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Abstract –Software-defined networking (SDN) provides increased flexibility to network management through distributed SDN 
control, and it has been a great breakthrough in network innovation. Switch migration is extensively used for workload balancing 
among distributed controllers. The time-sharing switch migration (TSSM) scheme proposes a strategy in which more than one 
controller is allowed to share the workload of a switch via time sharing during overloaded conditions, resulting in the mitigation of 
ping-pong controller difficulty, a reduced number of overload occurrences, and better controller efficiency. However, it has increased 
migration costs and higher controller resource consumption during the TSSM operation period because it requires more than one 
controller to perform. Therefore, we have proposed a strategy that optimizes the controller selection during the TSSM period based 
on flow characteristics through a greedy set coverage algorithm. The improved TSSM scheme provides reduced migration costs and 
lower controller resource consumption, as well as TSSM benefits. For its feasibility, the implementation of the proposed scheme is 
accomplished through an open network operating system. The experimental results show that the proposed improved TSSM scheme 
reduces the migration cost and lowers the controller resource consumption by about 36% and 34%, respectively, as compared with 
the conventional TSSM scheme.
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1.  INTRODUCTION

The challenges in network management have tre-
mendously increased due to the rapid deployment of 
cloud computing, big data applications, the internet 
of multimedia things, and increased data traffic. The 
traditional network architecture system combines a 
data plane and a control plane in each switch, with the 
former handling packet processing and the latter han-
dling decision making and management. Therefore, 
updating the latest algorithms and new policies on the 
switches is very complex and time-consuming because 
all the switches involved in the given network need to 
be reconfigured one after another by system adminis-
trators or workers [1].

Currently, software-defined networking techniques 
create a unique view of network management in network 
applications where the control plane in the switches is 
shifted to a central unit known as the controller. Therefore, 
the controller can manage multiple switches in the net-
work. In this modern approach, monitoring, and control 
of network switches are much simpler as compared with 
conventional network management techniques because 
the controller unit can provide such information about 
the switches. Furthermore, the latest algorithms and new 
control policies are easily updated to the switches via a set 
of rules in the controller [2]. Apart from this, SDN can sup-
port a wide range of applications, including (i) resisting 
cyber-attacks; (ii) identifying malicious access points; and 
(iii) providing anonymous authentication, etc. [3-7].
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A lone controller in a large network will be a tough 
option since it creates a bottleneck in network man-
agement; therefore, distributed SDN control (DSC) is 
demanded in the network applications, and it acts as 
a promising solution in large network management 
with the several numbers of switches [8]. The DSC al-
lows multiple controllers to coordinate with each other 
to manage the entire network. Where each controller is 
managing a subset of switches (i.e., a subnet), as well as 
workflow, these can be exchanged among controllers 
for the use of teamwork. Each controller involves dis-
tributing the workload for the subnets and reassigning 
its switches' workloads through the regular check-up 
of each subnet, called "controller placement" [9]. The 
placement of controllers is based mainly on load bal-
ancing, and it is applied through several techniques, 
including the workgroup control technique [10], the 
deep reinforcement learning technique [11], and so on. 
The outcome of such control techniques may widely 
alter the switches in the subnet and lead to instability 
in the subnet via ping-pong operation. Furthermore, 
controller placement techniques are not considered 
effective during short-lasting flows such as distributed 
denial of service and impulses [12].

Switch migration provides a smooth alteration of 
subnets with a lesser period and overcomes the above-
mentioned issues. In each time frame (or time interval 
or period), a switch migration method is examining the 
workload status of each controller in the network to 
determine whether they are overloaded (busy) or light-
ly loaded (available to share other works). If it is over-
loaded, the migration method in a network relocates 
a switch from the busy controller subnet to a lightly 
loaded controller subnet. Most of the existing switch 
migration methods follow the smallest slice of the mi-
gration: one single switch, which is migrated at the be-
ginning of the period. Once the switch is migrated, it 
remains in the latest subnet until the switch is selected 
for the next period. Most importantly, these migration 
methods always ask a controller to oversee one switch 
for a complete period. Therefore, the controller in these 
methods gets into the ping-pong difficulty of an "el-
ephant flow situation (i.e., flow carries many packets) 
and goes into the serious trouble of a subnet that is 
unstable [13].

2. LITERATURE REVIEW

Over the years, several studies have detailed the various 
issues in the DSC network. Conventionally, controller load 
balancing is achieved through dynamic controller place-
ment methods. Chan et al. [14] proposed a method that 
could minimize the service interruption time by smoothly 
transferring the workflow from the compromised control-
ler to another controller. The leader controller redundancy 
is detailed in [15], where a lightly loaded controller can act 
as a leader in case of failure in the regular leader controller 
unit. Controller placement methods and challenges are 
reviewed in [9]. It has insisted that the controllers main-

tain fairness during the sharing of their workloads. Ref 
[16] proposed a reliable deployment method because 
of reducing packet loss and improving network stability, 
and it has achieved its objectives compared to other con-
troller placement methods. Kim et al. [17] have proposed 
a method that improves the output of dispersed data 
stores in an Open Daylight controller cluster by consis-
tently spreading the shared leaders to the cluster mem-
bers. Ref [18] proposed a method in which controllers 
collaborate to reroute traffic to avoid congestion during 
a switch's busy or overloaded period. A software-defined 
cyber-seek framework is proposed in [19], where a hybrid 
controller is used for cloudlets and local networks. Pre-
diction-based controllers are proposed in [20], and they 
predict the network load and perform the device transfer 
based on the prediction. The controller placement studies 
like the workgroup control technique and the deep rein-
forcement learning technique proposed in [10] and [11], 
respectively, show that these techniques are not effective 
during impulses, distributed denial of service, etc. Apart 
from the dynamic controller placement approach, meth-
ods for workload balancing for DSC are grouped into 
three categories: (i) switch migration, (ii) flow migration, 
and (iii) flow splitting.

Switch Migration: switch control can be transferred 
from overloaded controllers to lightly loaded control-
lers, considering workload reduction. The study [21] 
has discussed the switch migration because of CPU and 
memory allocation exceeding a controller's threshold 
level, but it does not define the way of choosing the 
targeted controllers. Switch migration using the Q-
learning technique is discussed in [22], and it has re-
duced the standard deviation of the controller's work-
load. Cui et al. [23] have used the response time of the 
controller for switch migration. By using this technique, 
the switch is transferred with the largest load on the 
controller and the quickest reaction time. Ref. [24] pro-
posed a method that targeted controller selection for 
switch migration based on CPU utilization, memory 
size, bandwidth, etc. Hu et al. [25] proposed a simu-
lated annealing algorithm for selecting the targeted 
controller to reduce the switch migration cost.

Flow Migration: The flow migration method only trans-
fers the hardness (i.e., flow beyond the threshold level) 
of the flow instead of migrating a whole switch. Hu et al. 
proposed a technique in which a "super controller ad-
ministers every controller in the system and regulates the 
flow managed by them [26]. Ref. [27] proposed a game 
theory approach that managed the flow of each control-
ler through workload exchange between them. Maity et 
al. [28] proposed a traffic-aware consistent approach for 
reducing the flow migration duration, and they achieved 
about a 15% reduction in flow migration time when 
compared with the conventional flow migration meth-
ods. Also, with the use of a traffic-aware flow migration 
approach, ref [29] has proposed a method to reduce the 
data plane load and achieved a 13% reduction when 
compared with the two-phase update approach.
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Flow Splitting: This method allows a switch to be 
managed by more than one controller at the same 
time. Gorkemli et al. [30] discussed a method in which 
switches are required to negotiate with their control-
lers for flow splitting using a virtual overlay on the 
data plane. Ref. [31] proposed an approach based on 
convex quadratic programming for load balancing as 
well as reducing new switch-controller appointments 
through modeling the mapping between controllers 
and switches.

The control relation graph-based controller place-
ment method for software-defined networking (SDN) 
is presented in [32]. It demonstrates that the proposed 
approach reduces management costs through load 
balancing and response time in LEO satellite networks. 
Zhang et al. proposed an SDN-based space-terrestrial 
integrated network architecture. In addition, it has pre-
sented an efficient dynamic controller placement and 
adjustment algorithm for better load balancing and 
response time [33]. Chen et al. proposed a dynamical 
control domain division problem to reduce the man-
agement cost. In addition, it has presented a heuristic 
algorithm to choose the best controller for better load 
balancing [34].

However, considering the practical viability of Open 
Flow, a switch cannot be controlled by more than one 
controller simultaneously considering synchronization 
and complex design. Therefore, flow migration and 
flow splitting methods are non-compliant to the Open-
Flow protocol and cannot be implemented in the real-
time controller platform.

2.1. PROBLEM DESCRIPTION AND  
 CONTRIBUTION

As discussed in the literature section, most of the 
switch migration methods are having issues with ping-
pong difficulty. The ping-pong difficulty of the control-
ler is explained in the following example. Let us con-
sider two controllers [Cp and Cq] and three switches 
[Sa, Sb, Sc] in the network. The maximum manageable 
workload for each controller is 100 PIMS per second. 
The switches Sa, Sb, and Sc produce 60, 80, and 60 PIMS 
per period, respectively. In time t, Cp handles switches 
Sa & Sb then controller Cq manages to switch Sc. Since 
αc_p =δa(t)+δb(t) = 60 + 80 > βc_p(100 PIMS), Cp is over-
loaded and requires switch migration. In most of the 
switch migration methods, an overloaded controller 
will request and takeover a switch for a whole period 
from other controllers. Therefore, Switch Sa is trans-
ferred to controller Cq`s subnet at time t+1. Though at 
period t+1, αc_q=δc(t)+δa(t) = 60 + 60 > βc_q (100 PIMS), 
controller Cq will be overloaded. So, controller Cq asks 
Cp to take over a switch again in time t+2, which makes 
ping-pong difficult.

Recently, W.K. Lai et al. [35] proposed a time-sharing 
switch migration scheme (TSSM) that mitigates the 
ping-pong difficulties in the controllers by sharing the 

workload of a switch that is supervised by two control-
lers at the same time during overloaded conditions. It 
proposes a strategy whereby switch migration is per-
formed in a time-sharing manner, where the workload 
of the switch is divided between two controllers within a 
given period. Considering the previous example, at time 
t+1, controller Cp manages 20 PIMs of Sa, and the remain-
ing 40 PIMs are handled by Cq through migration. During 
this time, both controllers Cp and Cq are managing the 
workload of switch Sa. Hence, Cp’s workload becomes αc_

p=δa(t)+δb(t) = 20 + 80 ≤ βc_p(100 PIMS) and, Cq’s workload 
turns out to be αc_q=δc(t)+δa (t) = 60 + 40 ≤ βc_q(100 PIMS).
Therefore, both controllers are not overloaded (busy) in 
period t+1. Similarly, at time t+2, Cq initially processed 40 
PIMS, and the remaining 20 PIMS have been sent to the 
Cp controller subnet. In this approach, The TSSM scheme 
can successfully conquer the ping-pong difficulty of the 
controller.

Specifically, it proposes a strategy where two control-
lers, namely an overload controller (one) and a lightly 
loaded controller (it can be many, but this paper uti-
lizes one), are combined, and the switch from an over-
loaded to a lightly loaded controller subnet is made at 
an adequate point in time. The outcome of this tech-
nique shows that it has considerably reduced overload 
occurrences of the controllers and effectively balanced 
the workload of all the controllers with improved con-
troller efficiency as compared with the existing switch 
migration methods such as group-based dynamic con-
troller placement [10], churn-triggered migration [30], 
and the "best-fit migration [32] method. Nevertheless, 
it is observed that more than one lightly loaded con-
troller operation in the TSSM provides better control-
ler efficacy than the original one (i.e., discussed in the 
paper) with the increased switch migration cost. In ad-
dition, this method has higher controller resource con-
sumption during TSSM operation since the migration 
switch is managed (i.e., controlled) by more than one 
controller in the network.

Therefore, we proposed a strategy that optimizes 
the selection of lightly loaded controllers during the 
TSSM period and allows more than one lightly loaded 
controller for switch migration during the TSSM period 
without increasing migration costs. The controller is se-
lected based on flow characteristics through a greedy 
set coverage algorithm, which reduces the control-
ler's resource consumption by reducing the number 
of controllers participating in the flow processing. The 
improved TSSM scheme provides reduced migration 
costs and lower controller resource consumption, as 
well as TSSM benefits. The implementation of the pro-
posed scheme is accomplished through an open net-
work operating system (ONOS) for its feasibility, and it 
can respond to about one million flow processing re-
quests per second.

In summary, software-defined networking (SDN) 
leads to an efficient administration process in network 
management through easy updating of network poli-
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cies and the latest algorithms. Typically, distributed 
SDN is adopted in network management, considering 
bottleneck issues. Load balancing is a critical factor in 
the SDN, and it can be managed through (i) the dy-
namic controller placement method, (ii) switch migra-
tion, (iii) the flow splitting method, and (iv) the flow mi-
gration method. Considering the practical viability of 
Open Flow, a switch cannot be controlled by more than 
one controller simultaneously, considering synchroni-
zation and complex design. Therefore, flow migration 
and flow splitting methods are non-compliant with 
the OpenFlow protocol and cannot be implemented 
on the real-time controller platform. Considering the 
OpenFlow protocol and its implementation in the real-
time controller platform, the dynamic controller place-
ment method with switch migration is a better solution 
for load balancing.

The conventional switch migration methods suffer 
from ping-pong difficulty during the switch migration 
process because the whole single switch is migrated 
in the beginning period. It causes instability issues in 

the switch migration. The ping-pong difficulty is recti-
fied by a time-sharing switch migration scheme. This 
method significantly reduces the overload occurrences 
of the controller, which leads to better load balanc-
ing. However, the selection of controllers during the 
TSSM period is random. So that it could increase the 
switch migration cost and higher controller resource 
consumption during TSSM operation since the migra-
tion switch is managed by more than one controller 
in the network. Therefore, our paper has proposed an 
improved TSSM scheme, and it has the following mer-
its: (i) It contains all the merits of a conventional TSSM 
scheme, including the removal of ping-pong controller 
action during the switch migration process, a reduction 
in controller overload occurrences, and better control-
ler efficiency. (ii) The selection of controllers during 
TSSM is specified and optimized through the greedy 
set algorithm, which reduces the switch migration cost 
and controller resource consumption. (iii) It provides 
better controller efficiency and load balancing com-
pared with the conventional TSSM scheme. The struc-
ture of the paper is shown in Fig. 1.

Fig. 1. Structure of the paper

2.2. ORgANIzATION OF ThE PAPER

The paper is structured as follows: The literature review 
and problem description are covered in Section II of this 
paper. The background knowledge of the distributed 
SDN control network, OpenFlow protocol rules, and net-
work model is detailed in Section III. The proposed im-
proved TSSM scheme and matching algorithms are dis-
cussed in Section IV, and the performance evaluation of 
the proposed method is presented in Section V. Finally, 
the concluding statement is summarized in Section VI.

3. DISTRIBUTED SDN CONTROLLER

The architecture of the distributed SDN control net-
work, the switch transfer procedure in the OpenFlow pro-
tocol, and network models are discussed in this section.

3.1. DISTRIBUTED SDN CONTROL NETWORk 
 ARChITECTURE

Two common control methods are typically followed 
in the distributed SDN control network, namely, (i) the 
hierarchical method and (ii) the flat control method, 
also called circular chain control [8]. In the hierarchi-
cal method, the central distributed controller (called 
the leader) has the idea of a network global view and 
is updating the network policies and latest algorithms 
to the sub-controllers, as shown in Fig. 2(a). The sub-
controller takes control (is in charge) of the subnet of 
its switches, as well as reports its status to the leader. It 
is noted that the new leader will be selected if the origi-
nal leader is broken down in the hierarchical method 
[15]. In the case of circular chain control, controllers 
have information about the local view of the network 
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and authority over their own subnet. The involved con-
trollers are swapping information among themselves 
in a distributed manner, as shown in Fig. 2(b).

The hierarchical method is considered in this paper 
to apply the proposed switch migration scheme. The 
leader is responsible for monitoring the status of each 
sub-controller as well as performing the TSSM scheme 
to select the lightly loaded controller for the over-
loaded controller during flow fluctuations, flow traf-
fic, impulses, distributed denial of service, and so on. 
Afterward, two sub-controllers (overloaded and lightly 
loaded) are committed to sharing their workloads and 
migrating the switch where it is required.

φc=βc-γc (1)

(a) (b)

Specifically, the threshold level of the sub controller 
is also defined in the leader to avoid unwanted switch 
migrations. When the workload of the controller is 
more than the threshold level, it is considered over-
loaded, and it is selected based on the maximum ca-
pacity and reserve capacity of the controller. Generally, 
the threshold level is selected between 90 and 95% of 
the maximum capacity, as recommended by network 
administrators. The threshold level of the controller is 
also noted as the maximum workload of the controller, 
and it is defined in eq. (1).

Fig. 2. Control methods for the DSC architecture: (a) Hierarchical method, (b) Flat method

3.2. TRANSFERRINg PROCESS FOR SWITChES 
 IN OPENFLOW PROTOCOL

OpenFlow permits a switch transfer among various 
subnets and creates a connection with several control-
lers. Based on switch Sn’s point of view. 

The following roles are determined by each associ-
ated controller Cp.

•	 OFPCR_ROLE_EQUAL (Equal): This default role 
makes controller Cp to have full authority to switch 
Sn, and Cp can send commands to Sn and receive the 
status. Similarly, all the controllers have full access 
to Sn when it is acting in this role.

•	 OFPCR_ROLE_SLAVE (Slave): If the controller Cp 
role is changed to slave, then Cp can only read the 
status from switch Sn.

•	 OFPCR_ROLE_MASTER (Master): It is like as equal 
role and controller Cp has complete authority to Sn. 
Though, it is insisted that only one controller (e.g., 
Cp) is considered as a master controller for a switch 
Sn and other controllers are regarded as slaves to 
switch Sn.

Transferring process for the switches is defined in the 
OpenFlow protocol is shown in Fig. 3. Switch transfer-
ring process is initiated by the master controller since 
it has full authority over the switch. For example, con-
troller’s Cp and Cq are the master and targeted (slave) 

controllers respectively, for the switch Sn. It is insisted that 
overloaded controllers are transferring a switch to other 
controllers for workload balancing with the help of the 
leader (controller). Once the master controller (Cp) gets a 
command from the leader, it will then send a transfer re-
quest to switch Sn to targeted controller Cq. 

φc⟶Thersholdworkloadlevelofthecontroller
βc⟶Maximumworkloadcapacityofthecontroller
γc⟶Reserveworkloadcapacityofthecontroller

Fig. 3. Switch transferring process 
 in OpenFlow Protocol

After that, controller Cq asks switch Sn to change the 
role of Sn control to master instead of slave through the 
Role_Request (Master) message, and switch Sn will pro-
vide a confirmation message to Cq via Role_Reply (Mas-
ter). After all, Cq provides notification message to Cp for 
the victorious migration of switch Sn and then control-
ler Cp acts as a slave controller for switch Sn. 
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The switch migration is supported by the OpenFlow 
protocol in versions 1.2, 1.3, 1.4, and 1.5 (most recent 
version). It is observed that OpenFlow regulation only 
instructs about how to alter (migrate) the switches 
between controllers for their roles and exchange mes-
sages between controllers. However, deciding target 
controllers and switches for migration is not defined 
by OpenFlow. The proposed improved TSSM scheme 
achieves optimized controller selection and deter-
mines when to execute switch migration during the 
TSSM period.

3.3. NETWORk MODEL

Let us predict an SDN-based network comprised of a 
collection Sn of switches and a group Cn of controllers. 
A switch (e.g., Sa) in Sn is controllable by a controller in 
Cn (e.g., Cp) with a model of one switch is controlled by 
a controller simultaneously recommended by Open-
Flow, i.e., Cp is acting as a master controller for Sa, and 
it can be changed after the switch migration. 

The workload of each controller is determined through 
Packet_In messages (PIMs) sent from the switches. 
Particularly, switches workload (δ(t)) are determined 
through the number of PIMs generated by a switch in 
each period ´t´. Subsequently, controller workload ca-
pacity is defined as the maximum amount of PIMS that 
can be handled in each period. For example, if switches 
Sa to Sz are administered by controller Cp then the work-
load of the controller Cp is calculated as,

(2)

Generally, the maximum workload (αc) of the con-
troller shall be less than the maximum capacity of the 
controller (βc) considering the requirement of reserve 
load during unwanted situations such as flow fluc-
tuation, abrupt demand, etc. In this paper, hierarchical 
control of DSC architecture is considered; therefore, the 
leader collects workload from all the controllers at ev-
ery period and directs the switch migration between 
controllers when required.

4. PROPOSED SWITCh MIgRATION SChEME

During the initial stage, controller placement meth-
ods or network operators are used to configure the 
network switches, where each switch is controlled by a 
master controller. As discussed in the previous section, 
conventional switch migration methods include migrat-
ing a switch at the beginning of the period as well as a 
complete part of a switch even though it is not required. 
Thus, connections between controllers and switches are 
static for the whole period. In the case of TSSM, switch 
migration is allowed through time-sharing, and switches 
in the network can dynamically alter their connections 
with the controller in each period. In addition, the TSSM 
scheme effectively overcomes the controller ping-pong 
difficulty, as discussed in Section 2.1. Nevertheless, con-

troller resource consumption is higher during the TSSM 
period, which could increase the migration cost of the 
method compared to other migration methods since 
it allows more than one controller to share their switch 
loads during the TSSM period. It is observed that migra-
tion costs are estimated based on the utilization of con-
trollers and switches. Therefore, this paper has proposed 
an algorithm that significantly reduces the number of 
controllers associated with the switches based on flow 
characteristics during time-sharing migration. We have 
introduced a greedy set coverage algorithm to achieve 
the optimal association between the switches and 
controllers during the time-sharing migration period, 
such that the number of controllers associated with the 
switch is reduced, which subsequently reduces control-
ler resource consumption and lowers the migration cost. 
The following algorithms are designed for the successful 

Algorithm 1:  Locating Overloaded and Lightly 
 Loaded Controllers
1. Cover ← ø and Clight ← ø ;

2. foreach Cp ϵ C do

3. αc_p← 0 ;

4. foreach Sa ϵ Sp do

5. αc_p← αc_p + δa,t
(p) ;

6. if αc_p>φc_p then

7. Cover ← Cover U {Cp} ;

8. else if αc_p<λ × φc_p then

9. Clight ← Clight U {Cp} ;

10. If Cover≠ ø and Clight ≠ ø then

11. Use Algorithm 2 for load balancing 
 between Cover and Clight ;

Algorithm 1: Locating Overloaded and Lightly 
 Loaded Controllers

This algorithm is ensured to find all the overloaded 
(called busy) and lightly loaded controllers (called as-
sistant or target controllers) in the given network, sym-
bolized by Cover and Clight, respectively. The workload 
of each controller (e.g., αc_p ) is estimated based on 
Eq. (2) through adding the loads of each switch (e.g., 
δa,t

(p)+δb,t
(p)+⋯) in the subnet, it is described in the algo-

rithm code between 3 and 5 lines. Afterward, control-
ler workload (e.g., αc_p) is compared with the threshold 
level (φc_p) and if it is more than the threshold level then 
it is considered as an overloaded controller and includ-
ed in the overload controllers (characterized in lines 6 
-7) unit in the leader. Then lightly loaded controllers 
are determined based on a lightly loaded coefficient 
‘λ’, value between 0.9 and 0.95 (selected by network 
administrators) and it is included in line 8. Afterwards, 
lightly loaded coefficient is multiplied with the thresh-
old value, and if the workload of the controllers is less 
than the multiply value, then it is considered a lightly 
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loaded controller, and it is added to the lightly loaded 
controller unit in the leader. It is insisted that switch mi-
gration be carried out when both Cover and Clight control-
lers are non-empty, checked in line 10.

Lemma 1: Let assume overloaded and lightly 
controllers are subset of main controller ⏞C̈ (i.e., 
ξCover&ξClight ϵ C̈) and all the switches are included 
within this domain is represented as S ̈ (i.e, ξSϵ S̈), then 
complexity of the time computation for algorithm 1 is 
estimated as O (ξCover + ξClight + ξS) + T2, T2 is the compu-
tation time of algorithm 2. 

Proof: In algorithm 1, Line 1 requires a constant 
amount of time to initialize both Cover and Clight. Then, in 
lines 2-9, the outer for-loop has iterations similar to the 
number of controllers positioned in this domain, but 
lines 3, 6, 7, 8, and 9 all need O (1) time.

Lines 4-5's inner for-loop (together with the outer for-
loop) examines every switch in overloaded controller SP. 
As a result, the outer for-loop takes (ξCover + ξClight)× O (1) 
+ O (ξS) = O (ξCover + ξClight +ξS). Line 11 then performs 
Algorithm 2 and uses T2 time. To summarize, Algo. time 
complexity is O (ξCover + ξClight +ξS) + T2.

Algorithm 2:  Switch Migration Segment for 
Load Balancing

1. SORT (Cover, αc_p - φc_p);

2. SORT (Clight, φc_q- αc_q); 

3. foreach Cp ϵ Cover do

4. SORT (Sp , δa,t
(p));

5. while αc_p > φc_p do

6. if Clight =  ø then

7. Cease this module ;

8. Pick the optimized controllers 
 Cq_1, Cq_2,… from Clight ;

9. (Controller-Switch Association Matrix ) ←  
 Algorithm 3 (Request PIM´s of Switch,  
 Switches from Cover)

10. (Sa, [τ1 , τ2 , …] , [n1 , n2 , …]) ←  
 Algorithm 4 (Cp , [Cq1, Cq2, … ]) ;

11. Transfer Sa to [Cq1, Cq2, … ]’s subnet  
 after [τ1 , τ2 , …] units of time ;

12. αc_p← αc_p- [n1, n2, …];

13. αc_q1← αc_q+ [n1, n2, …] ;

 αc_q2← αc_q+ [n1, n2, …] ;

14. if αcq[1,2,…]
 ≥ λ × φcq[1,2,…]

 then

15. Clight ← Clight \{Cq [1,2, …]};

16. else

17. SORT (Clight, φc_q - αc_q) ;

Algorithm 2: Ordering the pair of overloaded 
 and assistant controllers and 
 switch migration.

The aim of this algorithm is to share the workload 
between controllers by locating the pair of overloaded 
and lightly loaded controllers. The SORT function helps 
sort the overloaded and lightly loaded controllers in 
decreasing workload order. The overload controllers 
are sorted in code line 1, whereas line 2 provides the 
sorted information about the lightly loaded control-
ler. Hence, a controller with extremely leftover capac-
ity will be considered the first to contribute to the 
workload of an overloaded (busy) controller. The code 
in lines between 3 and 17 handles each controller in 
the network through for-loop by most overloaded con-
troller to the lowest overloaded one. Line 4 sorts of the 
switches under Cp administration based on their work-
load in conjunction with decreasing order. The while 
loop in line 5-16 keep on decreasing the workload of 
the Cp by migrating a switch until it gets below threshold 
workload. However, if there is no assistant controller to 
help (i.e., Clight is empty), and more overload controllers 
are still in the domain then algorithm 2 terminates as 
given in line 6 -7. Otherwise, if we want to select again 
a lightly loaded controller Cq for sharing workload then 
time sharing switch migration scheme is to be activated. 
For that initially, Algorithm 3 is executed to find the op-
timum controllers [Cq1 , Cq2 , …] for TSSM in view of re-
duced controller resources consumption and lower mi-
gration cost. Afterward, once the optimized controllers 
are discovered then TSSM scheme is executed based on 
Algorithm. 4. The output of Algorithm. 4 provides three 
output parameters as noticed in line 10. In which, ´τ´ 
gives the information about what time switch Sa should 
migrate to other controllers, whereas ́ n´ provides the in-
formation of how much of PIMs to be migrated to each 
controller. Afterward, workload updates of Cp and [Cq1 , 
Cq2 , …] is performed in line 11 to 13 and if [Cq1 , Cq2 , …] is 
exceeded the threshold level then these controllers are 
removed from the lightly loaded controllers as given in 
line 14, otherwise these controllers are again going for 
the sorted function in the lightly loaded controller unit 
as given in line 17 and line 2.

Lemma 2: This property proves that algorithm 2 
must be converge and it does not run forever due to 
the finite number of overloaded controllers. Let consid-
er sum of lightly loaded controllers, and switches are 
represented as |Clight |=ξlight, |S|=ξS , respectively. In the 
worst scenario, algorithm 2 takes ξS (T3 + T4 + O (ξlight + 
log2ξS)) time, where T3 and T4 is the calculation time of 
Algorithm 3 and 4.

Proof: Lines 1 and 2 of algorithm 2 take time required 
for the sorting of overload O (ξover + log2 ξover) and lightly 
loaded O (ξlight + log2 ξlight) controllers. We choose an 
overloaded controller CP (i.e., line 3), an assistance con-
troller Cq (i.e., line 8), and shift the load of a switch Sp 
from Cp to Cq (i.e., lines 9-12) in the for-loop. Except for 
lines 4, 9, 10, and 16, each of the residual statements 
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inside the for-loop takes O (1) time. Then, line 4 takes 
the time to sort the switch Sp and it is estimated as O 
(|Sp| log2 |Sp|). Line 9 detects a switch and the time (T3) 
for finding the lightly loaded controller optimization 
by algorithm 3 and line 10 takes the time (T4) required 
for the switch migration by algorithm 4. Therefore, con-
sidering all the time taken by each line then the total 
time complexity of the algorithm 2 is estimated as, ξS  
(T3+T3+O(ξlight+log2 ξS)).

Algorithm 3:  Selection of Optimised Controller 
for TSSM Scheme

1. Initialization: controller-switch association{}; 
 set switches ={};

2. SORT (Sp, δa,t
(p) ; SORT (Sq, δa,t

(q));

3. end-to-end traffic distribution: 
 Flow_pair = Flow_sort (flow)

4. while Cp in the Flow_pair:  
 Traversing traffic on the network

5. Path_swicth = Dijkstra (Network Topology, Cp);  
 Calculate the flow path

6. while Constantly Traversing Controller and  
 Switch Path Sets

7. S is a set, {Sa, Sb, … Sz} is a subset of S,  
 and USa = S

8. if Sa = S, Sa is selected as the optimal 
 coverage set of S.

9. if an element x satisfies x ϵ S, and x ϵ Sa, 
 then Sa is the part of the optimal  
 coverage set of S.

10. if Sa ⊂ Sb exists, Sa is removed from  
 { Sa, Sb, … Sz}

 Let Sn (x) denote a set from{Sa, Sb, … Sz}  
 satisfying x ϵ Sa, and

11. if Sn (x) ⊂ Sn (y), element y is removed from S.

12. Perform the Corresponding Action

13. else:

14. Implement a Greedy Strategy to Select the 
 Controller that Covers the Most Switches 

15. end if

16. end while

17. end while

18. This Algorithm ceases until all switches  
 are associated.

19. Use Algorithm 4 for TSSM scheme;

Algorithm 3:  Selection of optimized controller  
 for TSSM scheme in view of reduced 
 migration cost

The objective of this algorithm is to provide optimized 
controllers for the lightly loaded controllers in the TSSM 
operation. The optimized controller is selected based on 
flow characteristics such that it reduces the controller's 
resource consumption and, subsequently, the switch 
migration cost. The greedy set coverage algorithm [36] 
is utilized for the optimized controller selection and is 
presented in Algorithm 3. This algorithm requires the 
PIMs of each switch in the overloaded controller Cp, as 
well as the controller's threshold level, network topology 
map, and so on. The Flow_sort function in line between 
3 and 12 estimates the total amount of flow in each path 
and sorts it in descending order. In lines 4-6, execute and 
select a controller that covers most of the switches in 
the path. The sorted path set will continue to be covered 
until all switches are associated. Subsequently, the opti-
mized controllers are selected, and then Algorithm 4 is 
executed for the TSSM strategy.

Lemma 3: Let assume all the lightly loaded control-
lers are sorted in the lightly loaded controller domain, 
it is represented as |Clight |=ξlight. Let Cq1> Cq2, then in any 
optimal solution exists based on optimal flow that X1< 
1, or X2 = 0. then complexity of the time computation 
for algorithm 3 is estimated as O ((Clight)log2(Clight)).

Proof: In algorithm 1, Line 1 requires a constant 
amount of time to initialize controller-switch associa-
tion. Line 2 takes the time required to sort the overload 
and lightly loaded controllers, represented as O (ξover 
+ log2 ξover), and O (ξlight + log2 ξlight) respectively. Line 
5 requires a time to estimate the flow path between 
switches and lightly loaded controllers, represented as 
O (log Clight).  Then the total complexity of the time is 
computed as O ((Clight)log2(Clight)).

Algorithm 4:  Time to Switch Migration 
Estimating Segment
1. Δover← min (αc_p - φc_p) & Δlight←  
 max (φc_q- αc_q) ;

2. Sp
μ← ø and Sp

v← ø;

3. foreach Sa ϵ Sp do

4. if δa,t
 

(p) ≥ Δover then

5. Sp
μ←Sp

μ ⋃ {Sa};

6. else

7. Sp
v←Sp

v⋃{Sa};

8. if Sp
μ≠ ø then

9. Sa← the last switch of Sp
μ;

10. τ=[% of Δlight  with respect to Δover ]×(Lt) ;

11. else 
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12. Sa←the first switch of Sp
v;

13. τ←0 then n ←δa,t
 

(p)  ;

14. δa,t
 

(p) ← δa,t
 

(p) – n and δa,t
 

(p) ← n ;

15. return (Sa, τ, n );

Algorithm 4: Time to Switch Migration  
 Estimating Segment

After the optimum lightly loaded controllers (Cq [1,2, 
…]) are defined from Algorithm 3, they are combined 
with overloaded controllers to perform three tasks via 
the execution of Algorithm 4. The responsibilities are, (i) 
select a switch (from an overloaded controller) for shar-
ing their workload with lightly loaded controllers, (ii) de-
termine the switch migration time (τ), and (iii) calculate 
the number of PIMS (n) that lightly loaded controllers 
will process. Based on Algorithm 4, line 1, execute and 
consider ‘Δlight’ be the remaining capacity of the lightly 
loaded controllers, and ‘Δover’ is believed to be the mini-
mum amount of overload in the overloaded controllers. 
After that, switches in the overloaded controllers are 
split into two subnets namely Sp

μ and Sp
v, respectively, 

where switch load is more than ´Δ´ then it is sorted in Sp
μ 

with decreasing load order and Sp
v includes remaining 

switches in the overloaded controllers, respecting codes 
are given in line 2-7. At first, switches near to ‘Δ’ (might 
be the very last switch in Spμ based on load soring or-
der) is selected in the Sp

μ subnet for migration in view of 
reducing number of migrations (executed in line 8 - 9), 
because minimum amount of overload in the overload-
ed controllers can be easily getting placed in the lightly 

loaded controllers. The estimation of switch migration 
time depends on amount of PIM’s generation in the 
switch, Δlight in the optimum lightly loaded controllers, 
Δover in the switch. For example, if Δlight is half of the Δover 
value and PIMs produced rate is constant then switch 
migration time is estimated as half of the period length 
as given in eq. (3). If τ=0, then switch migration occurs at 
beginning of the period as executed in line 13. Further-
more, once the switches in Sp

μ subnet is empty then Sp
v 

subnet is considered for the better load balancing even 
though it is not overloaded, it is executed in line 11 - 12. 
This process will be repeated until all the controllers are 
load balanced via optimal controller finding (Algorithm 
3) for each switch in the time-sharing scheme and then 
finally back to Algorithm 2. 

Lemma 4: In the worst scenario, given ξS switches in 
S, Algo. 3 takes O(ξS) time.

Proof: The first two lines of Algo. 3 require a consis-
tent amount of time to initialize. Because Sp⊆ S, the 
for-loop in lines 3-7 repeats at most ξS times, and each 
statement takes O (1) time. Each statement in lines 8-15 
obviously requires O (1) time. To summarize, Algo. 3's 
temporal complexity is O (1) + ξS O (1) + O (1) = O(ξS). 

The relationship between all the algorithms is sum-
marized in Fig. 4, and Table. 1. It is shown that the Al-
gorithm 1 is used to locate the overload and lightly 
loaded controllers in the SDN domain. The whole 
switch migration is performed through an algorithm. 
2. The optimization of controller selection for the TSSM 
scheme is achieved through Algorithm 3, and Algo-
rithm 4 handles the TSSM process.

Fig. 4. Relationship between algorithms used in the improved TSSM scheme

Table. 1. Functions of Algorithms used in the improved TSSM scheme

Algorithms Process

1 It is used to locate the overloaded and lightly loaded controllers in the SDN domain.

2 Initially, it is sorting the overloaded and lightly loaded controllers based on their overloading and PIMS accessibility. After that, it 
performs the whole switch migration from overloaded controllers to lightly loaded controllers.

3 It achieves optimized controller selection based on flow path through a greedy set algorithm for the TSSM operation.

4 It performs the TSSM operation and achieves better load balancing.
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(a) (b)

Fig. 5. Network topology used in the simulation test platform: (a) at ‘0’ second, (b) at 21st second

(a)

(b)

(c)

(d)

Fig. 6. Comparison of workload of controllers: 
(a) OpenFlow Method,  (b)Conventional TSSM 

method, (c) Proposed Switch migration method, (d) 
Controller-4 comparsion results.

5. EVALUATION AND ANALYSIS

The performance of the proposed switch migration 
scheme is evaluated through time domain simulation 
analysis. The ONOS platform is considered the test plat-
form, and hierarchical DSC architecture is adopted for 
the experimental network, it has seven controllers and 
24 switches, as shown in Fig. 5. Therefore, one controller 
is acting as a leader, and its primary role is managing the 
other six controllers in the network; it does not involve 
itself in switch management; six secondary controllers 
are controlling their switches in its subnet. In this test 
platform, simulation time is considered 300 seconds and 
is divided into 60 periods. Each secondary controller has 
a PIMs handling capacity of 106 PIMs per period length 
of 5 seconds. In addition, the threshold for each control-
ler is set at 800,000 PIMs per period. As a result, the total 
affordable load for the controller is estimated to be 4.8 × 
106  PIMs per period. The loads of the switches are classi-
fied into three levels, namely, (i) light load, (ii) medium 
load, and (iii) large load. During light load, each switch 
generates around 21000 PIMs per second, whereas if a 
switch produces 42,000 PIMs per second, it is called me-
dium load. However, if a switch is generating more than 
63,500 PIMs per second, then it is called a large load. It is 
observed that if all the switches are lightly loaded, then 
the total affordable load for the controller is 2.52 × 106 
PIMs per period, which is about 52.5 % of the total af-
fordable load. But if all switches are considered as large 
loads, then the total load will be 7.62 × 106 PIMs per pe-
riod, which is much higher than the total affordable load 
for the controller. Therefore, in this simulation study, the 
simulation starts with a small load in all switches, and 
the load will be randomly increased in the switches by 
cbench tool as simulation time increases, for evaluating 
the performance of the switch migration method. For ex-
ample, at 21st seconds, 10 switches (S1, S2, S4, S5, S7, S8, 
S11, S12, S21, S24,) are generating about 21,500 PIMS/s, 
and 8 switches (S3, S6, S9, S10, S16, S17, S22, S23,) are 
generating 43,000 PIMs/s, and the remaining switches 
(S13, S14, S15, S18, S19, S20,) are producing 64,000 
PIMs/s. Therefore, total controller workload is 4.715 × 
106 PIMs per period, and there must be switch migra-
tion by both conventional (complete switch) and TSSM 
scheme. For evaluating the performance of the pro-
posed method, three cases are considered: (i) work loads 
of occurrences, (ii) occurrences of overload, (iii) controller 
resource consumption, and (iv) migration cost.
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Fig. 7. Comparison of number of overload 
occurrences in conventional and proposed method

Fig. 8. Comparison of controller resource 
consumption between TSSM and proposed switch 

migration method

Fig. 9. Comparison of migration cost between 
conventional method and proposed method

Test 1: Workload of Controllers

As we have considered, each controller can process 
up to 800,000 PIMs per period, and if the controller has 
processed more than 160,000 PIMs/s then it is consid-
ered an overloaded controller. In this test, two conven-
tional methods such as OpenFlow and TSSM are con-
sidered, and their test results are compared with the 
proposed method for evaluating the performance.

It is noted that switch migration is not performed in 
the OpenFlow method, and therefore, controllers C4, and 
C5 are heavily overloaded, as shown in Fig. 6a, based on 
PIMs generated in the switches. During this period, con-
trollers C4 and C5 must handle about 1,165,000 PIMs/ 

period, which is more than their maximum capacity (106 
PIMs per period) and leads to unexpected issues in the 
networking domain. In the case of the TSSM scheme, it 
shares the workload between controllers through time 
sharing migration and ensures that all the controllers 
are within their threshold limits, as shown in Fig. 6b. In 
addition, the Ping-Pong issue (there are no high jumps, 
and frequently transferred switches are considered nil) is 
not noticed in the test results. The test results of the pro-
posed switch migration scheme are presented in Fig. 6c. 
It is observed that load sharing between the controllers 
is much flatter (i.e., mostly all the controllers are sharing 
about the same load, which improves the efficiency and 
reduces the downtime or maintenance activity of the 
controllers) as compared with the TSSM scheme.

Test 2: Number of Overload Occurrences

This test is used to evaluate the number of overload 
occurrences for the controllers in the entire period (300 
s), and it is useful for finding the performance of the 
switch migration method. The comparison of over-
load occurrence for all three methods is given in Fig. 
7. It shows that the OpenFlow method provides a high 
number of overload occurrences since there is no ac-
tion of switch migration, and therefore, controllers C1, 
C2, C3, and C6 are in the lightly loaded range, whereas 
C4, and C5 are highly loaded, and these controllers are 
completely overloaded during the given period.

In cases of TSSM, it has significantly reduced the num-
ber of overload occurrences for the controller since 
it avoids ping-pong difficulty and therefore switches 
that are repeatedly migrated are neglected. In the case 
of the proposed method, it further reduces the num-
ber of overload occurrences compared with the TSSM 
scheme. The proposed method uses more than one op-
timum controller as a lightly loaded controller during 
time sharing migration, which could reduce the num-
ber of overload occurrences. Because, if one controller 
is not enough to share the load of the switch (this con-
troller may be initially considered excess in this situa-
tion), then it is again processed to find another control-
ler for switch sharing in the conventional TSSM meth-
od, this might happen when the requirement for load 
sharing is high in the overloaded controller and lightly 
loaded single converters are not enough to handle this 
load. However, the proposed method chooses more 
optimum controllers based on the load sharing and 
avoids excessive processing and overload occurrences.

Test 3: Controller Resource Consumption

Controller resource consumption describes the utiliza-
tion of a given number of controllers and switches. It is 
noted that if we reduce the number of controllers associ-
ated with the switches, that certainly reduces the switch 
migration cost of the network. OpenFlow is not per-
formed with the switch migration event; thus, it is omit-
ted for this evaluation study. The migration cost of the 
conventional TSSM is lower when compared with other 
switch migration methods. However, it is higher as re-



lated to the proposed switch migration method because 
the proposed method chooses the optimal controllers 
for sharing the workload based on flow characteristics, 
which reduces the controller's resource consumption and 
reduces the switch migration cost. The control resource 
consumption of the switch migration method is given in 
Fig. 8. It is observed that the proposed switch migration 
method provides about 34% less switch migration cost 
as compared with the conventional TSSM scheme.

Test 4: Migration Cost

The total number of switches that must be moved 
between various subnets to pass the migration cost 
test. Usually, controllers reassign switches to make sure 
loads are as evenly distributed as feasible. As switch 
migration is not carried out through the OpenFlow ap-
proach, it is not included. In the case of TSSM, it chooses 
switches for migration at random whose loads are near 
to tiny changes and permits two controllers to share 
their loads at the same time (i.e., time-sharing migra-
tion). The improved TSSM technique optimizes control-
ler selection and enables controller workload sharing 
via time-sharing switch migration. The findings (Fig. 9) 
demonstrate that the enhanced TSSM program offers a 
36% reduction in migration cost when compared with 
the traditional TSSM scheme.

6. CONCLUSION

This paper has presented an improved TSSM approach 
and mitigates the issue of increased switch migration 
cost in the conventional TSSM method by finding more 
than one optimal target controller during the time-shar-
ing period. It has utilized the flow characteristics for find-
ing the optimal controllers through a greedy set cover-
age algorithm. In addition, the proposed switch migra-
tion approach has TSSM benefits, which have conquered 
the ping-pong controller difficulty. The ONOS platform is 
considered for the performance evaluation of this study, 
which found that the improved TSSM scheme has bet-
ter performance than the conventional TSSM method in 
terms of workload sharing among controllers, number of 
overload occurrences, and reduced controller resource 
consumption. Specifically, it reduces the controller's re-
source consumption by 34% when compared with the 
conventional TSSM.
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