19) for classification. Statistical parameter evaluation has been used to investigate the effectiveness of DCNN. For 
VGG19, the statistic parameters evaluation revealed a classification accuracy of 97.30%, a precision of 99.56%, an F1 score of 97.25%, 
and a recall of 95.04% when using a BWFA image dataset collected from a local eye hospital in Cochin, Kerala, India. Identification of CSR 
from BWFA images is not done before. This paper illustrates how the proposed framework might be applied in clinical situations to assist 
physicians and clinicians in the identification of retinal diseases.
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1.  INTRODUCTION

The retina is located near the optic nerve at the back 
of the eyeball and is made up of thin layers of ocular 
tissues [1]. The major job of the retina is to collect light 
from the focal length of the lens and convert it into 
message signals that the brain can recognize visually. 
As a result, the retina is regarded as an important com-
ponent of the eye and is crucial for identifying diverse 
nearby objects. Any abnormal or impairment to the ret-
inal layer might cause the patient to lose their vision or 
have visual impairments. Blindness and visual loss may 
be caused by Central Serous Retinopathy (CSR), one of 

the diseases which impacted more people worldwide. 
The primary reason for CSR is the clotting of the liquid 
medium on the Retinal Surface Area (RSA), which ad-
versely impairs people's eyesight [2]. To prevent visual 
loss, early accurate CSR detection can help with treat-
ment choices and diagnostic methods. Several imag-
ing modalities, including Fundus photography, Optical 
Coherence Tomography Angiography (OCTA), and Blue 
Wave Fundus Autofluorescence (BWFA), are employed 
for this CSR detection purpose. Among all BWFA-based 
methods for detecting a variety of retinal diseases, it is 
considered the most suitable and cutting-edge imag-
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ing tool. Although the BWFA imaging method is similar 
to ultrasonic imaging, it has a little difference in de-
tection. Unlike ultrasound imaging, which records an 
ultrasound image using sound waves, BWFA imaging 
uses blue light rays [3]. Employing a set of endoscopes 
and catheters, high-definition pictures of the RSA were 
generated via BWFA. In BWFA images of healthy pa-
tients and those with CSR the size of the fovea, the cho-
roid, the Inner Limiting Membrane (ILM), and serous 
retinal detachment could be detected.

Thanks to the recent advancement of quantitative 
BWFA, Artificial Intelligence (AI) categorization of eye 
disorders and computer-aided illness diagnosis are 
now feasible. Vascular occlusions, Sickle Cell Retinopa-
thy, Age-related Macular Degeneration (AMD), and CSR 
have all been investigated using quantitative BWFA 
analysis. Recent research has shown that supervised 
Machine Learning (ML) is effective for categorizing a 
range of activities to distinguish between normal and 
CSR images. Deep Learning (DL) provides a simple 
means of promoting the clinical application of AI clas-
sification of BWFA images. The Convolutional Neural 
Network (CNN) method, which was designed to mimic 
how the human brain interprets visual data, is normally 
referred to as DL [4].

To extract and analyze straightforward characteristics 
in the early layers and information useful in the layers 
of the network of the feed-forward processing of visual 
signals, CNNs employ millions of artificial neurons, often 
known as parameters. Until a CNN can be trained for a 
specific classification task, the network parameters need 
to be adjusted using millions of images. The lack of cur-
rently available images for the comparatively recent im-
aging modality BWFA, however, presents a challenge for 
the practical use of DL. DL has been proven to be imple-
mented using a Transfer Learning (TL) approach to get 
around the data size restriction. TL is a technique for op-
timizing the weights of a pre-trained CNN by adopting 
some of its weights and correctly retraining parts of its 
layers (i.e., AI classification of retinal images). TL has been 
investigated in fundus photography for artery-vein seg-
mentation, glaucoma diagnosis, and diabetic macular 
thinning assessment. TL has recently been investigated 
in BWFA for the detection of AMD, diabetic macular ede-
ma, and choroidal neovascularization.

Fig. 1. Convolutional Neural Network for Image 
Classification

Because the weights in each layer can be changed, TL 
can theoretically entail a single layer or numerous lay-
ers. In a 16-layer CNN, for instance, the precise number 
of layers needed for retraining may differ based on the 
dataset at hand and the target job. Since there aren't as 
many large publicly accessible BWFA datasets, images 
verified by ophthalmologists have been collected from 
a private hospital [5]. In this study, we show how BWFA 
can be used for DL-based automated classification for 
the first time. We want to train a small dataset using TL 
to produce a highly accurate CSR classification.

2.  RELATED WORKS

To evaluate CSR, Dursun et al. [6] presented the Deep 
Capillary Plexus (DCP-VD) and Superficial Capillary 
Plexus (SCP-VD) parameters. The accuracy of detec-
tion when utilizing a Support Vector Machine (SVM) is 
87%. Pawan et al. [7] introduced a modified version of 
Capsule Network for the detection and segmentation 
of CSR. This algorithm is lightweight and reduces the 
computational overhead. While using 1792 samples 
this technique provides a Dice Coefficient of 94.04 and 
an accuracy of 91.67%. Sulzbacher et al [8] categorized 
neo-vascular and non-neo-vascular CSR. They utilized 
ML algorithms for the diagnosis of CSR. By using logis-
tic regression, the accuracy obtained is 92.63%. Signal 
variations at the Chorio Capillaries (CC) level in patients 
with various phases were examined by Cakir et al. [9]. 
According to this approach, CSR patients were classi-
fied into four categories: acute, persistently atrophic, 
non-resolving, and inactive. CNN was used for the de-
tection of CSR and the accuracy of detection is 92.13%. 
Aggarwal et al. [10] conducted an analysis to identify 
the differences between acute Vogt-Koyanagi-Harada 
disease (VKH) and acute CSR in terms of image char-
acteristics. Sonoda et al. [11] suggested employing 
enhanced depth imaging to identify the anatomical 
changes of the choroid in eyes with CSR. The Inner and 
Outer Choroid structural changes technique is em-
ployed. In the images, the inner and outer choroid's 
hypo-reflective and hyperreflective regions were mea-
sured separately. The results revealed that the outer 
choroid of the CSR eyes had a significantly larger hypo-
reflective area (446,549 + 121,214μm2) than the con-
trol eyes (235,680 + 97,352μm2, P<0.01). 

The diagnosis in CSR, according to Kulikov et al. [12], 
is based on ML and AI. The values for identifying sub-
retinal fluid were 0.61, 0.99, 0.99, and 0.76, respectively, 
according to the analysis of test sets. For the detection 
of anomalies in the retinal pigment epithelium (RPE), 
the specificity, sensitivity, F1-score, and precision were 
0.95, 0.14, 0.24, and 0.94, respectively. For leaking point 
identification, the sensitivity, specificity, accuracy, and 
F1-score were 0.06, 1.0, 1.0, and 0.12, respectively. 
The proposed method concluded that ML had great 
promise for identifying structural anomalies linked to 
acute CSR. Narendra et al [25] reported a CNN for the 
automatic segmentation of Sub-Retinal Fluid (SRF) to 
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identify CSR. The suggested technique, provided Dice, 
Recall, and Precision of 0.91, 0.83%, and 0.93%, respec-
tively. An automatic SRF segmentation method is ap-
plied in the suggested model. Pre-processing and fluid 
segmentation are the two stages of the SRF segmen-
tation method. Yoon et al. [13] proposed developing 
a DL system model to diagnose CSR and differentiate 
between chronic and acute CSR. This model's accura-
cy, sensitivity, and specificity for diagnosing CSR were 
93.8%, 90.0%, and 99.1%, respectively. Jaisankar et al. 
[14] identified damaged choroidal areas and associat-
ed retinal alterations in acute and recurring CSR. Khalid 
et al. [15] conducted the first-ever analysis of a decision 
support system. The proposed system's automated dis-
ease identification is based on a multilayered SVM clas-
sifier that was trained on 40 labelled scans. With sensi-
tivity, accuracy, and specificity ratings of 98 %, 96.92 %, 
and 95.86 %, respectively, the suggested approach was 
successfully diagnosed in 2817/2819 individuals. 

Evaluation of the morphological variations in the 
choroidal vasculature in acute and chronic CSR was 
suggested by Lee et al. [16]. Different choroidal vascu-
lar dilatation patterns between acute and chronic CSR 
were discovered using the suggested methodology. 
These discoveries could aid in our understanding of the 
pathophysiology of CSR. In eyes with acute CSR that 
had not yet received treatment, Yang et al. [17] recom-
mended using CNN to evaluate the three-dimensional 
choroidal vascularity index (CVI). This technique makes 
use of 3D-CVI, which volumetrically evaluates the cho-
roidal vasculature, and is a valuable imaging marker of 
choroidal disorders, according to the suggested meth-
od, which may help better understand the pathophysi-
ology of CSR. 

In the evaluation of the eyes, Altnel et al. [18] divided 
them into three groups: failure, partial remission, and 
complete remission. The thickness of the Ellipsoid Zone 
(EZ), Outer Nuclear Layer (ONL), and retinal pigment 
epithelium (RPE) were all assessed using this proce-
dure. In the group of patients with complete remission, 
the baseline EZ and RPE were discovered to be intact 
in 71.4% and 64.3% of the eyes, respectively. However, 
in the failure group, these rates were 25% and 16.7%, 
respectively.  Tang et al. [19] proposed evaluating 
quantitative indicators associated with treatment re-
sponse and the beginning of macular neovasculariza-
tion (MNV) in CSR using an AI-based methodology. In 
the experiment, eplerenone produced an outstanding 
reaction in 40/78 (51%) of the eyes, compared to PDT in 
38/78 (49%) of the eyes.

3. METHODOLOgy

The images collected from a local eye hospital in Co-
chin, Kerala, India (BWFA dataset) are used to train the 
classifier (VGG19) used in this research [20]. TL is incor-
porated to enhance the classifier's performance. In the 
event of an error, it spreads backwards through the sys-
tem and modifies the weight of each node. 

Iterations of this procedure are repeated over and over, 
and the distance is continually assessed and improved. 
Convolutional layers extract the features, and the CNN is 
trained using these features. A CNN is a DL-based Artifi-
cial Neural Network (ANN) architecture. We developed a 
fairly straightforward method. The convolution layer and 
max-pooling layer of the CNN, which together form the 
2D spatial image (pooling), are mapped to the values in 
Equations (1) and (2). Every neuron receives an output 
value z from a function called activation that filters input 
data x with weight coefficients w. If a layer has an n num-
ber of neurons, then a specific neuron named j in the fol-
lowing layer gets an n input value. Bias bj integrates and 
adds these coefficient-weighted inputs. wi,j is the weight 
applied to the input of ith neuron to produce an output 
at jth neuron. A neuron's activation function f produces 
the signal zj. Fig. 2 shows the structure of an artificial 
neural network.

(1)

(2)

The input variable x is assumed to have L x L 2D 
source pixels and to be processed by convolution with 
a table of weights using H x H window. After extract-
ing values of the same size from the source image, the 
convolution combines the weighting factors of the 
window H x H by the filter values of the pixels for the 
source. By shifting the window, then the process of 
filtering is applied once more to the source image. It 
should be mentioned that a zero-padding method was 
included to make sure that both the input and output 
are of the same size.

Fig. 2. Structure of ANN (a) Data Flow in DL (b) Inner 
Structure of Neuron

(a) (b)

The convolution operation is displayed in Fig. 3. As xi,j 
is then multiplied by wk,l,n, a grid at (i,j) on the filters is 
independently shifted. This equation is written as fol-
lows, incorporating the bias bn in the expression and 
the convolution form:

(3)

(4)

yi,j,n represents the convolution output of the image 
with a weighing filter and zi,j,n is the final output after 
applying a rectified linear unit (ReLU) as the activation 
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function (f ), which could select positive input values as 
a result of an improvement in matrix conversion.

(5)

Fig. 3. Convolution Layer with Filter

Equation (6) defines pooling, which is generally used 
to produce 2D data, but does not include weighted co-
efficients or activation functions. p, q is the domain's 
horizontal and vertical parts, and Up, q is the square 
unit domain with the dimensions R x R.

(6)

where zp,q represents the max-pooled output of the 
processed image sub-region xi,j, of the whole image 
Up,q. The same purpose as Equations (1) and (2) is served 
by these processes, which produce relatively small 2D 
picture data that are subsequently transmitted to a ful-
ly linked layer. These 2D picture data are transformed 
into several number of 1D digital files that offer details 
about the classification of the original image. The Soft-
Max function in Equation (7) transforms outcomes into 
probabilities in the output layer. It is a normalized ex-
ponential function. It evaluates binary categorization.

(7)

fyj represents the softmax function that converts the 
output score of each neuron yj to probabilities of being 
in a class.

This work considers the existence of two distinct do-
mains. Large datasets used to train a model in a specific 
(source) domain typically require a lot of time before 
an accurate prediction can be made. When the model 
is used in a different (target) domain that is unrelated 
to the source domain, training takes a lot of time. TL is 
one of the approaches for improving the effectiveness 
of the prediction in the target domain (e.g., decreasing 
run time). For the target domain, the TL can repurpose 
accumulated common knowledge from the source 
domain. Recently, the CNN combined with a transfer-
learning strategy (CNN-TL) is a successful image clas-
sification technique. In this work, CNN-TL was used to 
transform time series data to picture data because our 
model should be able to forecast time series. CNN was 
initially carried in the target domain (Fig. 4a). Second, 
portions of the CNN's hidden layers were modified be-
fore being reapplied to the particular domain. Finally, 
using datasets from the target domain, "the fully con-

nected layer 1" and "the fully connected layer 2" in the 
deep layers were re-trained (Fig. 4b).

Fig. 4. DL Architectures (a) Typical CNN  
and (b) CNN with TL

The CNN image must match a CSR value for CNN 
training and prediction operations to be effective. The 
dataset's images having size 256x256 were chosen be-
cause there weren't many variables. As input data, a 
square image is utilized. A 1x1 of the data output was 
linked to the data from the input data at the expected 
time. We assumed that the quantity of the predicted 
position in the following time step is produced by the 
CSR data in a square picture. Take note that the predict-
ed point indicates whether or not CSR is present.

4. RESULTS AND DISCUSSION 

The experimental outcomes of the suggested CSR 
detection algorithm are shown in this section. Utilizing 
the BWFA dataset, the proposed TL model's implemen-
tation is verified. BWFA images of individuals with CSR 
disease and BWFA images of healthy people have both 
undergone classifications. The entire dataset of images 
was divided into two categories by the algorithm, such 
as training and testing images. The dataset includes 
1600 images from the normal (healthy) group and 1608 
images from the CSR category. Sample images from 
both categories are shown in Fig. 5.

(a) (b)

Fig. 5. Sample Images from BWFA Dataset (a) CSR 
(b) Healthy.

The research addresses the class imbalance problem. 
The distribution of samples for the training classes is uni-
form. 70% of the images from each class were taken for 
training the CNN. The remaining 30% of the images from 
each class were used for testing the CNN. 
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Fig. 6 shows the distribution of BWFA images into dif-
ferent groups, which are used for training and testing 
the classifier.

Fig. 6. BWFA Dataset Class Distribution

The input to this network has a fixed-size (256 * 256) 
RGB image. Hence the matrix had the structure of (256, 
256, 3). The mean RGB value of each pixel, calculated 
throughout the whole training set, was the only pre-
processing that was carried out. They made use of ker-
nels with a stride size of 3 × 3 pixels. They were able to 
completely hide the image because of this. Spatial pad-
ding is being used to preserve the spatial resolution of 
the image. Max pooling was done with stride 2 above a 
2x2 pixel window. ReLu was then used to add non-lin-
earity, which improved computational efficiency and 
helped the model better categorise data than earlier 
models that employed tanh or sigmoid functions.

VGG19 is a CNN having 19 hidden layers in total. It 
is possible to load a network that has already been 
trained using more than a million images from the 
ImageNet database. The pre-trained network can cat-
egorize images into more than 1000 different object 
categories and has amassed rich visual information for 
a range of images. After loading the pre-trained model 
and analyzing the feature representations, it is noticed 
that there are 20,057,153 parameters in total. Of these 
parameters, 32,769 parameters are trainable. These pa-
rameters are trained using the features obtained from 
the BWFA dataset. The architecture of the proposed 
modified VGG19 model is depicted in Fig. 7.

The 32,769 parameters are trained using the pro-
posed model by considering binary cross entropy as 
the loss function. The usage of loss functions is to calcu-
late the quantity that a model should be used to mini-
mize during training. It computes the cross-entropy 
loss between true labels and predicted labels. Further-
more, when comparing our results to existing work, we 
used the same settings by using cross-validation and 
fixed partitioning techniques. The Python language 
was used to create the pre-trained models based on 
TL, which were then run on the Google Colab platform 
[21]. The rate of learning was 1 x 10-4, the minimum 
batch size was 32 and the optimum epoch count is 50. 
A reduction in the rate of learning increases the time 
for the training network while raising it causes training 
to become locked at an inadequate result [22].

Fig. 7. Proposed VGG19 Model Architecture.

Many performance indicators were considered to val-
idate the effectiveness and efficiency of the pre-trained 
VGG19 model integrating TL. Precision, F1 Score, recall, 
ROC AUC, specificity, and accuracy are the measures 
that are most frequently utilized. The words True Posi-
tive (TP), False Negative (FN), True Negative (TN), and 
False Positive (FP) are used to describe classification ac-
curacy. The count of CSR images labelled as CSR is TP 
and the count of healthy images labelled as healthy is 
TN. The count of healthy images labelled as CSR is FN 
and the count of CSR images labelled as healthy is FP 
[23]. The performance parameters are expressed math-
ematically as,

(8)

(9)

(10)

(11)

F1 score is the harmonic mean of precision and recall 
as indicated in equation 10. Fig. 8 shows the visualiza-
tion charts for the accuracy of BWFA image classifica-
tion. The number of iterations (epochs) used in the 
experiment was 50. The values of performance param-
eters are stable and high after the 40th epoch. This is 
due to the classification problem being solved using 
a TL approach. There is a chance that an error will oc-
cur during training, which is referred to as a loss. The 
proposed VGG19 model with TL for CSR detection has a 
minimum loss of 0.38, which is quite low as illustrated 
in Fig. 9. The entire set of test images must be used in 
the evaluation. The proposed VGG19 with TL model 
for CSR detection has an average accuracy of 97.30%. 
Precision and recall have average values of 99.56% and 
95.04%, respectively. The proposed model provides an 
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F1 score of 97.25% and a ROC AUC of 97.31%. The max-
imum number of BWFA images used for training can 
be increased to increase the classification parameters.

Fig. 8. Variation in Accuracy with Epochs

Fig. 9. Variation in Loss with Epochs

Experiments have been conducted on the developed 
model using a given BWFA dataset. The batch size se-
lected for training the model is 32. An experiment is 
conducted in various steps by varying the number of 
epochs. The total number of epochs varied from 10 to 
50, and the values of performance metrics were com-
puted. 10 epochs provided lower values for the perfor-
mance parameters, and 50 epochs provided higher val-
ues. There was no change in the performance parame-
ters after 50 epochs. So, the experiments are concluded 
and the values obtained for various performance met-
rics are given in Table 1. Fig. 10 shows ROC graphs and 
AUC displays the performance. The overall AUC for this 
cross-validation research was 0.9731.

Performance 
Metrics

Epoch

10 20 30 40 50

Accuracy (%) 95.72 96.21 97.78 96.14 97.30

Precision (%) 94.73 96.09 96.56 98.32 99.56

Recall (%) 92.16 91.58 93.57 93.92 95.04

F1 Score (%) 92.37 94.62 94.87 96.56 97.25

Loss 0.72 0.56 0.54 0.45 0.38

Table 1. Variation in Performance with Epochs

Fig. 10. ROC curves for the cross-validation of the 
proposed model

A detailed comparison of classification performance 
is required to assess the effectiveness of the proposed 
TL approach. On various datasets, the proposed trans-
ferred models' classification performance is evaluated. 
Table 2 compares the efficiency of existing models us-
ing the selected performance metrics.

Table 2. Comparison of CSR Detection Models

Model Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1-Score 
(%)

Loss 
(%)

AlexNet 95.92 96.21 94.78 92.32 0.58

GoogleNet 88.73 89.09 86.56 90.17 0.71

ResNet101 92.16 91.58 90.57 91.53 0.63

VGG16 92.37 92.62 91.87 95.56 0.44

Inception v3 87.92 84.06 85.74 92.45 0.56

Inception 
ResNet v2 89.95 89.40 91.57 93.52 0.49

Proposed 97.30 99.56 95.04 97.25 0.38

When comparing classification accuracy, the pro-
posed model achieves the best result of 97.30%, which 
is achieved through TL. In terms of accuracy, pre-trained 
models like AlexNet (95.92%), ResNet101 (92.16%), and 
VGG16 (92.37%) performed well. When compared to 
AlexNet's accuracy, the proposed classification model 
has an increase of 1.38%. When comparing classifica-
tion precision, the proposed model achieves 99.56%, 
which is the highest among all other models. AlexNet's 
precision was 96.21%, ResNet101's precision was 
91.58%, and VGG16's precision was 92.62%. When com-
paring the proposed classification model to AlexNet's 
precision, there is a 3.35% increase. The proposed mod-
el achieves a recall value of 95.05%. When compared 
to other models, this has the best recall value. AlexNet 
had a recall of 95.78%, Inception ResNet v2 had a re-
call of 91.57%, and VGG16 had a recall of 91.87%. The 
proposed classification model has a 0.27% increase in 
recall when compared to AlexNet's recall.

When the training loss is compared, the proposed 
method and AlexNet have a lower loss. The proposed 
model has a 0.38 training loss, while the AlexNet model 
has a 0.58 training loss. When comparing these two 
models, there is a difference of 0.2. The proposed mod-
el achieved the lowest loss and is the best classification 
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model for CSR detection. The significance of selected 
parameters demonstrates the value of TL in the reduc-
tion of over-fitting and improving classification accu-
racy. The proposed model and AlexNet were found to 
be efficient in identifying samples across appropriate 
datasets. Fig. 11 shows how the performance of the 
various models compares. In Fig. 12, it is possible to vi-
sualise the comparison of training loss.

Fig. 11. Comparison of Classification Performance

When it comes to CNN-based models, the real moti-
vation comes from the fact that they are used to solve 
extremely difficult problems using millions of labelled 
datasets. To create a dataset for DL models, you'll need 
years of data collection. There are various advantages 
to employing pre-trained VGG19 systems with TL for 
categorization. First and foremost, the coding system 
is automated. Secondly, noise filtering, ROI delineation, 
feature extraction, and selection are not required any-
more. Thirdly, there are no biases, and the pre-trained 
CNN models' predictions are repeatable. Finally, in con-
trast to previous CNN-based studies, a ceiling level of 
accuracy is obtained. The computation time is reduced 
because we used the Colab platform's CPU and GPU as 
hardware resources.

5. CONCLUSION 

In this work, we evaluated various pre-trained CNN 
techniques employing TL for BWFA image categoriza-
tion. To get the highest recognition rate, pre-trained 
CNN methods have been successfully combined with 
TL. The suggested model surpassed every other mod-
el that was put to the test, scoring 97.30% accuracy, 
99.56% precision, an F1 score of 97.25% and 95.04% re-
call for the BWFA datasets. This model uses TL to obtain 
the lowest training loss of 0.38. The results performed 
better on CSR classification from BWFA images than 
current classical and DL techniques. It performs better 
than current methods in eliminating the requirement 
for pre-processing procedures. Additionally, compared 
to existing DL-based work, the pre-trained AlexNet 
model produces better performance metrics. Future 
studies will concentrate on putting the models into 
platforms, reducing computational complexity, and in-
vestigating additional methods of fine-tuning.
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