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Abstract – In image processing applications, texture is the most important element utilized by human visual systems for distinguishing 
dissimilar objects in a scene. In this research article, a variational model based on the level set is implemented for crosshatched texture 
segmentation. In this study, the proposed model’s performance is validated on the Brodatz texture dataset. The cross-hatched texture 
segmentation in the lower resolution texture images is difficult, due to the computational and memory requirements. The aforementioned 
issue has been resolved by implementing a variational model based on the level set that enables efficient segmentation in both low 
and high-resolution images with automatic selection of the filter size. In the proposed model, the multi-resolution feature obtained 
from the frequency domain filters enhances the dissimilarity between the regions of crosshatched textures that have low-intensity 
variations. Then, the resultant images are integrated with a level set-based active contour model that addresses the segmentation 
of crosshatched texture images. The noise added during the segmentation process is eliminated by morphological processing. The 
experiments conducted on the Brodatz texture dataset demonstrated the effectiveness of the proposed model, and the obtained results 
are validated in terms of Intersection over the Union (IoU) index, accuracy, precision, f1-score and recall. The extensive experimental 
investigation shows that the proposed model effectively segments the region of interest in close correspondence with the original image. 
The proposed segmentation model with a multi-support vector machine has achieved a classification accuracy of 99.82%, which is 
superior to the comparative model (modified convolutional neural network with whale optimization algorithm). The proposed model 
almost showed a 0.11% improvement in classification accuracy related to the existing model

Keywords: crosshatched texture, level set, morphological processing, multiresolution, texture segmentation

1.  INTRODUCTION

In image processing applications, texture is a funda-
mental property of object surfaces and is extensively 
present in natural images [1-2]. It has an extensive 
range of applications like texture classification [3-4], 
spectral shape retrieval video recognition [5], and re-
trieval [6-7]. Among these available topics, texture clas-
sification is an active research area, where it has gained 
more attention among the researcher’s communities in 
the field of pattern recognition [8] and computer vision 
[9]. The typical applications of texture classification 
comprise object recognition, content-based image re-
trieval, fabric inspection, remote sensing, and medical 
image analysis [10-12]. On the other hand, the purpose 
of texture segmentation is to discriminate between the 

regions, which have dissimilar textures [13]. The texture 
segmentation is done by using two major methods 
such as filter bank methods and statistical-based meth-
ods [14-15]. The existing methods are implemented by 
applying the bank of filters to the image, and the filter 
response is studied to set the image’s local behavior. 
The existing methods' performance completely de-
pends on the texture, which has distinctive statistical 
properties [16-17]. 

This research article aims to segment the cross-
hatched textures and to automate the filter size in or-
der to enhance the dissimilarity between regions with 
low-intensity variations. Hence, the filter size must 
be selected cautiously, because when the filter size is 
large, it causes uncertainties across the boundary re-
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gions and if small, then perhaps, it fails to confine cer-
tain variations in a few textures. The accurate descrip-
tor and exact filter size are the necessary attributes for 
good texture segmentation. The main contributions 
are listed as follows:

•	 Used histogram equalization technique that im-
proves the contrast of the collected images, which 
are acquired from the Brodatz texture dataset.

•	 Developed a precise model for the automatic selec-
tion of the filter size. Further, the texture segmen-
tation for crosshatched texture images is done in 
an unsupervised way. The multi-resolution feature 
embedded level set model is proposed for texture 
segmentation.

•	 The experimental results are validated by using dif-
ferent evaluation measures known as the IoU index, 
precision, f1-score, recall and accuracy. The segmen-
tation results of the proposed model are compared 
with the Mix-Normalized-Cut (MixNCut) model, 
and the classification results are compared with 
the modified Convolutional Neural Network (CNN) 
with Whale Optimization Algorithm (WOA). The pro-
posed segmentation model obtains near-perfect ac-
curacy on all crosshatched texture images acquired 
from Brodatz texture dataset. The proposed model 
effectively sorts image data into interpretable infor-
mation and it is utilized in an extensive range of ap-
plications like remote sensing, and medical imaging. 
Industrial application, image retrieval, etc.

This research article is organized as follows: research 
papers related to texture image segmentation and 
classification are surveyed in Section 2. The mathemati-
cal and theoretical explanation of the proposed model 
are specified in Section 3. The experimental outcomes 
of the proposed model is stated in Section 4, and the 
conclusion of this work is mentioned in Section 5.

2. LITERATURE SURVEY

Maskey and Newman [18] developed a novel texture 
directionality measure, wherein both global and local 
directionality aspects were considered. In this literature 
study, the developed texture directionality measure 
was employed in different applications that included a 
circuit board image classification task, striped shirt clas-
sification, striped fabric classification and a CNN initial-
ization task. The extensive experimental analysis stated 
that the suggested measure was superior than the 
then-existing measures. However, a higher-end graph-
ics processing unit system was required to perform the 
classification tasks, which proved to be computational-
ly expensive. Ranganath et al. [19] implemented a new 
image texture classification model named pixel range 
calculation. As per the derived results, the developed 
model not only provided superior classification results 
but also consumed limited computational time related 
to the conventional models. However, the developed 
model was ineffective in multi-class texture classifi-

cation on larger datasets. Dixit et al. [20] integrated a 
modified CNN model with WOA for effective texture 
classification. The inclusion of WOA made CNN more 
effective and robust in texture classification by the se-
lection of optimal parameters. As specified earlier, the 
implementation of the deep learning models was com-
putationally expensive compared to other machine 
learning models.

Hilal et al. [21] implemented a new bi-dimensional 
entropy-based measure for texture classification that 
included multi-channel methods (FuzEnM2D and 
FuzEnV2D), and single channel method (FuzEnC2D). 
The extensive experimental results demonstrated that 
the developed measure outperformed the well-known 
texture analysis measures, but the computational time 
was higher, which needed to be reduced as part of a fu-
ture extension. Raja et al. [22] developed a new descrip-
tor called Optimized Local Ternary Pattern (OLTP) for ef-
fective texture classification. In this literature study, the 
developed descriptor’s effectiveness was validated on 
two standard datasets namely, Usptex and Brodatz. The 
obtained simulation outcomes demonstrated that the 
use of OLTP descriptors effectively improved the texture 
classification accuracy. However, the developed OLTP 
descriptor applied only to the gray-scale images, which 
was considered a major concern in this study. Soares et 
al. [23] introduced a new class-independent method for 
segmenting the texture regions from the images. How-
ever, the developed method was restricted to a limited 
number of dissimilar texture classes in the images.

Khan et al. [24] implemented a new descriptor, Over-
lapped Multi-oriented Triscale Local Binary Patterns 
(OMTLBP) that effectively retains image classification 
accuracy under different conditions like illumination, 
scale, and orientation. In addition to this, Pan et al. [25] 
developed a new descriptor: Scale-Adaptive LBP (SAL-
BP) for effective texture classification. The effective-
ness of the developed OMTLBP and SALBP descriptors 
was validated on different online datasets like Outex, 
Brodatz, etc. The obtained experimental outcomes 
demonstrated the superiority of the developed OM-
TLBP and SALBP descriptors against traditional texture 
descriptors using classification accuracy. However, the 
developed OMTLBP and SALBP descriptors included 
the concern of high computational time. Feng et al. 
[26] implemented a new objective measure based on 
the smallest univalue segment assimilating nucleus 
method for multi-focus image fusion. By inspecting 
experimental results, the high computational time was 
a major issue in this literature. To address the above-
mentioned problems, a new multi-resolution feature 
embedded level set model is implemented for cross-
hatched texture segmentation.

3. METHODOLOGY

 In recent decades, the possibility of inaccurate seg-
mentation is high, when the parameters are selected at 
the stage of feature extraction or the stage of segmen-
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tation voluntarily. Additionally, the supervised texture 
segmentation schemes require a priori knowledge, and 
it may not be viable to provide information regarding 
the number of texture regions and the type of textures 
to be segmented. Particularly, if the volume of images 
to be handled is large viz thousands of images in art 
galleries, large numbers of satellite imagery, etc. [27-
30]. The supervised texture segmentation techniques 
are difficult to provide the prior knowledge manually, 
and this has motivated the present researchers to look 
for fully automated schemes. In this research article, 
an automated model named Multi-Resolution Feature 
Embedded Level Set Model is implemented for effec-
tive crosshatched texture segmentation.

3.1. DATASET DESCRIPTION

In this research article, the proposed multi-resolution 
feature embedded level set model’s performance is 
evaluated on the Brodatz texture dataset. In text clas-
sification, the Brodatz texture dataset is one of the 
popular datasets, which is recorded from the Univer-
sity of Southern California. The original dataset has 
rotated images, which are generated by using simple 
computer-graphics methods. The statistical contribu-
tion of the Brodatz texture dataset is denoted in Table 
1. The sample images from Brodatz texture dataset are 
indicated in Fig. 1.

Table 1. Statistical contribution of the Brodatz 
texture dataset

Features Values

Size 1.02 GB

Image format 8-bit gray-scale images

Texture patch size 640×640 pixels

Total number of samples 4480

Number of classes with unique samples 40

Number of classes 112

Fig. 1. Sample images of the Brodatz texture dataset

3.2. PRE-PROCESSING

After acquiring the images from Brodatz texture da-
taset, the image pre-processing is carried out by using 
a histogram equalization technique that adjusts the 
crosshatch image intensities for improving the contrast 
of the images. Let f be considered as the crosshatch im-
age, which is denoted by a matrix integer pixel inten-
sities m, that ranges between 0 to L-1. The histogram 

equalized crosshatch image g is mathematically deter-
mined in equation (1).

Where, p represents the normalized histogram value 
of crosshatch image f with a bin-possible intensity, L in-
dicates the intensity value of range 256, and the term 
floor() rounds off the nearest integers, which are equiv-
alent in transforming the pixel intensity value k, and it 
is mathematically denoted in equation (2).

(1)

(3)

(2)

The pixel intensities f and g are considered as the 
continuous random values of X=Y on [0, L-1] in the 
transformation section, which is mathematically de-
fined in equation (3).

Where T indicates the cumulative distributive func-
tion of X multiplied by L-1 and pX represents the prob-
ability density function of crosshatch image f. In addi-
tion to this, Y is represented by T(X), which is uniformly 
distributed on [0 ,L-1] namely pY (y)=1/(L-1), and it is 
mathematically defined in equations (4), (5), and (6).

(4)

(5)

(6)

where, pY (y)=1/(L-1).

3.3. AUTOMATIC COMPUTATION 
 OF THE FILTER SIzE 

In image processing applications, the textures are 
complicated visual patterns poised on sub-patterns, 
which show signs of orientation, color, slope, size, etc. 
For significant texture segmentation, the image fea-
tures and the selection of the filter size play an impor-
tant role. Hence, the filter size has to be chosen careful-
ly, since it is capable of capturing the pattern fully, and 
yields identical values when repeated over the entire 
homogeneous region.

In this article, an algorithm is developed for the au-
tomatic computation of the filter size, and the steps 
involved are listed below:

•	 Divide the test crosshatch image into n number of 
partitions of equal size (size is normally chosen as 
21×21, which is usually found to be sufficiently large 
for the study made on all the textures in Brodatz da-
taset) and compute the mean of each partition.

•	 Every partition starts with a smaller filter size of 
3×3. Increase the size of the filter until the mean of 
the filter equals the mean of the partition. 
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•	 Group the obtained filter sizes into two clusters.

•	 Compute mean value of the lower cluster and use 
it as the filter size. 

The method used here involves the computation of 
a minimum filter size. It is a simple technique in which 
the filter size is progressively increased until the aver-
age within the filter, and average of the partition, are 
both similar. It ensures that for every region, a maxi-
mum filter size is estimated which covers the maximum 
homogeneous area within that region. The minimum 
average size among all such regions is selected as the 
filter size. The algorithm presented above computes 
the size of the filter involuntarily and is then segment-
ed using a level set. The flowchart of the automated fil-
ter selection is indicated in Fig. 2.

Fig. 2. Flowchart of the automated filter selection

In this article, an algorithm is developed for the au-
tomatic computation of the filter size, and the steps 
involved are listed below:

•	 Divide the test crosshatch image into n number 
of partitions of equal size (size is normally chosen 
as 21×21, which is usually found to be sufficiently 
large for the study made on all the textures in Bro-
datz dataset) and compute the mean of each parti-
tion.

•	 Every partition starts with a smaller filter size of 
3×3. Increase the size of the filter until the mean of 
the filter equals the mean of the partition.

•	 Group the obtained filter sizes into two clusters.

•	 Compute mean value of the lower cluster and use 
it as the filter size. 

The method used here involves the computation of 
a minimum filter size. It is a simple technique in which 
the filter size is progressively increased until the aver-
age within the filter, and average of the partition, are 
both similar. It ensures that for every region, a maxi-
mum filter size is estimated which covers the maximum 
homogeneous area within that region. The minimum 
average size among all such regions is selected as the 
filter size. The algorithm presented above computes 
the size of the filter involuntarily and is then segment-
ed using a level set. The flowchart of the automated fil-
ter selection is indicated in Fig. 2.

3.4. MULTI-RESOLUTION FEATURE EMbEDDED 
 LEVEL SET MODEL

In the proposed model, the preprocessed crosshatch 
image is constructed with two different crosshatched 
textures that have subjective boundaries. After pre-
processing, the next step is selecting the correct size of 
the frequency domain filter, which is automated. The 
results obtained are integrated with a level set based ac-
tive contour model that addresses the segmentation of 
crosshatched texture images. Any noise incurred during 
histogram equalization is eliminated by a post-process-
ing step, using morphological processing. The automa-
tion process of the frequency domain filters is represent-
ed below. Initially it starts with the mean calculation of 
the filter, which is graphically shown in Fig. 3.

Fig. 3. (a) 3×3 Image, and (b) result of the mean 
filter applied to 3×3 Image

(a) (b)

Fig. 3(a) shows a 3×3 image with a center pixel value 
of 1. Fig. 3(b) shows the mean filter with a center pixel 
value of 5. The mean filter is a simple sliding-window 
spatial filter that replaces the center value in a window 
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with the average (mean) of all the pixel values.  An ex-
ample of mean filtering of a single 3×3  window of val-
ues is shown in Fig. 3. The filter size is decided interac-
tively by starting with a minimum possible size of 3×3, 
gradually increasing the size, and continuing the size of 
the filter until the mean of the pixels within the area is 
similar. It is important to select the correct filter size for 
proper segmentation.

The original image is divided into n number of par-
titions of equal size (the size of the image is normally 
chosen as 21×21, which is found to be sufficiently large 
on all the textures in Brodatz dataset), and computes 
the mean of each partition. Every partition starts with a 
smaller filter size of 3×3, which is placed at the center 
of the partition, and then increases the size of the filter 
until the mean of the filter equals the mean of the parti-
tion. The size of the filter obtained is to be grouped into 
two clusters. The mean value of the lower cluster is used 
as the filter size. Thus, the obtained automated filtered 
image is considered for segmentation using a level set.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In this research article, the proposed multi-resolution 
feature embedded level set model is implemented uti-
lizing a Matlab software environment. An extensive ex-
perimental analysis is performed on a computer with an 
Intel core i5-6200U computer processing unit, an 8 GB 
Random Access Memory, and a Linux operating system. 
The segmentation performance of the proposed multi-
resolution feature embedded level set model is analyzed 
using an evaluation measure by name of IoU index. It is 
a statistical measure used for gauging the similarity and 
diversity of sample sets, where A and B indicate ground 
truth and segmented regions. It is mathematically stated 
in equation (7).

(7)

Fig 4. ROC curve of the proposed model

On the other hand, the classification performance 
of the proposed multi-resolution feature embedded 
level set model is validated using evaluation measures 
like accuracy, recall, precision and f1-score, which are 

stated in equations (8), (9), (10) and (11). True Positive 
is denoted as (TP), False Positive as (FP), True Negative 
as (TN), and False Negative as (FN). Meanwhile, the Re-
ceiver Operating Characteristic (ROC) curve of the pro-
posed model is stated in Fig 4.

(8)

(9)

(10)

(11)

4.2. QUANTITATIVE EVALUATION IN TERMS 
 OF SEGMENTATION

The proposed multi-resolution feature embedded 
level set model is tested and the obtained results are 
verified in terms of the IoU index. The segmentation re-
sults of the proposed multi-resolution feature embed-
ded level set model are mentioned in Table 2 and Fig. 
5. The original images with two crosshatched textures 
are acquired from Brodatz texture dataset, and their 
subjective boundaries are represented in Fig. 5(a). The 
histogram results of the original image are shown in 
Fig. 5(b), and the automated filter size selection of the 
developed algorithm is shown in Fig. 5(c). The segmen-
tation results of the level set algorithm are shown in 
Fig. 5(d). Any noise encountered during the histogram 
process is eliminated by the operation of opening and 
closing the morphological image processing, as shown 
in Fig. 5(e). The selection of the filter size is very vital 
to perform proper segmentation in the original texture 
image. The algorithm initiates with a 3×3 filter size and 
then, increases the filter size until the size of the filter 
equals the mean of the image partition. If the above 
condition is satisfied, the value of the lower cluster is 
used as the filter size.

The segmented results are validated by using the 
IoU index value, which is presented in Table 2, where-
in the reference IoU value is one. The IoU index of the 
image under study is greater than 0.9, which indicates 
that the proximity with the initial image is excellent, 
as shown in Table 2. The experimental outcome indi-
cates that the proposed model is capable of segment-
ing the region of interest in close correspondence 
with the texture image. The proposed multi-resolu-
tion feature embedded level set model is compared 
with MixNCut [26]. The proposed segmentation mod-
el achieves precise accuracy on all the crosshatched 
texture images. It is measured by means of “raw” 
pixels that identify optimum segmentation. The pro-
posed segmentation model significantly outperforms 
the existing segmentation model - MixNcut [26]. The 
experimental results of the proposed and the existing 
segmentation models, in terms of running time and 
IoU index, are shown in Table 2.
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(a) (b) (c) (d) (e)

Fig. 5. Segmented output image (a) original image 
(Crosshatched) constructed from Brodatz texture 

dataset, b) histogram pre-processed image,  
(c) automated filter size selected by the proposed 

algorithm, (d) Segmented image through level 
set Algorithm, and (e) opening and closing results 

(Morphological Image Processing)
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IoU 0.96 0.98 0.93 0.95 0.92 0.95 0.93 0.97 0.94 0.95

Time 
(sec) 9.09 6.30 6.61 5.42 7.15 5.35 8.05 5.72 7.89 5.81

Table 2. Segmentation results in terms of IoU index 
value and running time

4.2. QUANTITATIVE EVALUATION IN TERMS OF 
 CLASSIFICATION

In the classification section, the proposed multi-
resolution feature embedded level set model is tested 
with different classification techniques namely: ran-
dom forest, K-Nearest Neighbor (KNN), Support Vec-
tor Machine (SVM), and Multi-SVM (MSVM) by means 
of f1-score, accuracy, precision, and recall with differ-
ent cross fold validations: 5 and 10 folds. By inspecting 
Tables 3 and 4, it is seen that the combination of multi-
resolution feature embedded level set model with his-
togram equalization and MSVM has obtained higher 
classification performance in five-fold cross-validation 
with f1-score of 98.90%, accuracy of 99.82%, precision 
of 99.12%, and recall of 98.88% on the Brodatz texture 
dataset. The graphical depiction of the proposed multi-
resolution feature embedded level set model with dif-
ferent classifiers and testing percentages is shown in 
Fig. 6 and 7.

As seen in the comparative analysis in Table 5, the 
proposed multi-resolution feature embedded level 
set model with MSVM achieved comparatively higher 
classification results, when related to a model named 
modified CNN with WOA. The proposed model gained 
an f1-score of 98.90%, accuracy of 99.82%, precision 
of 99.12%, and recall of 98.88% on the Brodatz texture 
dataset. However, the modified CNN with WOA has 
obtained an accuracy of 99.71%, precision of 96.70%, 
recall of 95.80%, and f1-score of 96.20% on the Brodatz 
texture dataset. As depicted in the literature survey 
section, the proposed model effectively resolves the 
problems of higher computational time, and achieves 
better segmentation and classification performance.

Table 3. Experimental results of the proposed model with five-fold cross-validation 
(80:20% training and testing)

Classifiers
Without histogram equalization With histogram equalization

F1-score (%) Accuracy (%) Precision (%) Recall (%) F1-score (%) Accuracy (%) Precision (%) Recall (%)

Random forest 90.34 91.76 93.23 89.28 93.24 95.30 96.66 92.20

KNN 92.95 92.56 92.45 93.33 95.90 98.24 96.32 97

SVM 93.73 92.34 92.37 92.28 97.74 99.22 98.32 97.22

MSVM 94.34 93.43 92.10 92.90 98.90 99.82 99.12 98.88

Fig. 6. Graphical depiction of the proposed model with five-fold cross-validation  
(80:20% training and testing)
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Table 4. Experimental results of the proposed model with ten-fold cross-validation  
(90:10% training and testing)

Classifiers
Without histogram equalization With histogram equalization

F1-score (%) Accuracy (%) Precision (%) Recall (%) F1-score (%) Accuracy (%) Precision (%) Recall (%)

Random forest 88.12 90.43 91.13 84.24 92.20 94.38 93.62 90.28

KNN 90.44 90.55 91.15 90.34 92.90 94.28 93.34 94.07

SVM 92.66 91.55 90.36 87.99 93.79 95.20 95.35 94.25

MSVM 92.38 91.49 90.18 88.95 94.98 95.83 95.17 94.87

Fig. 7. Graphical depiction of the proposed model with ten-fold cross-validation 
(90:10% training and testing)

Table 5. Comparative results between the proposed and the existing models

Models F1-score (%) Accuracy (%) Precision (%) Recall (%)

Modified CNN with WOA [20] 96.20 99.71 96.70 95.80

Multi-resolution feature embedded level set with MSVM 98.90 99.82 99.12 98.88

5. CONCLUSION

In image processing applications, the main pre-pro-
cessing steps for object detection are image segmen-
tation and shape detection. In this research article, an 
effective model is proposed for computing the appro-
priate features and automatic selection of filter size in 
context of unsupervised texture segmentation. The pro-
posed model determines the minimum size of the filter 
for texture feature extraction in order to enhance dis-
crimination and segmentation capabilities. In this study, 
a multi-resolution feature embedded level set model is 
introduced, that segments challenging images like cross-
hatched texture images, which are acquired from the 
Brodatz texture dataset. The experimental results show 
that the proposed model provides longer-range interac-
tions and captures the complex region appearances. The 
proposed segmentation model with MSVM classifier has 
achieved a classification accuracy of 99.82%, which is su-
perior compared to other models. The proposed model 
is practical and robust, and it is employed for other dis-
similar types of texture images in future work.
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