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Abstract – Biomedical research and discoveries are communicated through scholarly publications and this literature is voluminous, 
rich in scientific text and growing exponentially by the day. Biomedical journals publish nearly three thousand research articles daily, 
making literature search a challenging proposition for researchers. Biomolecular events involve genes, proteins, metabolites, and 
enzymes that provide invaluable insights into biological processes and explain the physiological functional mechanisms. Text mining 
(TM) or extraction of such events automatically from big data is the only quick and viable solution to gather any useful information. 
Such events extracted from biological literature have a broad range of applications like database curation, ontology construction, 
semantic web search and interactive systems. However, automatic extraction has its challenges on account of ambiguity and the 
diverse nature of natural language and associated linguistic occurrences like speculations, negations etc., which commonly exist in 
biomedical texts and lead to erroneous elucidation. In the last decade, many strategies have been proposed in this field, using different 
paradigms like Biomedical natural language processing (BioNLP), machine learning and deep learning. Also, new parallel computing 
architectures like graphical processing units (GPU) have emerged as possible candidates to accelerate the event extraction pipeline. 
This paper reviews and provides a summarization of the key approaches in complex biomolecular big data event extraction tasks 
and recommends a balanced architecture in terms of accuracy, speed, computational cost, and memory usage towards developing 
a robust GPU-accelerated BioNLP system.

Keywords: Bimolecular event extraction, natural language processing, text mining, machine learning, BioNLP shared task

1.  INTRODUCTION

Medical literature is a vast repository for knowledge 
sharing that happens in the biomedical domain. With 
major advances in computational biology and allied 
scientific research, there is an explosion in the number  
of publications in this area [1]. Every day approximately 
three thousand research articles are getting published 
in biomedical journals. Considering just one database, 
say MEDLINE, there are 23,000,000 references with 
40,000-50,000 getting added every day. For any re-
searcher, this poses an enormous challenge to locate, 
manage and choose suitable literature in their domain. 
Thus, the automated mechanism to extract structured 
content (explicit knowledge) from unstructured text 
(implicit knowledge) as shown in (Fig. 1) is the need 
of the hour [2]. The information deluge is posing new 

challenges as bio-databases, vocabularies and bio-
ontologies encode only a small fraction of information. 
Curators are struggling to process scientific literature. 
The discovery of facts and events is crucial for gaining 
insights into biosciences, hence the need for text event 
mining. Artificial Intelligence and especially Machine 
Learning techniques such as NLP and TM tools have 
gained significant importance to curate large biologi-
cal databases. This has led to the development of many 
new applications and search engines addressing vari-
ous domains for mining databases [3-5].

Previous research has focused on the basic extrac-
tion of entities and identifying their links in refer-
ence knowledge bases [6, 7]. Few existing techniques 
though  provide acceptable performance [8] for many 
applications. Off-late interest has arisen in biomedical 
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entities, for example, drug-protein, drug-drug, and pro-
tein-protein interactions [10,11] which have emerged 
as the most important entities due to several similar 
databases and their usage in systems biology.

Fig. 1. Solving the biodata deluge  
using text mining (TM) [9]

NLP-based data-channeling process and their po-
tential applications are many [12,13] as illustrated in 
(Fig. 2). Initially in the pipeline, anyone working in the 
biomedical NLP domain uses Information retrieval (IR) 
techniques which include tasks such as classification 
and retrieval of documents to select relevant articles. 
This process helps to reduce unwanted text or docu-
ments to only those that are of interest to the research-
er. Next in the pipeline, Information extraction (IE) 
techniques are used to primarily identify any named 
entity and/or extract any event that is of researcher’s 
interest and provides useful information. Some exam-
ples of information that are typically identified, mined, 
or extracted from biomedical literature include an enti-
ty interacting with an entity like a drug interacting with 
a drug or a protein interacting with a protein. It also 
includes a relationship between an entity with another 
entity like between a protein and a residue or a gene 
or any temporal relationship in addition to any other 
bio-entities that are part of the event. Hence, this pro-
cess automates and simplifies the task of offering only 
useful textual data required to the researcher by elimi-
nating cumbersome manual searching efforts [14,15]. 
These mined events from vast literature are important 
and have many real-world applications like database 

curation, constructing ontology, semantic web search, 
interactive systems etc.

Named entity recognition (NER), is a subset of the 
event extraction task that involves identifying and 
detection of references to entities like genes, and pro-
teins [16]. It is also a research area of interest which has 
gained a lot of traction over the last decade. 

This is because there is still a large gap of >10% in 
the F1- score using the best ML algorithms for biomed-
ical NER vs. those used for any general-purpose NER. 
Hence, researchers are exploring various methods to 
narrow the gap using better pre-processing and fea-
ture extraction techniques. Most approaches for effec-
tively identifying named entities (NEs) in biomedical 
literature fall under three categories, namely heuristic 
rule-based, dictionary-based, and statistical machine 
learning-based approaches. But the results to date 
have been far from satisfactory which suggests that 
there is still no robust, generalized implementation of 
any NER system nor any algorithm which can be sin-
gled out that can provide higher performance.

This paper is divided into the following sections: 
Section 2 explains a biomolecular event extraction 
task, and Section 3 discusses and compares the perfor-
mance of the existing systems. Section 4 discusses new 
architectures and suggests two novel approaches for 
developing a robust BioNLP model. We conclude with a 
note summarizing the approaches, existing challenges, 
and future research directions in Section 5.

2. BIOMOLECULAR EVENT EXTRACTION

Identifying and isolating semantic relations is the 
primary task when it comes to biomedical text min-
ing. Here, information is extracted from a vast volume 
of document sets or big data like scientific literature or 
patient records [17-19]. The information contains, apart 
from other things, statements of interactions between 
NEs, like the effect of drugs on a patient, cellular protein 
movements etc. Relation extraction and event extrac-
tion are the two ways for getting such data. Relations 
can be typed, directed, or pairwise links type between 
defined named entities.

Fig. 2. NLP-based data-channeling process and applications [20]
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Event extraction is another form of relation extraction 
in which events can combine two or more entities, they 
have a trigger word which is usually a verb and they 
also sometimes act as arguments for other events [21]. 
Though events are efficient in capturing the semantics 
of text more precisely extracting them is an extremely 
complicated task. Table 1 explains the event extraction 
process. Post-pre-processing and feature extraction, 
first, the NEs (e.g., TGF-beta) are identified. The next 
stage is to detect trigger words and labels via annota-
tion of the phrases and finally the process reconstructs 
the events if the edges are clear or not overlapping.

A typical biomedical event extraction task flow-chart 
is shown in (Fig. 3). The first two steps are pre-processing 
and feature extraction followed by named entity recog-
nition [22]. Trigger detection (which identifies event trig-
gers and types) and edge detection (links event triggers 
with arguments) are the two sub-steps of the main event 
detection step. Some researchers combine these two 
steps to reduce cascading errors which helps in improv-
ing performance. Post-processing is the final stage that 
helps in refining the final event structure outcome [23,24]. 

All the steps are explained in the following sections 
outlining various tools and approaches used.

Phrase: "TGF-beta mediates RUNX induction and FOXP3 is efficiently up-regulated by RUNX1 and RUNX3"

Entities: "TGF-beta, RU NX, FOXP3, RUNX1 and RUNX3 (proteins)"

Step 1 Entity recognition Entities: TGF-beta, RUNX, FOXP3, RUNX1 and RUNX3 (proteins)

Step 2 Trigger detection

Trigger 1: induction (gene expression)

Trigger 2: mediates (positive regulation)

Trigger 3: up-regulated (positive regulation)

Step 3 Edge detection

Edge 1: induction (gene expression); theme: RUNX(protein)

Edge 2: mediates (positive regulation); cause: RUNX (protein); theme: above gene expression event

Edge 3: up-regulated (positive regulation); cause: RUNX1 and RUNX3; theme: FOXP3 (protein)

Step 4 Reconstruct event

Event 1: induction (gene expression); theme: RUNX (protein)

Event 2: mediates (positive regulation); cause:  RUNX (protein); theme: above gene expression event

Event 3: up-regulated (positive regulation);  cause: RUNX1; theme: FOXP3 (protein)

Event 4: up-regulated (positive regulation);  cause: RUNX3; theme: FOXP3 (protein)

Table 1. A biomolecular event extraction task workflow

Fig. 3. Flow-chart of a typical biomolecular event 
extraction task

2.1. CORPORA 

There are many corpora available for biomolecular 
event extraction tasks. Some of the most popular ones 
used are enumerated below:

•	 GENIA Event dataset [25]: This is made available 
by the BioNLP shared task [26] organizers openly 

to all researchers. This consists of human-curated 
complex event events. It has 1000 Medline paper 
abstracts, which in turn have 9372 sentences and 
36114 events have been identified from it.

•	 BioInfer Dataset [27]: It is a publicly available data-
set consisting of manually annotated corpus and 
other resources for extraction of information. It 
has 1,100 sentences from biomedical research ab-
stracts.

•	 PPI dataset [28]: A Protein-protein interaction cor-
pus complements available training data and is not 
as elaborate as the event corpora. LLL, AIMed and 
BioCreative are the most relevant PPI corpora used.

2.2. PRE-PROCESSING AND FEATURE 
 EXTRACTION 

Datasets are getting more complex by the day and 
it may be required to work with datasets containing 
hundreds of features. If the number of features equals 
or becomes more than the number of observations 
stored in a dataset, it could lead to overfitting. Hence 
pre-processing and applying feature extraction tech-
niques are necessary. Pre-processing, a mandatory step 
in any text mining pipeline involves reading the data 
from its original format to an internal representation. 
It involves a set of common NLP tasks, from sentence 
segmentation and tokenization to part-of-speech tag-
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ging, chunking, and linguistic parsing. In addition to 
these, the biomolecular event extraction task also in-
volves removing co-references, sentence simplification 
etc. to improve accuracy [29,30]. The most commonly 
used pre-processing frameworks are NLTK (http://
www.nltk.org/), Stanford CoreNLP (http://nlp.stanford.
edu/software/corenlp.shtml) and Apache OpenNLP 
(https://opennlp.apache.org/).

Table 2. Commonly used features in the event 
detection phase

Feature 
Groups Features Trigger 

recognition
Edge 

detection

Token-based

Parts-of-speech (POS) Yes Yes

Lemma Yes No

Orthographic Yes No

n-grams Yes No

Word shape Yes No

Prefixes/suffixes Yes No

Contextual 
features

Number of entities Yes No

BoW counts Yes No

Windows or conjunctions 
of features Yes No

Dependency-
based 

features

Number and type of 
dependency edges Yes No

Words, lemmas, and POS 
tags in the dependency 

path
Yes Yes

N-grams in the 
dependency path Yes Yes

External 
features

WordNet lemmas No No

Trigger lexicon No No

Entity lexicon No No

Feature Extraction aims to reduce the number of fea-
tures in a dataset by creating new features from the ex-
isting ones, which are then discarded. Feature extrac-
tion techniques provide below advantages: 

•	 Accuracy improvement [31-34]

•	 Overfitting risk reduction

•	 Speed up in training 

•	 Improved data visualization

•	 Increase in explainability of a model 

There are many feature extraction techniques used. 
The commonly used features in the main event detec-
tion stage are shared in Table 2. They can be divided 
into four feature groups namely token-based, contex-
tual, dependency and external resources which are ex-
plained below.

•	 Token-based features: They capture a specific fea-
ture for every token like part-of-speech, lemma, 
prefix, suffix etc. In part-of-speech, each word in 
a sentence is tagged with its POS like noun, verb, 
adjective etc. However, its main drawback is ambi-
guity. In the biomedical domain, many frequently 
used words have multiple meanings hence multiple 
POS. Lemmatization breaks a word down to its root 
meaning to identify similarities. But it is a slow and 

time-consuming process as it involves performing 
morphological analysis and deriving the mean-
ing of words from a dictionary. Orthographic rules 
are general rules used when breaking a word into 
its stem and modifiers. However, many languages 
have various levels of orthographic depth and or-
thographies that are highly irregular, and difficult, 
and where sounds cannot be predicted from the 
spelling. n-grams refer to a sequence of N words or 
characters. More is not necessarily better as in some 
cases, having too many features will result in a less 
optimal model. Base forms of the input words, word 
prefixes and suffix features, and basic word form/
shape features have also been used for trigger rec-
ognition with varying degrees of success. 

•	 Contextual features: They offer knowledge about 
the sentence or its neighborhood where the token 
exists. The same word or phrase can also have dif-
ferent meanings according to the context of a sen-
tence or many words. The number of tokens in the 
sentence, no. of entities or the bag-of-word count 
are some of the contextual features extracted from 
sentences. A bag of words is a representation of text 
that describes the occurrence of words within a doc-
ument. It just keeps track of word counts and disre-
gards the grammatical details and the word order. 
It is called a ‘bag’ of words because any information 
about the order or structure of words in the docu-
ment is discarded. The model is only concerned with 
whether known words occur in the document, not 
where in the document. A drawback of the BoW 
model is that it ignores the location information of 
the word. Also, the model does not respect the se-
mantics of the word. The range of vocabulary is a big 
issue faced by the bag-of-words model.

•	 Dependency-based features: They provide the 
Grammar relation between two words and can be 
extracted from a dependency relationship graph of 
a sentence. Commonly used features include the 
number and type of dependency edges between 
two tokens and the words, lemmas, POS and n-
gram characteristics in the dependency path. The 
drawbacks of dependency parsing are first, seman-
tic actions cannot be performed while making a 
prediction. The actions must be delayed until the 
prediction is known to be a part of a successful 
parse. Secondly, precise error reporting is not pos-
sible. A mismatch merely triggers backtracking.

•	 External features: Here external knowledge is aug-
mented from sources like WordNet, lexicons both 
trigger and entity from the dictionary or other 
sources. This helps to improve accuracy in cases 
where the no. of words is long, has many meanings 
etc. In linguistics, the canonical form or morpho-
logical form of a word is called a lemma. To find a 
synonym as well as an antonym of a word, one can 
look up lemmas in WordNet. The drawbacks are 
that the vocabulary it contains is broad and thus 
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ambiguous. Lexicons are collections of domain-
specific key phrases (also known as entities) that 
can be attached to a flow. A Lexicon can be seen 
as a dictionary, which allows the virtual agent to 
‘understand’ specific words. The drawback of a lex-
icon-based feature extraction model is scalability.

2.3. NAMED ENTITy RECOGNITION

NER detects references to entities like genes, proteins, 
and chemical compounds [35,36]. It is a challenging task 
in the biomedical domain as new entities keep getting 
added and there is a lack of a complete dictionary. Also, 
it may so happen that a word may refer to two differ-
ent entities based on their context. It is also seen that 
many biological NEs have different spelling forms, have 
abbreviations or are exceptionally long which come in 
the way of classifying them or identifying their boundar-
ies correctly. They may also be nested in other entities, 
which require more effort to identify such NEs. There are 
a few NER systems proposed, but the best results are in 
the 85% F1-score range [37]. Some of the most popular 
NER tools used are summarized in Table 3. 

Table 3. Most popular NER tools used

Gene/ Proteins Chemical 
compounds

Gene protein and 
disorders

Gimli SCAI BioEnEx

NERSuite ChemSpot BANNER

AIIAGMT Neji -

GNAT - -

GeNo - -

ABNER - -

2.4. TRIGGER DETECTION

A lot of research is focused on this area as the sub-
sequent steps’ effectiveness is based on the informa-
tion outcome from this step. It involves identification 
of event triggers and their types. As seen from Table 
1, the trigger word ‘induction’ defines an event of type 
gene expression and the trigger word ‘mediates’ defines 
an event of type Positive Regulation. Complexity arises 
when sentences may contain many related events, 
Negative Regulation and the same trigger could also 
indicate diverse types of events, based on the context 
[38-40]. Table 4 summarizes the different methodologies 
adopted for Trigger detection which are broadly classi-
fied as rule-based based, dictionary-based and machine 
learning based. It is observed that rule-based methods 
return low recall rates as defining detailed rules requires 
a lot of effort and some of the rules are too hard to ac-
commodate semantic paraphrases. Dictionary-based 
approaches contain a dictionary with trigger words and 
their corresponding classes (event types) to identify and 
enumerate event triggers. Researchers have also used a 
hybrid approach by combining rule-based and diction-
ary-based approaches [41,42].

Table 4. Different methodologies adopted for 
trigger detection

Rule-
based

Dictionary-
based

Machine Learning based 
References

SVM CRF VSM MEMM

√ √ × × × × [51]

× √ × √ × × [8]

× × √ × × × [52]

× √ × × × × [53]

√ √ × × × × [41]

√ √ √ × × × [54]

√ × × × × × [55]

√ × √ √ × × [56]

× × √ × √ × [57]

× × × √ × √ [58]

× × × √ × × [59]

× × × √ × × [60]

× × × √ × × [61]

× × × √ × × [62]

× × × √ × × [63]

× × × √ × × [64]

× × × √ × × [65]

× × × × √ × [66]

Machine Learning based approaches like Support 
vector machine (SVM) and its variant kernels like lin-
ear, radial basis function, polynomial and convolution; 
Conditional random field (CRF); Value stream matching 
(VSM) and Maximum entropy Markov model (MEMM) 
have been most successful for trigger detection and of-
fer higher recall rates [43-46].

2.5. EDGE DETECTION

It predicts arguments in an event which can be 
named entities, or another event represented as a dif-
ferent trigger word. It is also known as event theme 
construction. In Table 1, for the sentence, there are 
three edges identified. Again, rule, dictionary and ma-
chine learning-based methods have been suggested 
to address this task. Like trigger detection, there have 
been more efforts in using ML algorithms by treating 
the edge detection problem as a supervised multi-
class classification problem. Also, many studies are 
based on hybrid approaches by using a combination of 
the above methods or using ensemble methodology 
[47,48] as shown in Table 5.

Table 5. Hybrid approaches used for trigger detection

Ensemble Base 
Learners

CI-Optimized 
algorithms

F1-score 
(%) References

Yes 1 Yes 55.64 [67]

Yes 3 Yes 57.58 [47]

Yes 5 No 66.34 [68]
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Here, the thought process is not to choose the ‘best’ 
classifier always, as it may not be representative of all 
data. In this, a few classifiers are trained in a standalone 
mode. The output of all the classifiers is combined into 
an ensemble and the result is chosen according to 
some criteria. A problem arises on how to choose the 
best one, as more than one classifier may also meet 
the criteria of similar training accuracy. Methods of 
the combination include bagging, boosting, voting, 
stacked generalization, and cascading. This leads to im-
provement in prediction accuracy [49].

Researchers have also used optimization techniques 
to choose the right weights for voting using various 
nature-inspired Computational Intelligence (CI) algo-
rithms [50]. Table 6 summarizes the various approaches 
used for Edge detection.

Table 6. Various approaches used for Edge detection

Rule-
based

Dictionary-
based

  Machine Learning 
based References

SVM CRF HVS

√ √ × × × [54]

√ × √ × × [60]

√ × × × × [8]

× × √ × × [53]

√ × × × × [41]

√ × × × √ [51]

× × √ × × [58]

× × × √ × [8]

× × √ × × [59]

× × √ × × [60]

× × √ × × [62]

× × √ × × [63]

× × √ × × [69]

3. EXISTING SySTEM

Many bio-text mining campaigns are running suc-
cessfully for years. Some of the most popular ones are 
listed below. They address many aspects from NER to 
the biological phenomenon to text categorization

•	  KDDCup

•	 TREC-Genomics

•	 JNLPBA for NER

•	 BioCreative for extraction of NER, PPI,  
text categorization

•	 BioNLP Shared tasks

We discuss and compare the existing state-of-the-art 
systems and the approaches used in this section. For a 
similar comparison, the results achieved by various sys-
tems for event extraction on the BioNLP shared tasks 
are compared [70,71]. The BioNLP-ST uses the Genia 
event (GE) corpus with sub-tasks. It extracts events 
from both complete papers and abstracts. The sub-
tasks are divided into three categories, (i) Core event 

extraction (GE), (ii) Event enrichment (GE 2) and (iii) 
Negation/Speculation detection (GE 3). Table 7 lists the 
shared tasks released by the committee in 2013 [72-74].

Table 8. Results obtained in the BioNLP-ST GE task 
by top systems (in %age)

System, year, 
Reference Simple Event type 

binding Regulation Total

Univ. of Turku, 
2009 [52] 70.21 44.41 40.11 52

Miwa, 2010 
[53] 70.44 52.62 40.6 53.3

FAUST, 2011 
[75] 72.85 51.05 46.97 57.5

EVEX [63] 76.59 42.88 38.41 51

TEES 2.1, 2013 
[76] 76.82 43.32 38.05 50.7

BioSM [77] 76.11 49.76 35.8 50.7

Table 9. Results from BioNLP-ST GE 2 task by top 
systems (in %age)

System, year, 
Reference Site Localization Total

Univ. of Turku, 2009 [52] 71.43 36.59 44.5

FAUST, 2011 [75] 50 50 52.8

EVEX, 2013 [63] 50 50 31.2

TEES 2.1 [76] 50 50 32.5

Table 10. Results obtained in the BioNLP-ST GE 3 
task by top systems (in %age)

System, 
year, 

Reference
Document Negation Speculation Total

Concord, 
2009 [54] Abs 23.13 25.27 24.17

Univ. of 
Turku, 2011 

[55, 78]
Abs 30.4 25.64 28.08

EVEX, 2013 
[63] FP 27.04 23.92 25.22

TEES 2.1 [77] FP 27.3 23.61 25.15

Table 11. Benchmark performance of training 
GloVe on CPU vs. GPU

Architecture Specifications Performance Speed-up

CPU i7-6800K, 8-cores 13.56 min/
epoch -

GPU NVidia GTX 1070 1.22 min/
epoch 11X

4. NEW ARCHITECTURES

Implementing CNNs and RNNs, though help in im-
proving accuracy but is impacted on account of train-
ing time, computational cost and memory require-
ments. BERT (Bidirectional encoder representations 
from Transformers) which is an encoder stack of the 
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Transformer architecture has emerged as a strong con-
tender for BioNLP tasks as it is pre-trained on a large 
but generic corpus. However, to make it suitable for 
BioNLP, it needs to be suitably trained on additional 
Biomedical corpus which is time-consuming. Hence, 
newer hardware architectures are required as an alter-
native to standard x86 processors. High-performance 
accelerators exist for many tasks today, that can be ex-
plored for NLP too. Current models focus only on ac-
curacy and seldom on the issues concerning the above 
three impact criteria mentioned. NVidia Graphical 
processing unit (GPU), Intel Xilinx Field programmable 
gate array (FPGA) and Google’s Tensor Processing Units 
(TPU) are some of the accelerator options that provide 
high-performance computing (HPC) at a fraction of the 
cost. We discuss the benefits of one such accelerator in 
this paper, the Nvidia GPU, compare it with a standard 
x86 processor and explain briefly how it can accelerate 
complex BioNLP tasks.

4.1. GPU ACCELERATED BIONLP

Many tasks in NLP can exploit the massive parallel-
ism offered by the GPU. GPUs were initially used only 
for graphics or visualization tasks. Due to the massive 
number of lightweight cores (SMs) as shown in (Fig. 4), 
in early 2000 Nvidia introduced the CUDA parallel pro-
gramming environment, which revolutionized high-
performance computing. CUDA is C-like programming 
which allowed researchers to port their compute-hun-
gry codes onto the GPU. Single-instruction m u l t i p l e -
thread (SIMT) execution model emerged and with the 
introduction of shared memory and a heterogeneous 
CPU-GPU architecture, all heavy-duty compute or 
mathematical tasks were off-loaded to the GPUs for 
processing thereby accelerating the entire code. 

Fig. 4. The Nvidia GPU architecture [79]

Many GPU-accelerated NLP toolkits exist includ-
ing GloVe (Global vectors for word representation), 
which is an extremely popular unsupervised learning 
algorithm for words. Especially for NLP, once the text 
is hashed, GPUs can offer accelerated results from the 
voluminous scientific literature much faster (large no. 
of words per millisecond) as compared to an x86 CPU. 
(Fig. 5) shows the difference between a CPU which has 
lesser ALUs compared to a GPU which explains this sig-
nificant difference in computational power.

Fig. 5. Differences between a CPU and GPU [79]

The goal of a CPU is different from a GPU in that a CPU 
must be capable of processing everything, serial or par-
allel but the GPUs are grounds-up built for parallel tasks 
only, and NLP falls in this category. One of the drawbacks 
of using GPUs is the precision overhead. Precision is par-
ticularly important in operations like NLP, computing gra-
dients etc. It is found that GPU speeds with double preci-
sion are 2-32x slower. Also, it consumes a lot of memory 
and power. The solution for this lies in using mixed preci-
sion for NLP tasks and lower-power gaming cards like the 
GTX series. Table 11 shows the benchmark performance 
of training GloVE on a CPU vs. a CPU+GPU system. 

Very few implementations of CNN and RNN models 
have been tried on accelerators, which can help achieve 
up to 10 Tera operations (TOPs) per second on such semi-
conductor chips [80]. Each of these chips has its unique 
hardware architecture and programming environments 
to launch thousands of threads to parallelize the applica-
tions. But we still need large-scale HPC clusters with large 
numbers of nodes in a datacenter to achieve an inference 
efficiency of millions of words per second. Authors in [81] 
implemented a Dynamic multi-pooling convolutional 
neural network (DMCNN) that took 1.0 GOPs for process-
ing 30 words in a single sentence. Normal CPUs are un-
able to keep pace with RNN computations on account of 
irregular computation and memory access. These accel-
erators though desired have some limitations as they are 
rated at higher power and provide lower performance per 
watt as the complexity of neural networks increases. Thus, 
achieving a balance of accuracy, computational cost and 
memory usage needs to be targeted and this is an area 
where not much research has been conducted.

4.1. RECOMMENDED ARCHITECTURES

Based on an extensive literature study and results 
of best-performing models, an ensemble model of ML 
classifiers and a domain-specific BERT pre-trained us-
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ing GPU for reducing the training time on additional 
biomedical corpora (like PubMed and PubMed Central 
extracts) are the two key architectures recommended 
for NER, the most challenging sub-task in Biomolecular 

event extraction. We propose high-level reference ar-
chitecture and methodology of an ensemble classifica-
tion model and NeRBERT- a biomedical NER tagger in 
(Fig. 6) and (Fig. 7) respectively. 

Fig. 7. Recommended architecture of a pre-trained and fine-tuned NeRBERT model

5. CONCLUSION

The paper provides a systematic summarization of 
the latest research in the field of biomolecular event 
extraction. It discusses the various techniques used by 
researchers due to the challenging nature of the task, 
ambiguity, and heterogeneity in biomedical literature. 
The results summarized demonstrate that this is still a 
challenging proposition, despite the slow and steady 
improvements. Although performance results of 80% 
in the F1-score were obtained in the identification of 
simpler events, there is still minimal extraction of more 
complex events such as binding and regulatory events. 
Although major efforts have been made to recognize 
the events, the best performance achieved remains 
30–40% lower than that for simple events. Many tech-
niques have been proposed, which include simple 
parsing, pattern-matching, machine learning and deep 
learning methods. Researchers have adopted multi-
stage approaches wherein the second stage fine-tunes 
the output from the first stage either by using some 
rules or techniques like ensemble classification which 
is one of the architectures recommended. Alterna-
tively, BERT has also emerged as an architecture with 
great promise. We propose two reference architectures 
based on these in terms of accuracy, computational 
cost, and memory usage for developing a robust GPU-
accelerated BioNLP model for biomolecular event ex-
traction. The BERT model should be domain-specific 
and trained on additional biomedical corpora using a 

GPU to reduce training time. However, key challenges 
to mitigate still exist which involve extracting complex 
regulatory events, resolving cross-references, and de-
fining negation and speculation. Also, machine learn-
ing approaches like transfer learning and other newer 
hardware architecture like FPGA and TPU have not 
been employed much which provide a lot of scopes to 
accelerate the event extraction pipeline. Despite these 
challenges, available research can still help in curat-
ing pipelines using text-mined data, constructing net-
works, ontologies, and knowledge bases.
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