
An Efficient Switch Migration Scheme for Load
Balancing in Software Defined Networking

443

Original Scientific Paper

Thangaraj Ethilu
Annamalai University,
Department of Computer Science and Engineering, Tamilnadu, India.
ethilthangaraj@yahoo.co.in

AbiramiSathappan
Annamalai University
Department of Computer Science and Engineering, Tamilnadu, India.
reachabisv@gmail.com

Paul Rodrigues
King Khalid University
Department of Computer Engineering, Abha, Saudi Arabia
drpaulprof@gmail.com

Abstract –Software-defined networking (SDN) provides increased flexibility to network management through distributed SDN
control, and it has been a great breakthrough in network innovation. Switch migration is extensively used for workload balancing
among distributed controllers. The time-sharing switch migration (TSSM) scheme proposes a strategy in which more than one
controller is allowed to share the workload of a switch via time sharing during overloaded conditions, resulting in the mitigation of
ping-pong controller difficulty, a reduced number of overload occurrences, and better controller efficiency. However, it has increased
migration costs and higher controller resource consumption during the TSSM operation period because it requires more than one
controller to perform. Therefore, we have proposed a strategy that optimizes the controller selection during the TSSM period based
on flow characteristics through a greedy set coverage algorithm. The improved TSSM scheme provides reduced migration costs and
lower controller resource consumption, as well as TSSM benefits. For its feasibility, the implementation of the proposed scheme is
accomplished through an open network operating system. The experimental results show that the proposed improved TSSM scheme
reduces the migration cost and lowers the controller resource consumption by about 36% and 34%, respectively, as compared with
the conventional TSSM scheme.

Keywords: Quality of Service. Software-Defined Networks, Load-Balancing, Open Flow

1. INTRODUCTION

The challenges in network management have tre-
mendously increased due to the rapid deployment of
cloud computing, big data applications, the internet
of multimedia things, and increased data traffic. The
traditional network architecture system combines a
data plane and a control plane in each switch, with the
former handling packet processing and the latter han-
dling decision making and management. Therefore,
updating the latest algorithms and new policies on the
switches is very complex and time-consuming because
all the switches involved in the given network need to
be reconfigured one after another by system adminis-
trators or workers [1].

Currently, software-defined networking techniques
create a unique view of network management in network
applications where the control plane in the switches is
shifted to a central unit known as the controller. Therefore,
the controller can manage multiple switches in the net-
work. In this modern approach, monitoring, and control
of network switches are much simpler as compared with
conventional network management techniques because
the controller unit can provide such information about
the switches. Furthermore, the latest algorithms and new
control policies are easily updated to the switches via a set
of rules in the controller [2]. Apart from this, SDN can sup-
port a wide range of applications, including (i) resisting
cyber-attacks; (ii) identifying malicious access points; and
(iii) providing anonymous authentication, etc. [3-7].

Volume 14, Number 4, 2023

444 International Journal of Electrical and Computer Engineering Systems

A lone controller in a large network will be a tough
option since it creates a bottleneck in network man-
agement; therefore, distributed SDN control (DSC) is
demanded in the network applications, and it acts as
a promising solution in large network management
with the several numbers of switches [8]. The DSC al-
lows multiple controllers to coordinate with each other
to manage the entire network. Where each controller is
managing a subset of switches (i.e., a subnet), as well as
workflow, these can be exchanged among controllers
for the use of teamwork. Each controller involves dis-
tributing the workload for the subnets and reassigning
its switches' workloads through the regular check-up
of each subnet, called "controller placement" [9]. The
placement of controllers is based mainly on load bal-
ancing, and it is applied through several techniques,
including the workgroup control technique [10], the
deep reinforcement learning technique [11], and so on.
The outcome of such control techniques may widely
alter the switches in the subnet and lead to instability
in the subnet via ping-pong operation. Furthermore,
controller placement techniques are not considered
effective during short-lasting flows such as distributed
denial of service and impulses [12].

Switch migration provides a smooth alteration of
subnets with a lesser period and overcomes the above-
mentioned issues. In each time frame (or time interval
or period), a switch migration method is examining the
workload status of each controller in the network to
determine whether they are overloaded (busy) or light-
ly loaded (available to share other works). If it is over-
loaded, the migration method in a network relocates
a switch from the busy controller subnet to a lightly
loaded controller subnet. Most of the existing switch
migration methods follow the smallest slice of the mi-
gration: one single switch, which is migrated at the be-
ginning of the period. Once the switch is migrated, it
remains in the latest subnet until the switch is selected
for the next period. Most importantly, these migration
methods always ask a controller to oversee one switch
for a complete period. Therefore, the controller in these
methods gets into the ping-pong difficulty of an "el-
ephant flow situation (i.e., flow carries many packets)
and goes into the serious trouble of a subnet that is
unstable [13].

2. LITERATURE REVIEW

Over the years, several studies have detailed the various
issues in the DSC network. Conventionally, controller load
balancing is achieved through dynamic controller place-
ment methods. Chan et al. [14] proposed a method that
could minimize the service interruption time by smoothly
transferring the workflow from the compromised control-
ler to another controller. The leader controller redundancy
is detailed in [15], where a lightly loaded controller can act
as a leader in case of failure in the regular leader controller
unit. Controller placement methods and challenges are
reviewed in [9]. It has insisted that the controllers main-

tain fairness during the sharing of their workloads. Ref
[16] proposed a reliable deployment method because
of reducing packet loss and improving network stability,
and it has achieved its objectives compared to other con-
troller placement methods. Kim et al. [17] have proposed
a method that improves the output of dispersed data
stores in an Open Daylight controller cluster by consis-
tently spreading the shared leaders to the cluster mem-
bers. Ref [18] proposed a method in which controllers
collaborate to reroute traffic to avoid congestion during
a switch's busy or overloaded period. A software-defined
cyber-seek framework is proposed in [19], where a hybrid
controller is used for cloudlets and local networks. Pre-
diction-based controllers are proposed in [20], and they
predict the network load and perform the device transfer
based on the prediction. The controller placement studies
like the workgroup control technique and the deep rein-
forcement learning technique proposed in [10] and [11],
respectively, show that these techniques are not effective
during impulses, distributed denial of service, etc. Apart
from the dynamic controller placement approach, meth-
ods for workload balancing for DSC are grouped into
three categories: (i) switch migration, (ii) flow migration,
and (iii) flow splitting.

Switch Migration: switch control can be transferred
from overloaded controllers to lightly loaded control-
lers, considering workload reduction. The study [21]
has discussed the switch migration because of CPU and
memory allocation exceeding a controller's threshold
level, but it does not define the way of choosing the
targeted controllers. Switch migration using the Q-
learning technique is discussed in [22], and it has re-
duced the standard deviation of the controller's work-
load. Cui et al. [23] have used the response time of the
controller for switch migration. By using this technique,
the switch is transferred with the largest load on the
controller and the quickest reaction time. Ref. [24] pro-
posed a method that targeted controller selection for
switch migration based on CPU utilization, memory
size, bandwidth, etc. Hu et al. [25] proposed a simu-
lated annealing algorithm for selecting the targeted
controller to reduce the switch migration cost.

Flow Migration: The flow migration method only trans-
fers the hardness (i.e., flow beyond the threshold level)
of the flow instead of migrating a whole switch. Hu et al.
proposed a technique in which a "super controller ad-
ministers every controller in the system and regulates the
flow managed by them [26]. Ref. [27] proposed a game
theory approach that managed the flow of each control-
ler through workload exchange between them. Maity et
al. [28] proposed a traffic-aware consistent approach for
reducing the flow migration duration, and they achieved
about a 15% reduction in flow migration time when
compared with the conventional flow migration meth-
ods. Also, with the use of a traffic-aware flow migration
approach, ref [29] has proposed a method to reduce the
data plane load and achieved a 13% reduction when
compared with the two-phase update approach.

445Volume 14, Number 4, 2023

Flow Splitting: This method allows a switch to be
managed by more than one controller at the same
time. Gorkemli et al. [30] discussed a method in which
switches are required to negotiate with their control-
lers for flow splitting using a virtual overlay on the
data plane. Ref. [31] proposed an approach based on
convex quadratic programming for load balancing as
well as reducing new switch-controller appointments
through modeling the mapping between controllers
and switches.

The control relation graph-based controller place-
ment method for software-defined networking (SDN)
is presented in [32]. It demonstrates that the proposed
approach reduces management costs through load
balancing and response time in LEO satellite networks.
Zhang et al. proposed an SDN-based space-terrestrial
integrated network architecture. In addition, it has pre-
sented an efficient dynamic controller placement and
adjustment algorithm for better load balancing and
response time [33]. Chen et al. proposed a dynamical
control domain division problem to reduce the man-
agement cost. In addition, it has presented a heuristic
algorithm to choose the best controller for better load
balancing [34].

However, considering the practical viability of Open
Flow, a switch cannot be controlled by more than one
controller simultaneously considering synchronization
and complex design. Therefore, flow migration and
flow splitting methods are non-compliant to the Open-
Flow protocol and cannot be implemented in the real-
time controller platform.

2.1. PROBLEM DESCRIPTION AND
 CONTRIBUTION

As discussed in the literature section, most of the
switch migration methods are having issues with ping-
pong difficulty. The ping-pong difficulty of the control-
ler is explained in the following example. Let us con-
sider two controllers [Cp and Cq] and three switches
[Sa, Sb, Sc] in the network. The maximum manageable
workload for each controller is 100 PIMS per second.
The switches Sa, Sb, and Sc produce 60, 80, and 60 PIMS
per period, respectively. In time t, Cp handles switches
Sa & Sb then controller Cq manages to switch Sc. Since
αc_p =δa(t)+δb(t) = 60 + 80 > βc_p(100 PIMS), Cp is over-
loaded and requires switch migration. In most of the
switch migration methods, an overloaded controller
will request and takeover a switch for a whole period
from other controllers. Therefore, Switch Sa is trans-
ferred to controller Cq`s subnet at time t+1. Though at
period t+1, αc_q=δc(t)+δa(t) = 60 + 60 > βc_q (100 PIMS),
controller Cq will be overloaded. So, controller Cq asks
Cp to take over a switch again in time t+2, which makes
ping-pong difficult.

Recently, W.K. Lai et al. [35] proposed a time-sharing
switch migration scheme (TSSM) that mitigates the
ping-pong difficulties in the controllers by sharing the

workload of a switch that is supervised by two control-
lers at the same time during overloaded conditions. It
proposes a strategy whereby switch migration is per-
formed in a time-sharing manner, where the workload
of the switch is divided between two controllers within a
given period. Considering the previous example, at time
t+1, controller Cp manages 20 PIMs of Sa, and the remain-
ing 40 PIMs are handled by Cq through migration. During
this time, both controllers Cp and Cq are managing the
workload of switch Sa. Hence, Cp’s workload becomes αc_

p=δa(t)+δb(t) = 20 + 80 ≤ βc_p(100 PIMS) and, Cq’s workload
turns out to be αc_q=δc(t)+δa (t) = 60 + 40 ≤ βc_q(100 PIMS).
Therefore, both controllers are not overloaded (busy) in
period t+1. Similarly, at time t+2, Cq initially processed 40
PIMS, and the remaining 20 PIMS have been sent to the
Cp controller subnet. In this approach, The TSSM scheme
can successfully conquer the ping-pong difficulty of the
controller.

Specifically, it proposes a strategy where two control-
lers, namely an overload controller (one) and a lightly
loaded controller (it can be many, but this paper uti-
lizes one), are combined, and the switch from an over-
loaded to a lightly loaded controller subnet is made at
an adequate point in time. The outcome of this tech-
nique shows that it has considerably reduced overload
occurrences of the controllers and effectively balanced
the workload of all the controllers with improved con-
troller efficiency as compared with the existing switch
migration methods such as group-based dynamic con-
troller placement [10], churn-triggered migration [30],
and the "best-fit migration [32] method. Nevertheless,
it is observed that more than one lightly loaded con-
troller operation in the TSSM provides better control-
ler efficacy than the original one (i.e., discussed in the
paper) with the increased switch migration cost. In ad-
dition, this method has higher controller resource con-
sumption during TSSM operation since the migration
switch is managed (i.e., controlled) by more than one
controller in the network.

Therefore, we proposed a strategy that optimizes
the selection of lightly loaded controllers during the
TSSM period and allows more than one lightly loaded
controller for switch migration during the TSSM period
without increasing migration costs. The controller is se-
lected based on flow characteristics through a greedy
set coverage algorithm, which reduces the control-
ler's resource consumption by reducing the number
of controllers participating in the flow processing. The
improved TSSM scheme provides reduced migration
costs and lower controller resource consumption, as
well as TSSM benefits. The implementation of the pro-
posed scheme is accomplished through an open net-
work operating system (ONOS) for its feasibility, and it
can respond to about one million flow processing re-
quests per second.

In summary, software-defined networking (SDN)
leads to an efficient administration process in network
management through easy updating of network poli-

446 International Journal of Electrical and Computer Engineering Systems

cies and the latest algorithms. Typically, distributed
SDN is adopted in network management, considering
bottleneck issues. Load balancing is a critical factor in
the SDN, and it can be managed through (i) the dy-
namic controller placement method, (ii) switch migra-
tion, (iii) the flow splitting method, and (iv) the flow mi-
gration method. Considering the practical viability of
Open Flow, a switch cannot be controlled by more than
one controller simultaneously, considering synchroni-
zation and complex design. Therefore, flow migration
and flow splitting methods are non-compliant with
the OpenFlow protocol and cannot be implemented
on the real-time controller platform. Considering the
OpenFlow protocol and its implementation in the real-
time controller platform, the dynamic controller place-
ment method with switch migration is a better solution
for load balancing.

The conventional switch migration methods suffer
from ping-pong difficulty during the switch migration
process because the whole single switch is migrated
in the beginning period. It causes instability issues in

the switch migration. The ping-pong difficulty is recti-
fied by a time-sharing switch migration scheme. This
method significantly reduces the overload occurrences
of the controller, which leads to better load balanc-
ing. However, the selection of controllers during the
TSSM period is random. So that it could increase the
switch migration cost and higher controller resource
consumption during TSSM operation since the migra-
tion switch is managed by more than one controller
in the network. Therefore, our paper has proposed an
improved TSSM scheme, and it has the following mer-
its: (i) It contains all the merits of a conventional TSSM
scheme, including the removal of ping-pong controller
action during the switch migration process, a reduction
in controller overload occurrences, and better control-
ler efficiency. (ii) The selection of controllers during
TSSM is specified and optimized through the greedy
set algorithm, which reduces the switch migration cost
and controller resource consumption. (iii) It provides
better controller efficiency and load balancing com-
pared with the conventional TSSM scheme. The struc-
ture of the paper is shown in Fig. 1.

Fig. 1. Structure of the paper

2.2. ORgANIzATION OF ThE PAPER

The paper is structured as follows: The literature review
and problem description are covered in Section II of this
paper. The background knowledge of the distributed
SDN control network, OpenFlow protocol rules, and net-
work model is detailed in Section III. The proposed im-
proved TSSM scheme and matching algorithms are dis-
cussed in Section IV, and the performance evaluation of
the proposed method is presented in Section V. Finally,
the concluding statement is summarized in Section VI.

3. DISTRIBUTED SDN CONTROLLER

The architecture of the distributed SDN control net-
work, the switch transfer procedure in the OpenFlow pro-
tocol, and network models are discussed in this section.

3.1. DISTRIBUTED SDN CONTROL NETWORk
 ARChITECTURE

Two common control methods are typically followed
in the distributed SDN control network, namely, (i) the
hierarchical method and (ii) the flat control method,
also called circular chain control [8]. In the hierarchi-
cal method, the central distributed controller (called
the leader) has the idea of a network global view and
is updating the network policies and latest algorithms
to the sub-controllers, as shown in Fig. 2(a). The sub-
controller takes control (is in charge) of the subnet of
its switches, as well as reports its status to the leader. It
is noted that the new leader will be selected if the origi-
nal leader is broken down in the hierarchical method
[15]. In the case of circular chain control, controllers
have information about the local view of the network

447Volume 14, Number 4, 2023

and authority over their own subnet. The involved con-
trollers are swapping information among themselves
in a distributed manner, as shown in Fig. 2(b).

The hierarchical method is considered in this paper
to apply the proposed switch migration scheme. The
leader is responsible for monitoring the status of each
sub-controller as well as performing the TSSM scheme
to select the lightly loaded controller for the over-
loaded controller during flow fluctuations, flow traf-
fic, impulses, distributed denial of service, and so on.
Afterward, two sub-controllers (overloaded and lightly
loaded) are committed to sharing their workloads and
migrating the switch where it is required.

φc=βc-γc (1)

(a) (b)

Specifically, the threshold level of the sub controller
is also defined in the leader to avoid unwanted switch
migrations. When the workload of the controller is
more than the threshold level, it is considered over-
loaded, and it is selected based on the maximum ca-
pacity and reserve capacity of the controller. Generally,
the threshold level is selected between 90 and 95% of
the maximum capacity, as recommended by network
administrators. The threshold level of the controller is
also noted as the maximum workload of the controller,
and it is defined in eq. (1).

Fig. 2. Control methods for the DSC architecture: (a) Hierarchical method, (b) Flat method

3.2. TRANSFERRINg PROCESS FOR SWITChES
 IN OPENFLOW PROTOCOL

OpenFlow permits a switch transfer among various
subnets and creates a connection with several control-
lers. Based on switch Sn’s point of view.

The following roles are determined by each associ-
ated controller Cp.

•	 OFPCR_ROLE_EQUAL (Equal): This default role
makes controller Cp to have full authority to switch
Sn, and Cp can send commands to Sn and receive the
status. Similarly, all the controllers have full access
to Sn when it is acting in this role.

•	 OFPCR_ROLE_SLAVE (Slave): If the controller Cp
role is changed to slave, then Cp can only read the
status from switch Sn.

•	 OFPCR_ROLE_MASTER (Master): It is like as equal
role and controller Cp has complete authority to Sn.
Though, it is insisted that only one controller (e.g.,
Cp) is considered as a master controller for a switch
Sn and other controllers are regarded as slaves to
switch Sn.

Transferring process for the switches is defined in the
OpenFlow protocol is shown in Fig. 3. Switch transfer-
ring process is initiated by the master controller since
it has full authority over the switch. For example, con-
troller’s Cp and Cq are the master and targeted (slave)

controllers respectively, for the switch Sn. It is insisted that
overloaded controllers are transferring a switch to other
controllers for workload balancing with the help of the
leader (controller). Once the master controller (Cp) gets a
command from the leader, it will then send a transfer re-
quest to switch Sn to targeted controller Cq.

φc⟶Thersholdworkloadlevelofthecontroller
βc⟶Maximumworkloadcapacityofthecontroller
γc⟶Reserveworkloadcapacityofthecontroller

Fig. 3. Switch transferring process
 in OpenFlow Protocol

After that, controller Cq asks switch Sn to change the
role of Sn control to master instead of slave through the
Role_Request (Master) message, and switch Sn will pro-
vide a confirmation message to Cq via Role_Reply (Mas-
ter). After all, Cq provides notification message to Cp for
the victorious migration of switch Sn and then control-
ler Cp acts as a slave controller for switch Sn.

448 International Journal of Electrical and Computer Engineering Systems

The switch migration is supported by the OpenFlow
protocol in versions 1.2, 1.3, 1.4, and 1.5 (most recent
version). It is observed that OpenFlow regulation only
instructs about how to alter (migrate) the switches
between controllers for their roles and exchange mes-
sages between controllers. However, deciding target
controllers and switches for migration is not defined
by OpenFlow. The proposed improved TSSM scheme
achieves optimized controller selection and deter-
mines when to execute switch migration during the
TSSM period.

3.3. NETWORk MODEL

Let us predict an SDN-based network comprised of a
collection Sn of switches and a group Cn of controllers.
A switch (e.g., Sa) in Sn is controllable by a controller in
Cn (e.g., Cp) with a model of one switch is controlled by
a controller simultaneously recommended by Open-
Flow, i.e., Cp is acting as a master controller for Sa, and
it can be changed after the switch migration.

The workload of each controller is determined through
Packet_In messages (PIMs) sent from the switches.
Particularly, switches workload (δ(t)) are determined
through the number of PIMs generated by a switch in
each period ´t´. Subsequently, controller workload ca-
pacity is defined as the maximum amount of PIMS that
can be handled in each period. For example, if switches
Sa to Sz are administered by controller Cp then the work-
load of the controller Cp is calculated as,

(2)

Generally, the maximum workload (αc) of the con-
troller shall be less than the maximum capacity of the
controller (βc) considering the requirement of reserve
load during unwanted situations such as flow fluc-
tuation, abrupt demand, etc. In this paper, hierarchical
control of DSC architecture is considered; therefore, the
leader collects workload from all the controllers at ev-
ery period and directs the switch migration between
controllers when required.

4. PROPOSED SWITCh MIgRATION SChEME

During the initial stage, controller placement meth-
ods or network operators are used to configure the
network switches, where each switch is controlled by a
master controller. As discussed in the previous section,
conventional switch migration methods include migrat-
ing a switch at the beginning of the period as well as a
complete part of a switch even though it is not required.
Thus, connections between controllers and switches are
static for the whole period. In the case of TSSM, switch
migration is allowed through time-sharing, and switches
in the network can dynamically alter their connections
with the controller in each period. In addition, the TSSM
scheme effectively overcomes the controller ping-pong
difficulty, as discussed in Section 2.1. Nevertheless, con-

troller resource consumption is higher during the TSSM
period, which could increase the migration cost of the
method compared to other migration methods since
it allows more than one controller to share their switch
loads during the TSSM period. It is observed that migra-
tion costs are estimated based on the utilization of con-
trollers and switches. Therefore, this paper has proposed
an algorithm that significantly reduces the number of
controllers associated with the switches based on flow
characteristics during time-sharing migration. We have
introduced a greedy set coverage algorithm to achieve
the optimal association between the switches and
controllers during the time-sharing migration period,
such that the number of controllers associated with the
switch is reduced, which subsequently reduces control-
ler resource consumption and lowers the migration cost.
The following algorithms are designed for the successful

Algorithm 1: Locating Overloaded and Lightly
 Loaded Controllers
1. Cover ← ø and Clight ← ø ;

2. foreach Cp ϵ C do

3. αc_p← 0 ;

4. foreach Sa ϵ Sp do

5. αc_p← αc_p + δa,t
(p) ;

6. if αc_p>φc_p then

7. Cover ← Cover U {Cp} ;

8. else if αc_p<λ × φc_p then

9. Clight ← Clight U {Cp} ;

10. If Cover≠ ø and Clight ≠ ø then

11. Use Algorithm 2 for load balancing
 between Cover and Clight ;

Algorithm 1: Locating Overloaded and Lightly
 Loaded Controllers

This algorithm is ensured to find all the overloaded
(called busy) and lightly loaded controllers (called as-
sistant or target controllers) in the given network, sym-
bolized by Cover and Clight, respectively. The workload
of each controller (e.g., αc_p) is estimated based on
Eq. (2) through adding the loads of each switch (e.g.,
δa,t

(p)+δb,t
(p)+⋯) in the subnet, it is described in the algo-

rithm code between 3 and 5 lines. Afterward, control-
ler workload (e.g., αc_p) is compared with the threshold
level (φc_p) and if it is more than the threshold level then
it is considered as an overloaded controller and includ-
ed in the overload controllers (characterized in lines 6
-7) unit in the leader. Then lightly loaded controllers
are determined based on a lightly loaded coefficient
‘λ’, value between 0.9 and 0.95 (selected by network
administrators) and it is included in line 8. Afterwards,
lightly loaded coefficient is multiplied with the thresh-
old value, and if the workload of the controllers is less
than the multiply value, then it is considered a lightly

449Volume 14, Number 4, 2023

loaded controller, and it is added to the lightly loaded
controller unit in the leader. It is insisted that switch mi-
gration be carried out when both Cover and Clight control-
lers are non-empty, checked in line 10.

Lemma 1: Let assume overloaded and lightly
controllers are subset of main controller ⏞C̈ (i.e.,
ξCover&ξClight ϵ C̈) and all the switches are included
within this domain is represented as S ̈ (i.e, ξSϵ S̈), then
complexity of the time computation for algorithm 1 is
estimated as O (ξCover + ξClight + ξS) + T2, T2 is the compu-
tation time of algorithm 2.

Proof: In algorithm 1, Line 1 requires a constant
amount of time to initialize both Cover and Clight. Then, in
lines 2-9, the outer for-loop has iterations similar to the
number of controllers positioned in this domain, but
lines 3, 6, 7, 8, and 9 all need O (1) time.

Lines 4-5's inner for-loop (together with the outer for-
loop) examines every switch in overloaded controller SP.
As a result, the outer for-loop takes (ξCover + ξClight)× O (1)
+ O (ξS) = O (ξCover + ξClight +ξS). Line 11 then performs
Algorithm 2 and uses T2 time. To summarize, Algo. time
complexity is O (ξCover + ξClight +ξS) + T2.

Algorithm 2: Switch Migration Segment for
Load Balancing

1. SORT (Cover, αc_p - φc_p);

2. SORT (Clight, φc_q- αc_q);

3. foreach Cp ϵ Cover do

4. SORT (Sp , δa,t
(p));

5. while αc_p > φc_p do

6. if Clight = ø then

7. Cease this module ;

8. Pick the optimized controllers
 Cq_1, Cq_2,… from Clight ;

9. (Controller-Switch Association Matrix) ←
 Algorithm 3 (Request PIM´s of Switch,
 Switches from Cover)

10. (Sa, [τ1 , τ2 , …] , [n1 , n2 , …]) ←
 Algorithm 4 (Cp , [Cq1, Cq2, …]) ;

11. Transfer Sa to [Cq1, Cq2, …]’s subnet
 after [τ1 , τ2 , …] units of time ;

12. αc_p← αc_p- [n1, n2, …];

13. αc_q1← αc_q+ [n1, n2, …] ;

 αc_q2← αc_q+ [n1, n2, …] ;

14. if αcq[1,2,…]
 ≥ λ × φcq[1,2,…]

 then

15. Clight ← Clight \{Cq [1,2, …]};

16. else

17. SORT (Clight, φc_q - αc_q) ;

Algorithm 2: Ordering the pair of overloaded
 and assistant controllers and
 switch migration.

The aim of this algorithm is to share the workload
between controllers by locating the pair of overloaded
and lightly loaded controllers. The SORT function helps
sort the overloaded and lightly loaded controllers in
decreasing workload order. The overload controllers
are sorted in code line 1, whereas line 2 provides the
sorted information about the lightly loaded control-
ler. Hence, a controller with extremely leftover capac-
ity will be considered the first to contribute to the
workload of an overloaded (busy) controller. The code
in lines between 3 and 17 handles each controller in
the network through for-loop by most overloaded con-
troller to the lowest overloaded one. Line 4 sorts of the
switches under Cp administration based on their work-
load in conjunction with decreasing order. The while
loop in line 5-16 keep on decreasing the workload of
the Cp by migrating a switch until it gets below threshold
workload. However, if there is no assistant controller to
help (i.e., Clight is empty), and more overload controllers
are still in the domain then algorithm 2 terminates as
given in line 6 -7. Otherwise, if we want to select again
a lightly loaded controller Cq for sharing workload then
time sharing switch migration scheme is to be activated.
For that initially, Algorithm 3 is executed to find the op-
timum controllers [Cq1 , Cq2 , …] for TSSM in view of re-
duced controller resources consumption and lower mi-
gration cost. Afterward, once the optimized controllers
are discovered then TSSM scheme is executed based on
Algorithm. 4. The output of Algorithm. 4 provides three
output parameters as noticed in line 10. In which, ´τ´
gives the information about what time switch Sa should
migrate to other controllers, whereas ́ n´ provides the in-
formation of how much of PIMs to be migrated to each
controller. Afterward, workload updates of Cp and [Cq1 ,
Cq2 , …] is performed in line 11 to 13 and if [Cq1 , Cq2 , …] is
exceeded the threshold level then these controllers are
removed from the lightly loaded controllers as given in
line 14, otherwise these controllers are again going for
the sorted function in the lightly loaded controller unit
as given in line 17 and line 2.

Lemma 2: This property proves that algorithm 2
must be converge and it does not run forever due to
the finite number of overloaded controllers. Let consid-
er sum of lightly loaded controllers, and switches are
represented as |Clight |=ξlight, |S|=ξS , respectively. In the
worst scenario, algorithm 2 takes ξS (T3 + T4 + O (ξlight +
log2ξS)) time, where T3 and T4 is the calculation time of
Algorithm 3 and 4.

Proof: Lines 1 and 2 of algorithm 2 take time required
for the sorting of overload O (ξover + log2 ξover) and lightly
loaded O (ξlight + log2 ξlight) controllers. We choose an
overloaded controller CP (i.e., line 3), an assistance con-
troller Cq (i.e., line 8), and shift the load of a switch Sp
from Cp to Cq (i.e., lines 9-12) in the for-loop. Except for
lines 4, 9, 10, and 16, each of the residual statements

450 International Journal of Electrical and Computer Engineering Systems

inside the for-loop takes O (1) time. Then, line 4 takes
the time to sort the switch Sp and it is estimated as O
(|Sp| log2 |Sp|). Line 9 detects a switch and the time (T3)
for finding the lightly loaded controller optimization
by algorithm 3 and line 10 takes the time (T4) required
for the switch migration by algorithm 4. Therefore, con-
sidering all the time taken by each line then the total
time complexity of the algorithm 2 is estimated as, ξS
(T3+T3+O(ξlight+log2 ξS)).

Algorithm 3: Selection of Optimised Controller
for TSSM Scheme

1. Initialization: controller-switch association{};
 set switches ={};

2. SORT (Sp, δa,t
(p) ; SORT (Sq, δa,t

(q));

3. end-to-end traffic distribution:
 Flow_pair = Flow_sort (flow)

4. while Cp in the Flow_pair:
 Traversing traffic on the network

5. Path_swicth = Dijkstra (Network Topology, Cp);
 Calculate the flow path

6. while Constantly Traversing Controller and
 Switch Path Sets

7. S is a set, {Sa, Sb, … Sz} is a subset of S,
 and USa = S

8. if Sa = S, Sa is selected as the optimal
 coverage set of S.

9. if an element x satisfies x ϵ S, and x ϵ Sa,
 then Sa is the part of the optimal
 coverage set of S.

10. if Sa ⊂ Sb exists, Sa is removed from
 { Sa, Sb, … Sz}

 Let Sn (x) denote a set from{Sa, Sb, … Sz}
 satisfying x ϵ Sa, and

11. if Sn (x) ⊂ Sn (y), element y is removed from S.

12. Perform the Corresponding Action

13. else:

14. Implement a Greedy Strategy to Select the
 Controller that Covers the Most Switches

15. end if

16. end while

17. end while

18. This Algorithm ceases until all switches
 are associated.

19. Use Algorithm 4 for TSSM scheme;

Algorithm 3: Selection of optimized controller
 for TSSM scheme in view of reduced
 migration cost

The objective of this algorithm is to provide optimized
controllers for the lightly loaded controllers in the TSSM
operation. The optimized controller is selected based on
flow characteristics such that it reduces the controller's
resource consumption and, subsequently, the switch
migration cost. The greedy set coverage algorithm [36]
is utilized for the optimized controller selection and is
presented in Algorithm 3. This algorithm requires the
PIMs of each switch in the overloaded controller Cp, as
well as the controller's threshold level, network topology
map, and so on. The Flow_sort function in line between
3 and 12 estimates the total amount of flow in each path
and sorts it in descending order. In lines 4-6, execute and
select a controller that covers most of the switches in
the path. The sorted path set will continue to be covered
until all switches are associated. Subsequently, the opti-
mized controllers are selected, and then Algorithm 4 is
executed for the TSSM strategy.

Lemma 3: Let assume all the lightly loaded control-
lers are sorted in the lightly loaded controller domain,
it is represented as |Clight |=ξlight. Let Cq1> Cq2, then in any
optimal solution exists based on optimal flow that X1<
1, or X2 = 0. then complexity of the time computation
for algorithm 3 is estimated as O ((Clight)log2(Clight)).

Proof: In algorithm 1, Line 1 requires a constant
amount of time to initialize controller-switch associa-
tion. Line 2 takes the time required to sort the overload
and lightly loaded controllers, represented as O (ξover
+ log2 ξover), and O (ξlight + log2 ξlight) respectively. Line
5 requires a time to estimate the flow path between
switches and lightly loaded controllers, represented as
O (log Clight). Then the total complexity of the time is
computed as O ((Clight)log2(Clight)).

Algorithm 4: Time to Switch Migration
Estimating Segment
1. Δover← min (αc_p - φc_p) & Δlight←
 max (φc_q- αc_q) ;

2. Sp
μ← ø and Sp

v← ø;

3. foreach Sa ϵ Sp do

4. if δa,t

(p) ≥ Δover then

5. Sp
μ←Sp

μ ⋃ {Sa};

6. else

7. Sp
v←Sp

v⋃{Sa};

8. if Sp
μ≠ ø then

9. Sa← the last switch of Sp
μ;

10. τ=[% of Δlight with respect to Δover]×(Lt) ;

11. else

451Volume 14, Number 4, 2023

12. Sa←the first switch of Sp
v;

13. τ←0 then n ←δa,t

(p) ;

14. δa,t

(p) ← δa,t

(p) – n and δa,t

(p) ← n ;

15. return (Sa, τ, n);

Algorithm 4: Time to Switch Migration
 Estimating Segment

After the optimum lightly loaded controllers (Cq [1,2,
…]) are defined from Algorithm 3, they are combined
with overloaded controllers to perform three tasks via
the execution of Algorithm 4. The responsibilities are, (i)
select a switch (from an overloaded controller) for shar-
ing their workload with lightly loaded controllers, (ii) de-
termine the switch migration time (τ), and (iii) calculate
the number of PIMS (n) that lightly loaded controllers
will process. Based on Algorithm 4, line 1, execute and
consider ‘Δlight’ be the remaining capacity of the lightly
loaded controllers, and ‘Δover’ is believed to be the mini-
mum amount of overload in the overloaded controllers.
After that, switches in the overloaded controllers are
split into two subnets namely Sp

μ and Sp
v, respectively,

where switch load is more than ´Δ´ then it is sorted in Sp
μ

with decreasing load order and Sp
v includes remaining

switches in the overloaded controllers, respecting codes
are given in line 2-7. At first, switches near to ‘Δ’ (might
be the very last switch in Spμ based on load soring or-
der) is selected in the Sp

μ subnet for migration in view of
reducing number of migrations (executed in line 8 - 9),
because minimum amount of overload in the overload-
ed controllers can be easily getting placed in the lightly

loaded controllers. The estimation of switch migration
time depends on amount of PIM’s generation in the
switch, Δlight in the optimum lightly loaded controllers,
Δover in the switch. For example, if Δlight is half of the Δover
value and PIMs produced rate is constant then switch
migration time is estimated as half of the period length
as given in eq. (3). If τ=0, then switch migration occurs at
beginning of the period as executed in line 13. Further-
more, once the switches in Sp

μ subnet is empty then Sp
v

subnet is considered for the better load balancing even
though it is not overloaded, it is executed in line 11 - 12.
This process will be repeated until all the controllers are
load balanced via optimal controller finding (Algorithm
3) for each switch in the time-sharing scheme and then
finally back to Algorithm 2.

Lemma 4: In the worst scenario, given ξS switches in
S, Algo. 3 takes O(ξS) time.

Proof: The first two lines of Algo. 3 require a consis-
tent amount of time to initialize. Because Sp⊆ S, the
for-loop in lines 3-7 repeats at most ξS times, and each
statement takes O (1) time. Each statement in lines 8-15
obviously requires O (1) time. To summarize, Algo. 3's
temporal complexity is O (1) + ξS O (1) + O (1) = O(ξS).

The relationship between all the algorithms is sum-
marized in Fig. 4, and Table. 1. It is shown that the Al-
gorithm 1 is used to locate the overload and lightly
loaded controllers in the SDN domain. The whole
switch migration is performed through an algorithm.
2. The optimization of controller selection for the TSSM
scheme is achieved through Algorithm 3, and Algo-
rithm 4 handles the TSSM process.

Fig. 4. Relationship between algorithms used in the improved TSSM scheme

Table. 1. Functions of Algorithms used in the improved TSSM scheme

Algorithms Process

1 It is used to locate the overloaded and lightly loaded controllers in the SDN domain.

2 Initially, it is sorting the overloaded and lightly loaded controllers based on their overloading and PIMS accessibility. After that, it
performs the whole switch migration from overloaded controllers to lightly loaded controllers.

3 It achieves optimized controller selection based on flow path through a greedy set algorithm for the TSSM operation.

4 It performs the TSSM operation and achieves better load balancing.

452 International Journal of Electrical and Computer Engineering Systems

(a) (b)

Fig. 5. Network topology used in the simulation test platform: (a) at ‘0’ second, (b) at 21st second

(a)

(b)

(c)

(d)

Fig. 6. Comparison of workload of controllers:
(a) OpenFlow Method, (b)Conventional TSSM

method, (c) Proposed Switch migration method, (d)
Controller-4 comparsion results.

5. EVALUATION AND ANALYSIS

The performance of the proposed switch migration
scheme is evaluated through time domain simulation
analysis. The ONOS platform is considered the test plat-
form, and hierarchical DSC architecture is adopted for
the experimental network, it has seven controllers and
24 switches, as shown in Fig. 5. Therefore, one controller
is acting as a leader, and its primary role is managing the
other six controllers in the network; it does not involve
itself in switch management; six secondary controllers
are controlling their switches in its subnet. In this test
platform, simulation time is considered 300 seconds and
is divided into 60 periods. Each secondary controller has
a PIMs handling capacity of 106 PIMs per period length
of 5 seconds. In addition, the threshold for each control-
ler is set at 800,000 PIMs per period. As a result, the total
affordable load for the controller is estimated to be 4.8 ×
106 PIMs per period. The loads of the switches are classi-
fied into three levels, namely, (i) light load, (ii) medium
load, and (iii) large load. During light load, each switch
generates around 21000 PIMs per second, whereas if a
switch produces 42,000 PIMs per second, it is called me-
dium load. However, if a switch is generating more than
63,500 PIMs per second, then it is called a large load. It is
observed that if all the switches are lightly loaded, then
the total affordable load for the controller is 2.52 × 106
PIMs per period, which is about 52.5 % of the total af-
fordable load. But if all switches are considered as large
loads, then the total load will be 7.62 × 106 PIMs per pe-
riod, which is much higher than the total affordable load
for the controller. Therefore, in this simulation study, the
simulation starts with a small load in all switches, and
the load will be randomly increased in the switches by
cbench tool as simulation time increases, for evaluating
the performance of the switch migration method. For ex-
ample, at 21st seconds, 10 switches (S1, S2, S4, S5, S7, S8,
S11, S12, S21, S24,) are generating about 21,500 PIMS/s,
and 8 switches (S3, S6, S9, S10, S16, S17, S22, S23,) are
generating 43,000 PIMs/s, and the remaining switches
(S13, S14, S15, S18, S19, S20,) are producing 64,000
PIMs/s. Therefore, total controller workload is 4.715 ×
106 PIMs per period, and there must be switch migra-
tion by both conventional (complete switch) and TSSM
scheme. For evaluating the performance of the pro-
posed method, three cases are considered: (i) work loads
of occurrences, (ii) occurrences of overload, (iii) controller
resource consumption, and (iv) migration cost.

453Volume 14, Number 4, 2023

Fig. 7. Comparison of number of overload
occurrences in conventional and proposed method

Fig. 8. Comparison of controller resource
consumption between TSSM and proposed switch

migration method

Fig. 9. Comparison of migration cost between
conventional method and proposed method

Test 1: Workload of Controllers

As we have considered, each controller can process
up to 800,000 PIMs per period, and if the controller has
processed more than 160,000 PIMs/s then it is consid-
ered an overloaded controller. In this test, two conven-
tional methods such as OpenFlow and TSSM are con-
sidered, and their test results are compared with the
proposed method for evaluating the performance.

It is noted that switch migration is not performed in
the OpenFlow method, and therefore, controllers C4, and
C5 are heavily overloaded, as shown in Fig. 6a, based on
PIMs generated in the switches. During this period, con-
trollers C4 and C5 must handle about 1,165,000 PIMs/

period, which is more than their maximum capacity (106
PIMs per period) and leads to unexpected issues in the
networking domain. In the case of the TSSM scheme, it
shares the workload between controllers through time
sharing migration and ensures that all the controllers
are within their threshold limits, as shown in Fig. 6b. In
addition, the Ping-Pong issue (there are no high jumps,
and frequently transferred switches are considered nil) is
not noticed in the test results. The test results of the pro-
posed switch migration scheme are presented in Fig. 6c.
It is observed that load sharing between the controllers
is much flatter (i.e., mostly all the controllers are sharing
about the same load, which improves the efficiency and
reduces the downtime or maintenance activity of the
controllers) as compared with the TSSM scheme.

Test 2: Number of Overload Occurrences

This test is used to evaluate the number of overload
occurrences for the controllers in the entire period (300
s), and it is useful for finding the performance of the
switch migration method. The comparison of over-
load occurrence for all three methods is given in Fig.
7. It shows that the OpenFlow method provides a high
number of overload occurrences since there is no ac-
tion of switch migration, and therefore, controllers C1,
C2, C3, and C6 are in the lightly loaded range, whereas
C4, and C5 are highly loaded, and these controllers are
completely overloaded during the given period.

In cases of TSSM, it has significantly reduced the num-
ber of overload occurrences for the controller since
it avoids ping-pong difficulty and therefore switches
that are repeatedly migrated are neglected. In the case
of the proposed method, it further reduces the num-
ber of overload occurrences compared with the TSSM
scheme. The proposed method uses more than one op-
timum controller as a lightly loaded controller during
time sharing migration, which could reduce the num-
ber of overload occurrences. Because, if one controller
is not enough to share the load of the switch (this con-
troller may be initially considered excess in this situa-
tion), then it is again processed to find another control-
ler for switch sharing in the conventional TSSM meth-
od, this might happen when the requirement for load
sharing is high in the overloaded controller and lightly
loaded single converters are not enough to handle this
load. However, the proposed method chooses more
optimum controllers based on the load sharing and
avoids excessive processing and overload occurrences.

Test 3: Controller Resource Consumption

Controller resource consumption describes the utiliza-
tion of a given number of controllers and switches. It is
noted that if we reduce the number of controllers associ-
ated with the switches, that certainly reduces the switch
migration cost of the network. OpenFlow is not per-
formed with the switch migration event; thus, it is omit-
ted for this evaluation study. The migration cost of the
conventional TSSM is lower when compared with other
switch migration methods. However, it is higher as re-

lated to the proposed switch migration method because
the proposed method chooses the optimal controllers
for sharing the workload based on flow characteristics,
which reduces the controller's resource consumption and
reduces the switch migration cost. The control resource
consumption of the switch migration method is given in
Fig. 8. It is observed that the proposed switch migration
method provides about 34% less switch migration cost
as compared with the conventional TSSM scheme.

Test 4: Migration Cost

The total number of switches that must be moved
between various subnets to pass the migration cost
test. Usually, controllers reassign switches to make sure
loads are as evenly distributed as feasible. As switch
migration is not carried out through the OpenFlow ap-
proach, it is not included. In the case of TSSM, it chooses
switches for migration at random whose loads are near
to tiny changes and permits two controllers to share
their loads at the same time (i.e., time-sharing migra-
tion). The improved TSSM technique optimizes control-
ler selection and enables controller workload sharing
via time-sharing switch migration. The findings (Fig. 9)
demonstrate that the enhanced TSSM program offers a
36% reduction in migration cost when compared with
the traditional TSSM scheme.

6. CONCLUSION

This paper has presented an improved TSSM approach
and mitigates the issue of increased switch migration
cost in the conventional TSSM method by finding more
than one optimal target controller during the time-shar-
ing period. It has utilized the flow characteristics for find-
ing the optimal controllers through a greedy set cover-
age algorithm. In addition, the proposed switch migra-
tion approach has TSSM benefits, which have conquered
the ping-pong controller difficulty. The ONOS platform is
considered for the performance evaluation of this study,
which found that the improved TSSM scheme has bet-
ter performance than the conventional TSSM method in
terms of workload sharing among controllers, number of
overload occurrences, and reduced controller resource
consumption. Specifically, it reduces the controller's re-
source consumption by 34% when compared with the
conventional TSSM.

ACkNOWLEDgEMENT

The authors wish to thank Annamalai University, In-
dia, for providing laboratory and experimentation re-
sources.

7. REFERENCES

[1] N. Anerousis, P. Chemouil, A. A. Lazar, N. Mihai, S. B.

Weinstein, “The origin and evolution of open pro-

grammable networks and SDN”, IEEE Communica-

tions Surveys and Tutorials., Vol. 23, No. 3, 2021,

pp. 1956-1971.

[2] Y.-C. Wang, H. Hu, “An adaptive broadcast and

multicast traffic cutting framework to improve

Ethernet efficiency by SDN”, Journal of Informa-

tion Science and Engineering., Vol. 35, No. 2, 2019,

pp. 375-392.

[3] M. Alsaeedi, M. M. Mohamad, A. A. Al-Roubaiey,

“Toward adaptive and scalable OpenFlow-SDN

flow control: A survey”, IEEE Access, Vol. 7, 2019,

pp. 1073-1079.

[4] J. H. Cox, R. Clark, H. Owen, “Leveraging SDN and

WebRTC for rogue access point security”, IEEE

Transactions on Network and Service Manage-

ment., Vol. 14, No. 3, 2017, pp. 756-770.

[5] Y.-C. Wang, S.-Y. You, “An efficient route manage-

ment framework for load balance and overhead

reduction in SDN-based data center networks”,

IEEE Transactions on Network and Service Man-

agement., Vol. 15, No. 4, 2018, pp. 1422-1434.

[6] W. Iqbal et al. “ALAM: Anonymous lightweight au-

thentication mechnism for SDN-enabled smart

homes”, IEEE Internet of Things Journal., Vol. 8, No.

12, 2021, pp. 9622-9633.

[7] Y.-C. Wang, R.-X. Ye, “Credibility-based counter-

measure against slow HTTP DoS attacks by using

SDN”, Proceedings of the IEEE Annual Computing

and Communication Workshop and Conference,

NV, USA, 27-30 January 2021, pp. 890-895.

[8] F. Bannour, S. Souihi, A. Mellouk, “Distributed SDN

control: Survey, taxonomy, and challenges”, IEEE

Communications Surveys and Tutorials. Vol. 20,

No. 1, 2018, pp. 333-354.

[9] J. Lu, Z. Zhang, T. Hu, P. Yi, J. Lan, “A survey of con-

troller placement problem in software-defined net-

working”, IEEE Access, Vol. 7, 2019, pp. 24290-24307.

[10] H. Sufiev, Y. Haddad, L. Barenboim, J. Soler, “Dy-

namic SDN controller load balancing”, Future In-

ternet, Vol. 11, No. 3, 2019, pp. 1-21.

[11] Y. Wu, S. Zhou, Y. Wei, S. Leng, “Deep reinforce-

ment learning for controller placement in soft-

ware defined network”, Proceedings of the. IEEE

Conference on Computer Communications Work-

shops, Toronto, ON, Canada, 2020, pp. 1254-1259.

[12] Y.-C. Wang, Y.-C. Wang, “Efficient and low-cost de-

fense against distributed denial-of-service attacks

454 International Journal of Electrical and Computer Engineering Systems

in SDN-based networks”, International Journal of

Communication Systems., Vol. 33, No. 14, 2020,

pp. 1-24.

[13] F. Tang, H. Zhang, L. T. Yang, L. Chen, “Elephant

flow detectionand load-balanced routing with ef-

ficient sampling and classification”, IEEE Transac-

tions on Cloud Computing., Vol. 9, No. 3, 2021, pp.

1022-1036.

[14] Y.-C. Chan, K. Wang, Y.-H. Hsu, “Fast controller

failover for multidomain software-defined net-

works”, Proceedings of the. European Conference

on Networks and Communications., Paris, France,

29 June - 02 July 2015, pp. 370-374.

[15] W. H. F. Aly, “Controller adaptive load balancing for

SDN networks”, Proceedings of the International

Conference on Ubiquitous and Future Networks.,

Zagreb, Croatia, 2-5 July 2019, pp. 514-519.

[16] T. Hu, J. Zhang, L. Cao, J. Gao, “A reliable controller

deployment strategy based on network condition

evaluation in SDN”, Proceedings of the IEEE Inter-

national Conference on Software Engineering and

Service Sciences, Beijing, China, 24-26 November

2017, pp. 367-370.

[17] T. Kim, J. Myung, S.-E. Yoo, “Load balancing of

distributed datastore in OpenDaylight controller

cluster”, IEEE Transactions on Network and Service

Management, Vol. 16, No. 1, 2019, pp. 72-83.

[18] Y.-C. Wang, E.-J. Chang, “Cooperative flow manage-

ment in multidomain SDN-based networks with

multiple controllers”, Proceedings of the Interna-

tional Conference on Smart Communities: Improv-

ing Quality of Life Using ICT, IoT and AI, Charlotte,

NC, USA, 14-16 December 2020, pp. 82-86.

[19] S. Nithya, M. Sangeetha, K. N. A. Prethi, K. S. Sahoo,

S. K. Panda, A. H. Gandomi, “SDCF: A software-

defined cyber foraging framework for cloudlet

environment”, IEEE Transactions on Network and

Service Management, Vol. 17, No. 4, 2020, pp.

2423-2435.

[20] K. S. Sahoo, P. Mishra, M. Tiwary, S. Ramasub-

bareddy, B. Balusamy, A. H. Gandomi, “Improving

end-users’ utility in software-defined wide area

network systems”, IEEE Transactions on Network

and Service Management, Vol. 17, No. 2, 2020, pp.

696-707.

[21] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, R.

Kompella, “Towards an elastic distributed SDN

controller”, ACM Special Interest Group on Data

Communication., Vol. 43, No. 4, 2013, pp. 7-12.

[22] Z. Min, Q. Hua, Z. Jihong, “Dynamic switch migra-

tion algorithm with Q-learning towards scalable

SDN control plane”, Proceedings of the Interna-

tional Conference on Wireless Communications

and Signal Processing, Nanjing, China, 11-13 Oc-

tober 2017, pp. 1-4.

[23] J. Cui, Q. Lu, H. Zhong, M. Tian, L. Liu, “SMCLBRT:

A novel load-balancing strategy of multiple SDN

controllers based on response time”, Proceedings

of the IEEE International Conference on High Per-

formance Computing and Communications, Ex-

eter, UK, 28-30 June 2018, pp. 541-546.

[24] K. S. Sahoo et al. “ESMLB: Efficient switch migra-

tion-based load balancing for multicontroller SDN

in IoT”, IEEE Internet of Things Journal, Vol. 7, No. 7,

2020, pp. 5852-5860.

[25] T. Hu, J. Lan, J. Zhang, W. Zhao, “EASM: Efficiency-

aware switch migration for balancing controller

loads in software-defined networking”, Peer-to-

Peer Networking and Applications., Vol. 12, 2019,

pp. 452-464.

[26] Y. Hu, W. Wang, X. Gong, X. Que, S. Cheng, “Bal-

anceFlow: Controller load balancing for Open-

Flow networks”, Proceedings of the IEEE Interna-

tional Conference on Cloud Computing and Intel-

ligence Systems., Hangzhou, China, 30 October - 1

November2012, pp. 780-785.

[27] W. Lan, F. Li, X. Liu, Y. Qiu, “A dynamic load balanc-

ing mechanism for distributed controllers in soft-

ware-defined networking”, Proceedings of the In-

ternational Conference on Measuring Technology

and Mechatronics Automation, Changsha, China,

10-11 February 2018, pp. 259-262.

[28] S. M. Maity, C. Mandal, "Traffic-Aware Consistent

Flow Migration in SDN", Proceedings of the IEEE

International Conference on Communications,

Dublin, Ireland, 7-11 June 2020, pp. 1-6.

[29] S. M. Maity, C. Mandal, "DART: Data Plane Load

Reduction for Traffic Flow Migration in SDN," IEEE

Transactions on Communications, Vol. 69, No. 3,

2021, pp. 1765-1774.

455Volume 14, Number 4, 2023

[30] B. Gorkemli, S. Tatlcıoglu, A. M. Tekalp, S. Civanlar,

E. Lokman, ˘ “Dynamic control plane for SDN at

scale”, IEEE Journal on Selected Areas in Commu-

nications, Vol. 36, No. 12, 2018, pp. 2688-2701.

[31] F. Al-Tam, N. Correia, “Fractional switch migration

in multicontroller software-defined networking”,

Computer Networks., Vol. 157, 2019, pp. 1-10.

[32] L. Chen, F. Tang, X. Li, “Mobility-and load-adaptive

controller placement and assignment in LEO sat-

ellite networks”, Proceedings of the IEEE Confer-

ence on Computer Communications, Vancouver,

BC, Canada, 10-13 May 2021, pp. 1-10.

[33] X. Zhang et al. “Dynamical controller placement

among SDN space-terrestrial integrated net-

works”, Proceedings of the IEEE 22nd International

Conference on High Performance Computing and

Communications, 14-16 December 2020, pp. 352-

359.

[34] L. Chen et al. “Dynamical control domain division

for software-defined satellite-ground integrated

vehicular networks”, IEEE Transaction on Network

Science and Engineering, Vol. 8, No.4, 2021, pp.

2732-2741.

[35] W.-K. Lai, Y.-C. Wang, Y.-C. Chen, Z.-T. Tsai, "TSSM:

Time-Sharing Switch Migration to Balance Loads

of Distributed SDN Controllers", IEEE Transaction

on Network and Service Management, Vol. 19, No.

2, 2022, pp. 1585-1597.

[36] Y. Zhang, Y. Ran, Z. Zhang, “A simple approxima-

tion algorithm for minimum weight partial con-

nected set cover”, Journal of Combinatorial Opti-

mization., Vol. 34, No. 3, 2017, pp. 956-963.

456 International Journal of Electrical and Computer Engineering Systems

