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Abstract – Radar-based hand gesture recognition is an important research area that provides suitable support for various applications, 
such as human-computer interaction and healthcare monitoring. Several deep learning algorithms for gesture recognition using Impulse 
Radio Ultra-Wide Band (IR-UWB) have been proposed. Most of them focus on achieving high performance, which requires a huge amount 
of data. The procedure of acquiring and annotating data remains a complex, costly, and time-consuming task. Moreover, processing a 
large volume of data usually requires a complex model with very large training parameters, high computation, and memory consumption. 
To overcome these shortcomings, we propose a simple data processing approach along with a lightweight multi-input hybrid model 
structure to enhance performance. We aim to improve the existing state-of-the-art results obtained using an available IR-UWB gesture 
dataset consisting of range-time images of dynamic hand gestures. First, these images are extended using the Sobel filter, which generates 
low-level feature representations for each sample. These represent the gradient images in the x-direction, the y-direction, and both the 
x- and y-directions. Next, we apply these representations as inputs to a three-input Convolutional Neural Network- Long Short-Term 
Memory- Support Vector Machine (CNN-LSTM-SVM) model. Each one is provided to a separate CNN branch and then concatenated for 
further processing by the LSTM. This combination allows for the automatic extraction of richer spatiotemporal features of the target with 
no manual engineering approach or prior domain knowledge. To select the optimal classifier for our model and achieve a high recognition 
rate, the SVM hyperparameters are tuned using the Optuna framework. Our proposed multi-input hybrid model achieved high performance 
on several parameters, including 98.27% accuracy, 98.30% precision, 98.29% recall, and 98.27% F1-score while ensuring low complexity. 
Experimental results indicate that the proposed approach improves accuracy and prevents the model from overfitting.
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1.  INTRODUCTION

Hand Gesture Recognition (HGR) is a very important 
research area that provides adequate support for several 
applications such as human-computer interaction and 
healthcare monitoring [1,2]. A significant effort has been 

devoted to gesture recognition using different sensing 
technologies [3]. Conventional HGR approaches mainly 
use wearable and optical sensors. These frameworks are 
highly accurate but represent several drawbacks. Wear-
able sensors such as gloves require carrying a load of 
cables that connect the device to a computer while per-
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forming the gesture [4]. This makes the system impracti-
cal and can cause discomfort for users. In contrast, optical 
sensors such as cameras do not require any devices at-
tached to the body [5]. However, one prominent concern 
is the risk of privacy violation when used in personal set-
tings. Furthermore, there arise some situations wherein 
gesture recognition via cameras is difficult such as sud-
den lighting changes and the presence of severe occlu-
sions. To overcome the above shortcomings, radar-based 
sensing systems are proposed [6]. Impulse Radio Ultra-
Wide Band (IR-UWB) has recently emerged as one of the 
most effective and promising non-contact sensors for 
HGR. It has been deployed in a network fashion for HGR to 
develop applications such as control car devices [7], wire-
less keyboards [8,9], and sign language-based commu-
nication systems [10,11]. The IR-UWB has the advantage 
of being remotely operable in a non-intrusive manner. It 
does not capture any visual images which allow the us-
ers to feel unrestrained. Furthermore, the IR-UWB offers 
an inexpensive and robust system that operates with low 
power consumption and performs well in both highly lit 
and dark environments. In addition, it completely avoids 
the problem of occlusion owing to its high penetration 
capabilities through obstacles and walls. 

The HGR process involves extracting a set of relevant 
features from the sensor data that best describe a ges-
ture [6], allowing it to be identified with a high recogni-
tion rate regardless of the environment in which it is 
performed or the person performing it [12].

Based on the existing feature extraction techniques, 
an HGR system can be classified as a traditional or deep 
model [13]. A traditional model relies on hand-crafted 
feature extraction, which requires pre-processing of 
the data to reduce dimensionality and determine ap-
propriate features [14]. Several methods have been 
investigated for IR-UWB-based HGR, including Multi-
Layer Perceptron (MLP) [15], SVM [16], K-Nearest Neigh-
bors (KNN) [17], and K-means [18]. Although these ap-
proaches have managed to achieve impressive recog-
nition rates, they are not straightforward, requiring a 
lot of work for manual feature extraction that heavily 
depends on human experience and domain knowl-
edge [19]. On the other hand, a deep model eliminates 
the manual feature extraction phase by replacing it 
with automatic processing where multi-level features 
are automatically extracted from raw data, involving 
less human intervention [7].

In terms of deep models, Convolutional Neural Net-
work (CNN) [20][21] and Recurrent Neural Network 
(RNN) [22] are the most prominent approaches used 
for HGR. CNN is considered one of the most efficient 
deep models for image classification tasks [23]. It acts 
as a spatial feature extractor and allows one to learn 
high-level representations in a hierarchical manner us-
ing a set of stacked convolutional layers. Several neural 
network methods have been analyzed, and the results 
show that CNN is effective for classifying image data 
generated by IR-UWB for HGR [24-26]. As for RNN, it is 

used to analyze sequential data. The most commonly 
deployed variant of RNN is the Long-Short-Term Mem-
ory model (LSTM) [27]. This model is designed with a 
memory mechanism that uses gates, allowing for ex-
ploiting and learning relevant temporal patterns in 
data. LSTM has been effectively used in various HGR 
studies with radar [28], and it has also proven to boost 
performance in terms of classification accuracy when 
used in a hybrid configuration with CNN [29].

Training deep models from scratch typically requires 
a large amount of data, which is often not available. 
Acquiring and annotating remote sensing data can be 
complex, laborious, and time-consuming, making it 
challenging to gather the necessary amount of data. As 
a result, the concept of transfer learning was introduced 
[30], which involves reusing a previously trained model 
developed for one task in a new task. However, transfer 
learning-based algorithms may exhibit unpredictable 
performance if there is a mismatch between the source 
and target learning content. Another approach is to 
transform radar data into different domains, where use-
ful features can be extracted and fused for classification 
[6,31]. However, this approach requires significant pro-
cessing and computational resources. 

This paper proposes a simple processing approach 
based on low-level feature extraction to increase the 
number of samples, as well as a multi-input hybrid 
model to improve the existing results on an available 
real-world dataset of dynamic hand gestures acquired 
using an IR-UWB. Three major points have been ad-
dressed in this work. First, the limited amount of data 
used to train a model. A gesture may not be fully de-
scribed by a single representation; hence the need to 
extend the data. The introduction of our data process-
ing using the Sobel filter to extract gradient features 
significantly filters out unnecessary information while 
retaining the main features. This process can not only 
increase the amount of information used to describe a 
target but also enhance the bottom features by reduc-
ing the noise in the data and providing more diversi-
fied information. Second, we proposed a three-input 
CNN-LSTM feature extractor that takes advantage of 
automatic domain-aware extraction and concatena-
tion of complementary features from the same target 
to provide more exhaustive spatiotemporal informa-
tion. Third, the model combines the strength of CNN-
LSTM and SVM to improve the recognition accuracy 
and generalization ability while maintaining a simple 
architecture with a reasonable number of parameters.

The major contributions of this paper are:

•	 Using preprocessing steps to extend the amount 
of data in each class to prevent overfitting.

•	 Providing a lightweight three-input architecture 
to process the input data, resulting in considerable 
improvement in training time.

•	 Utilising CNN-LSTM layers for automatic spatio-
temporal feature learning without any manual en-
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gineering or prior domain knowledge.
•	 Using a multi-class SVM classifier for efficient clas-

sification.
•	 Achieving a high recognition rate and outperform-

ing current state-of-the-art models used for IR-
UWB-based hand gesture recognition.

The rest of the paper is organized as follows: Section 
2 provides a brief review of recent scholarly works re-
lated to HGR-based IR-UWB radar. Section 3 presents a 
description of the proposed system, including dataset 
processing and model implementation. Section 4 pro-
vides the experimental results and comparative perfor-
mance of the proposed model. The discussion is pre-
sented in Section 5, and Section 6 concludes the paper.

2. RELATED WORKS

2.1. TRADITIONAL MODELS

In the HGR process, a gesture needs to be represented 
by a suitable set of features. Ghaffar et al. [19] used the 
Histogram of Oriented Gradient (HOG) to extract features 
from the data of 4 IR-UWB. The resulting features were 
merged and fed as input to an SVM, resulting in an accu-
racy of 96% for the classification of 4 gestures. Li et al. [17] 
tested several combinations of Cumulative Distribution 
Density (CDD) features extracted from IR-UWB spectro-
grams to train a KNN algorithm, with the highest accuracy 
achieved being about 82.4%. Khan et al. [18] extracted 
three features, namely the variance of the Probability 
Density Function (PDF) of the magnitude histogram, Time 
Of Arrival (TOA) variation, and frequency from the data of 
an IR-UWB. They used the K-means clustering algorithm 
to classify 5 gestures, achieving an accuracy of 98%.

2.2. DEEp MODELS

2.2.1. CNN

Ahmed et al. [32] proposed a four-layer CNN and 
tested it on the dataset used in this paper. The task was 
to automatically extract features from range-time radar 
spectrograms and classify 12 dynamic hand gestures. A 
recognition accuracy of 94% was achieved. In another 
study, Ahmed et al. [7] proposed a system to recognize 
gestures for controlling electronic devices inside a car. 
The authors used a six-layer CNN to extract features 
from range-time radar spectrograms converted into 
grayscale images. The system achieved an accuracy of 
96% in recognizing the 5 gestures used in the study. 
Khan et al. [33] employed a five-layer CNN to classify 
hand gestures based on image trajectory patterns gen-
erated from multiple IR-UWB.

2.2.2. LSTM

Noori et al. [34] investigated an LSTM architecture 
tested on the same dataset used in this paper. Their 
model showed superior performance compared to 
[32] by reaching an accuracy of 97%. However, it had 

847,055 trainable parameters, making it computation-
ally heavy. Park et al. [35] proposed a recognition algo-
rithm based on LSTM for the classification of 6 dynamic 
hand gestures and achieved an accuracy of 90.5%.

2.2.3. CNN-LSTM

Skaria et al. [36] implemented a hybrid model that 
combines CNN and LSTM layers, trained on a 3D ten-
sor of stacked range-Doppler frames. The CNN-LSTM 
achieved a high accuracy of 96.15%. In another work 
by the same authors, two sensors were investigated for 
robust gesture classification, namely an IR-UWB and a 
thermal sensor [37]. CNN-LSTM layers were employed 
on both radar and thermal signals, achieving an accu-
racy of 99% for 14 hand gestures.

3. MATERIALS AND METHOD

3.1. DATASET

This study aims to improve the existing results on the 
public UWB Gestures dataset proposed by Ahmed et 
al. [32]. The dataset consists of 12 classes of dynamic 
hand gestures, namely left-right (LR), right-left (RL), 
up-down(UD), down-up (DU), diag-LR-UD, diag-LR-DU, 
diag-RL-UD, diag-RL-DU, clockwise, counter-clockwi-
se, push-in, and empty gestures. Each gesture is per-
formed 100 times by 8 volunteers and acquired using 
three XeThru X4 IR-UWBs (Fig. 1). In order to compare 
the performance of our three-input CNN-LSTM-SVM 
against other models using the same dataset, we 
followed the same procedure and used only the left 
radar data, which consists of 9,600 range-time images.

Fig. 1. Collection of the UWB-Gestures dataset 
using three UWB radars.

3.2. DATA pROCESSING

A major problem in training deep models from 
scratch is the huge amount of data required. Using 
a small dataset usually results in overfitting and de-
creased model performance. To achieve high general-
ization capability, we propose extending the dataset 
and generating low-level image features to use as an in-
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The three-input CNN is used for spatial feature extrac-
tion. It consists of three branches with similar layer con-
figurations. Each branch consists of an input layer of size 
75x75 and three convolutional layers with 16, 32, and 64 
filters of size 4x4, respectively, which reduces the num-
ber of the training parameters. Additionally, 2x2 strides 

Fig. 3. The overall structure of the proposed hand gesture recognition system

dependent input for the model. These features include 
the image gradient in the x-direction, y-direction, and 
both x and y-directions generated by the Sobel filter. 
First, the samples are resized to 75x75 to decrease the 
computational cost, then converted to binary images 
by applying thresholding. Next, the Sobel filter is ap-
plied in the horizontal and vertical directions to calcu-
late the gradient in the x-direction (Dx) and y-direction 
(Dy) for each sample. Finally, the gradient images for 
both x and y-directions are generated by taking the 
square root of the sum of Dx and Dy for each sample. 
By doing this, the size of the dataset is tripled, and a 
total of 25,200 images are generated without creating 
duplicates (Fig. 2).

Fig. 2. Flow graph of data processing.

3.3. METHOD

The proposed approach is designed to classify dy-
namic hand gestures, which are formed by a consec-
utive sequence of poses where their characteristics 
vary over time. Therefore, the recognition process of 
dynamic gestures takes into account both spatial and 
temporal information. To enable the analysis of spatial 
and temporal features of gestures, we propose using a 
three-input CNN in conjunction with an LSTM to pro-
cess the input data and perform feature extraction. 
First, the three-input CNN is used to extract the spatial 
features corresponding to the low-level representation 
of the images. Each representation is processed sepa-
rately in a CNN branch. To fully represent the gesture, 
the output features of the three CNN branches are 
merged. The concatenated features are reshaped and 
provided as input to the LSTM for temporal feature ex-
traction. The LSTM captures and memorizes how the 
features extracted by the CNN layers change over time. 
The output of the LSTM is put into vector form and fed 
into the multiclass SVM. The SVM acts as the final clas-
sifier of the architecture and gives the prediction result 
(Fig. 3).

The noteworthy characteristics of the three-input 
CNN-LSTM-SVM are:

•	 Increasing the amount of input data to prevent 
overfitting and improve the generalization perfor-
mance of the model.

•	 Adopting a more efficient feature extractor.
•	 Using both spatial and temporal information to de-

scribe a gesture.
•	 Providing the final classifier with more information 

to make a decision.

3.3.1. Learning spatiotemporal features

The combination of both spatial and temporal fea-
tures is a requirement for dynamic gesture classifica-
tion. To achieve this, two models are combined: the 
three-input CNN and the LSTM.
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(1)

where I is the input image, i and j are the height and 
width respectively, K is the 2D convolutional filter of 
size m x n, and F is the output 2D feature map. To in-
crease nonlinearity in feature maps, a Maxout layer is 
inserted. It is mathematically expressed as follows:

(2)

with x is the input variables, W the weight, and b the bias.

According to the article published by Goodfellow 
et al. [38], the Maxout activation function has demon-
strated its effectiveness for training with Dropout, as 
well as its robustness for image classification [39]. Each 
feature map is dimensionally reduced using a Max-
pooling layer with a pool size of 2x2 to preserve the 
most relevant features identified and avoid unneces-
sary computations. Finally, a Dropout layer with a value 
of 25% is inserted. The three CNN branches operate in 
parallel, and their outputs are combined by late fusion 
for further processing by the LSTM.

are used to further reduce the computational cost. Each 
branch takes a different image representation as input. 
The images are processed separately by performing 
multiple convolution operations to extract spatial fea-
tures. The convolution operation is expressed as follows: 

The LSTM layer is composed of 150 units. The struc-
ture of an LSTM unit consists of input, output, and for-
get gates that control the learning process, as shown 
in Fig. 4. These gates are adjusted using the activation 
sigmoid function. To avoid overfitting in the recurrent 
layer, the recurrent dropout is set to 0.2.

3.3.2. Multi-class SVM for gesture classification

The spatiotemporal features automatically gener-
ated by the CNN-LSTM are fed into the SVM module for 
training and testing on the hand gesture dataset (Fig. 
5). Since the dataset we are using consists of M = 12 
classes, we have implemented a multi-class SVM algo-
rithm based on the combination of a set of M binary 
SVMs. We decomposed the multiclass problem into 64 
filters of size 4x4, respectively, which reduces the num-
ber of the training parameters. Additionally, 2x2 strides 
are used to further reduce the computational cost. 
Each branch takes a different image representation as 
several bi-class problems and adopted “the one against 
all” strategy, where each binary classifier is trained on 
the samples of a selected class against all other classes. 

This means that the samples on which a classifier is 
trained are labeled as positive, and all the rest are la-
beled as negative. In the evaluation phase, a test sam-
ple is labeled as belonging to a class according to the 
maximum score among the 12 classifiers.

Fig. 4. LSTM structure

3.3.3. Evaluation method

To evaluate the performance of our proposed model, 
we use the following metrics: accuracy, precision, re-
call, and F1-score. These metrics are calculated based 
on the number of true positives (TP), true negatives 
(TN), false positives (FP), and false negatives (FN) using 
the following equations:

(3)

(4)

(5)

(6)

3.3.4. Implementation details

The three-input CNN-LSTM-SVM model is imple-
mented in Python using the Keras framework with Ten-
sorflow on a machine running an environment with an 
Intel (R) Core (TM) i5 2.40 GHz CPU, 16GBs of RAM, 1TB 
of hard disk, and Windows 10. The dataset samples are 



540 International Journal of Electrical and Computer Engineering Systems

randomly split into 80% for training and 20% for test-
ing using the train_test_split function included in the 
sklearn python package. The random seed parameter is 
also used to ensure that the test samples are the same 
in each performed experiment. During the training pro-
cess of the three-input CNN-LSTM, the Adam optimizer 
is used with a learning rate set to 0.001, a batch size of 16, 
and 25 epochs. The input labels are provided as integers 
rather than vectors to save time in memory as well as 
computations. Therefore, we use the sparse categorical 
cross-entropy loss function. The resulting spatiotempo-
ral feature vectors from the three-input CNN-LSTM are 

fed to the multi-class SVM classifier for training and test-
ing. The learning process of the multi-class SVM classifier 
is performed using the Optuna framework [40]. During 
the learning process, the hyperparameters tuning, in-
cluding the penalty coefficient C, kernel function, slack 
variable (degree), and gamma parameter, is achieved 
based on several repeated trials using k cross-validation 
with k = 5. Optuna is an open-source optimization soft-
ware available as a library in Python that is easy to imple-
ment and offers an integrated dashboard to visualize 
optimization histories and results. The source code of 
our model is available on GitHub [41].

Fig. 5. Three-input CNN-LSTM-SVM model:(A) Input layer, (B) CNN layers for spatial features extraction,  
(C) LSTM layer for learning temporal features, (D) Classification/output layer.

4. EXpERIMENTAL RESULTS

4.1. TRAINING pROCESS

The training process is divided into three main phases:

•	 The CNN-LSTM is trained with a SoftMax classifier for 
the extraction of spatiotemporal features.

•	 The SoftMax is replaced by the Multiclass SVM, 
which is fed with the feature vectors, trained, and 
optimized for 100 trials.

•	 The Multiclass SVM is then trained for a second time 
with the optimal hyperparameters. 

The finetuned Multiclass SVM achieved a training ac-
curacy of 99.62% (Fig. 6). The influence of different hy-
perparameters values on the model's performance is 
presented in Fig. 7.

4.2. EVALUATION pROCESS

The finetuned three-input CNN-LSTM-SVM model is 
evaluated on the test set. The confusion matrix and the 
classification report obtained from the test data are de-
picted below (Fig. 8). Additionally, Receiver Operating 
Characteristics (ROC) and Precision- Recall (PR) curves 
are plotted to compare the overall performance (Fig. 9).

4.3. COMpARISON

4.3.1. Verification of data processing

To demonstrate the effectiveness of the proposed 
data processing approach, the first experiment is di-
vided into two main parts. In the first part, the three-
input CNN-LSTM-SVM model is trained using raw im-
ages (original images without processing), where the 
same sample is simultaneously provided to all three 
CNN branches. In the second part, the model is trained 
using extended images, where each CNN branch is fed 
with a different representation of low-level features. 
The results are shown in Table 1.

Table 1. Comparative classification performance on 
Raw/Processed images.

Metrics Raw images processed images

Train accuracy 98.34% 99.62%

Test accuracy 92.49% 98.27%

Precision 92.77% 98.30%

Recall 92.40% 98.29%

F1-score 92.44% 98.27%
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Fig. 6. Optimization history.

Fig. 7. Slice plot.

Fig. 8. (a) Confusion matrix
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Fig. 8. (b) Classification report

Fig. 9. (a) ROC curve

Fig. 9. (b) PR curve
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4.3.2. Verification of the model structure

The second experiment aims to demonstrate the su-
periority of using multiple branches for parallel data 
processing over a single branch for sequential data 
processing when using different feature representa-
tions. We fed a single-input CNN-LSTM-SVM with the 
extended images and compared its performance to the 
results obtained from the three-input CNN-LSTM-SVM 
experiment mentioned in subsection 4.3.1. Note that 
the single-input CNN-LSTM-SVM used in this experi-
ment consists of the same layer and parameter con-
figuration as a single CNN branch from the three-input 
CNN-LSTM-SVM. The results are presented in Table 2.

Table 2. Comparative classification performance of 
single/three-input CNN-LSTM-SVM.

Metrics single-input CNN-
LSTM-SVM

three-input CNN-
LSTM-SVM

Train accuracy 96.30% 99.62%

Test accuracy 93.09% 98.27%

Precision 93.24% 98.30%

Recall 93.10% 98.29%

F1-score 93.44% 98.27%

4.3.3 Comparison to state-of-the-art approaches

The third experiment aims to compare the classifica-
tion performance of the three-input CNN-LSTM-SVM 
with other models, including three-input CNN-SoftMax 
and three-input CNN-LSTM-SoftMax models. This ex-
periment is performed to demonstrate the impact of 
using spatial features only versus using spatiotemporal 
features on the recognition rate. Moreover, we aim to 
find the optimal classifier for the model by comparing 
SoftMax and SVM. Furthermore, our proposed model 
results can be directly compared with those of Ahmed 
et al. [32] and Noori et al. [34], as they also used the 
same dataset. The results are shown in Table 3.

Table 3. Comparative classification performance of 
three-input CNN-LSTM-SVM with state of art methods

Reference Model Accuracy N° of 
parameters

Ahmed et 
al. [32] CNN 94% -

Three input-CNN-SoftMax 95.41% 126300

Noori et al. 
[34] LSTM 97% 847055

Three input-CNN-LSTM-
SoftMax 97.20% 331596

Our 
approach

Three input-CNN-LSTM-
SVM 98.27% 332578

Fig. 10. Comparison of proposed three-input 
CNN-LSTM-SVM model accuracy with state of art 

methods.

5. DISCUSSION

This work presents an end-to-end hybrid model for 
classifying dynamic hand gestures using IR-UWB data. 
We used a three-input CNN-LSTM for automatically 
learning spatiotemporal features, combined with a 
multiclass SVM classifier. The performance of the pro-
posed model was assessed using various evaluations, 
and the results of the confusion matrix and classifica-
tion report are depicted in Fig. 8. They show that the 
model achieved an accuracy of 98.27% and identified 
half of the classes with an accuracy above 98%, a preci-
sion of 98.30%, a recall of 98.29%, and an F1-score of 
98.27%. Moreover, the ROC curve in Fig. 9 indicates that 
the proposed model based on combined features pro-
duced excellent results, with a true positive rate pro-
duced for each gesture class.

From Table 1, it is evident that the three-input CNN-
LSTM-SVM model is overfitting when duplicating in-
puts using raw images, as it achieved a training accura-
cy of 98.34% but a lower test accuracy of 92.42%. This is 
due to the non-representative dataset, which does not 
provide enough information for the model to general-
ize well. To address this issue and prevent the model 
from overfitting, we used the extended dataset that in-
cludes image gradients in the x-direction, y-direction, 
and both x and y-directions. As shown in Table 1, the 
three-input CNN-LSTM-SVM model achieves better 
gesture recognition when different low-level represen-
tations are provided as inputs, leading to an increase 
in accuracy of about 6% compared to using duplicate 
original images. The model achieved a training and 
test accuracy of 99.62% and 98.27%, respectively, with 
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much lower overfitting and better generalization abil-
ity. This is because using multiple representations for 
the same gesture enables the extraction and merging 
of more features, providing the final classifier with more 
information to make a decision. These results highlight 
the importance of using different low-level representa-
tions as well as a multiple inputs model in cases where 
there are insufficient representative features, and indi-
cate that unnecessary duplication of inputs does not 
significantly improve performance but increases com-
putational complexity.

The superiority of our method is more apparent 
when we compare the performance of the single-input 
and three-input models. The results in Table 2 show a 
significant difference in the model’s performance when 
processing the data sequentially and independently in 
parallel. The single-input CNN-LSTM-SVM achieved an 
accuracy of 93.09%, while the three-input CNN-LSTM-
SVM achieved an accuracy of 98.27%. Compared to 
the single-input CNN-LSTM-SVM, our proposed three-
input CNN-LSTM-SVM architecture not only leverages 
the strength of multiple low-level representations to 
extract complementary features from the same tar-
get but also introduces the concept of feature concat-
enation into the architecture to achieve more holistic 
representations. The separate processing of each data 
representation allows the extraction and preservation 
of its features without altering them with other data 
representations, enabling the model to learn distinct, 
discriminative, and complementary features effec-
tively. We can conclude that in limited data conditions, 
extending raw data to different feature representations 
and then providing them as inputs should be applied to 
separate branches to achieve higher accuracy. We also 
hypothesize that the reason for the low performance 
of the single-input CNN-LSTM-SVM model is due to dis-
similar features, where the same gesture is represented 
three times differently, leading to confusion for the 
model and making it error-prone. We can reasonably 
conclude from this experiment that through the effec-
tive concatenation of multiple feature information, the 
prediction is made based on the full use of target fea-
tures, which improves the recognition accuracy.

On the other hand, as shown in Table 3, the proposed 
three-input CNN-LSTM-SVM outperforms the most re-
cent research works (Fig. 10) [32,34]. Compared to the 
CNN proposed by Ahmed et al. [32], the three-input 
CNN-SoftMax achieved an average increase in accuracy 
of 1.41%. This result suggests that the three-input CNN-
SoftMax can capture more spatial context information 
for classification by learning the details when a large 
number of training samples are provided. Although 
data expansion contributes to the model, the accura-
cy is still limited by the lack of additional information.  
While the CNN structure can learn higher-level features, 
it ignores the temporal dependencies on the features, 
meaning that the inputs and outputs are independent, 
leading to limited recognition performance.

We can observe from Table 3 that adding LSTM units 
can boost classification performance. The combina-
tion of three-input CNN-LSTM-SoftMax showed its ef-
fectiveness by achieving an accuracy of 97.20%, out-
performing the CNN proposed by Ahmed et al. [32] by 
3.20% and the three-input CNN-SoftMax by 1.79%. This 
enhancement refers to convolution, concatenation 
operations, and the sophisticated structure of LSTM, 
that maintain the spatial and temporal relationships. 
The LSTM is cascaded to learn and integrate temporal 
features, which can provide additional information and 
improve classification performance. The LSTM helps 
capture and memorize how the features extracted 
by the CNN layers change over time. Combining the 
strengths of CNN and LSTM provides the benefits of 
both spatial and temporal learning, which is very effec-
tive in improving the recognition rate of dynamic hand 
gestures. Moreover, the three-input CNN-LSTM-Soft-
Max model provided comparable performance to pre-
vious work by Noori et al. [34]. However, the three-input 
CNN-LSTM-SoftMax model achieved 97.20% accuracy 
and had fewer trainable parameters (331,596) than the 
model proposed by Noori et al. [34], which was main-
tained with 847,055 parameters and achieved 97% ac-
curacy. To select the optimal classifier for our model, 
the three-input CNN-LSTM was trained with a SoftMax 
layer and an SVM classifier. The results reported in Table 
3 show a 1.07% increase in accuracy using the SVM as 
the final classifier. This gain is mainly due to the use of 
the various optimal hyperparameters selected using 
the Optuna framework. Therefore, the generalization 
ability of SVM is superior to that of SoftMax.

6. CONCLUSION

A major concern when training deep learning models 
is the requirement for a large amount of data to achieve 
sufficient robustness. Otherwise, with limited data, mod-
els are prone to overfitting.  To enrich the training and 
testing samples in radar-based HGR, this paper proposes 
a simple and efficient method to extend radar spectro-
grams. Using different low-level feature representations 
as input, processed on separate branches, helps the 
model learn and merge more information about the 
target, resulting in increased accuracy. Combining CNN 
and LSTM layers to take into account both spatial and 
temporal features improve recognition accuracy. Finally, 
switching from SoftMax to SVM appears to be beneficial 
for generalization ability.

We believe that the number of samples, as well as 
their representation in the dataset, are critical factors 
in developing a robust model that provides high clas-
sification predictions. Future work in this research aims 
to introduce more data processing techniques to gen-
erate additional samples to enhance the model’s per-
formance in terms of similar evaluation parameters. 
Additionally, we plan to further reduce the model’s 
complexity by modifying the layer configuration. 



545Volume 14, Number 5, 2023

7. REFERENCES

[1] L. Guo, Z. Lu, L. Yao, “Human-Machine Interaction 

Sensing Technology Based on Hand Gesture Recog-

nition: A Review”, IEEE Transactions on Human-Ma-

chine Systems, Vol. 51, No. 4, 2021, pp. 300-309.

[2] B. Van Amsterdam, M. J. Clarkson, D. Stoyanov, “Ges-

ture Recognition in Robotic Surgery: A Review”, IEEE 

Transactions on Biomedical Engineering, Vol. 68, No. 

6, 2021, pp. 2021-2035.

[3] S. Wu, Z. Li, S. Li, Q. Liu, W. Wu, “An overview of ges-

ture recognition”, Proceedings of the International 

Conference on Computer Application and Informa-

tion Security, Wuhan, China, 23-24 December 2022, 

pp. 600-606.

[4] M. Pan, Y. Tang, H. Li, “State-of-the-Art in Data Gloves: 

A Review of Hardware, Algorithms, and Applica-

tions”, IEEE Transactions on Instrumentation and 

Measurement, Vol. 72, 2023, pp. 1-15.

[5] B. K. Chakraborty, D. Sarma, M. K. Bhuyan, K. F. Mac-

Dorman, “Review of constraints on vision-based ges-

ture recognition for human-computer interaction”, 

Institute of Engineering and Technology Computer 

Vision, Vol. 12, No. 1, 2018, pp. 3-15.

[6] S. Ahmed, K. D. Kallu, S. H. Cho, “Hand gestures rec-

ognition using radar sensors for human computer-

interaction: A review”, Remote Sensing, Vol. 13, No. 3, 

2021, p. 527.

[7] S. Ahmed, F. Khan, A. Ghaffar, F. Hussain, S. H. Cho, 

“Finger-counting-based gesture recognition within 

cars using impulse radar with convolutional neural 

network”, Sensors, Vol. 19, No. 6, 2019, pp. 1429.

[8] S. K. Leem, F. Khan, S. H. Cho, “Detecting Mid-Air 

Gestures for Digit Writing with Radio Sensors and 

a CNN”, IEEE Transactions on Instrumentation and 

Measurement, Vol. 69, No. 4, 2020, pp. 1066-1081.

[9] N. Hendy, H. M. Fayek, A. Al-Hourani, “Deep Learning 

Approaches for Air-Writing Using Single UWB Radar”, 

IEEE Sensors Journal, Vol. 22, No. 12, 2022, pp. 11989-

12001.

[10] H. Hameed, M. Usman, M. Z. Khan, A. Hussain, H. Ab-

bas, M.A. Imran, Q. H Abbasi, “Privacy-Preserving Brit-

ish Sign Language Recognition Using Deep Learn-

ing”, Proceedings of the 44th International Confer-

ence of the IEEE Engineering in Medicine & Biology 

Society, Glasgow, Scotland, UK, 11-15 July 2022, pp. 

4316-4319.

[11] Y. Yang, J. Li, B. Li, Y. Zhang, “MDHandNet: a light-

weight deep neural network for hand gesture/sign 

language recognition based on micro-doppler im-

ages”, World Wide Web, Vol. 25, No. 5, 2022, p. 1951-

1969.

[12] D. Sarma, M. K. Bhuyan, “Methods, Databases and 

Recent Advancement of Vision-Based Hand Gesture 

Recognition for HCI Systems: A Review”, SN Comput-

er Science, Vol. 2, No. 6, 2021, p. 436.

[13] Y. Shi, Y. Li, X. Fu, K. Miao, Q. Miao, “Review of dynam-

ic gesture recognition”, Virtual Reality & Intelligent 

Hardware, Vol. 3, No. 3, 2021, pp. 183-206.

[14] J. Park, S. H. Cho, “IR-UWB radar sensor for human 

gesture recognition by using machine learning”, 

Proceedings of the 18th International Conference 

on High Performance Computing and Communica-

tions, 14th International Conference on Smart City, 

2nd International Conference on Data Science and 

Systems, Sydney, NSW, Australia, 12-14 December 

2016, pp. 1246-1249.

[15] K. Faheem, L. Seong Kyu, S. H. Cho, “Algorithm for fin-

gers counting gestures using IR- UWB radar sensor”, 

Proceedings of the International IEEE Sensors Appli-

cations Symposium, Seoul, Korea, 12-14 March 2018, 

pp.144-146.

[16] S. Y. Kim, H. G. Han, J. W. Kim, S. Lee, T. W. Kim, “A hand 

gesture recognition sensor using reflected impulses”, 

IEEE Sensors Journal, Vol. 17, No. 10, 2017, pp. 2975-

2976.

[17] B. Li, J. Yang, Y. Yang, C. Li, Y. Zhang, “Sign Language/

Gesture Recognition Based on Cumulative Distribu-

tion Density Features Using UWB Radar”, IEEE Trans-

actions on Instrumentation and Measurement, Vol. 

70, 2021, pp. 1-13.

[18] F. Khan, S. Leem, S. H. Cho, “Hand-based gesture rec-

ognition for vehicular applications using IR-UWB ra-

dar”, Sensors, Vol. 17, No. 4, 2017, p. 883.

[19] A. Ghaffar, F. Khan, S. H. Cho, “Hand Pointing Ges-

tures Based Digital Menu Board Implementation 

Using IR-UWB Transceivers”, IEEE Access, Vol. 7, 2019, 

pp. 58148-58157.

[20] L. Yao, W. Xin, S. Baodai, M. Zhu, “Hand Gesture Rec-

ognition Using IR-UWB Radar with ShuffleNet V2”, 

Proceedings of the 5th International Conference on 

Control Engineering and Artificial Intelligence, San-

ya, China, 14-16 January 2021, pp. 126-131.



546

[21] A. Bhavana, K. S. R. Kumar, M. D. Praveen, “Deep 
Neural Network based Sign Language Detection”, 
Proceedings of the 6 th International Conference on 
Electronics, Communication and Aerospace Tech-
nology, Coimbatore, India, 1-3 December 2022, pp. 
1474-1479.

[22] J. J. Ojeda-Castelo, M. D. L. M. Capobianco-Uriarte, 
J. A. Piedra-Fernandez, R. Ayala, “A Survey on Intel-
ligent Gesture Recognition Techniques”, IEEE Access, 
Vol. 10, 2022, pp. 87135-87156.

[23] Z. Li, W. Yang, S. Peng, F. Liu, “A Survey of Convolu-
tional Neural Networks: Analysis, Applications and 
Prospects”, IEEE Transactions on Neural Networks 
and Learning Systems, Vol. 33, No. 12, 2021, pp. 
6999-7019.

[24] S. Ahmed, S. H. Cho, “Hand gesture recognition using 
an IR-UWB radar with an inception module-based 
classifier”, Sensors, Vol. 20, No. 2, 2020, p. 564.

[25] G. Park, V. K. Chandrasegar, J. Park, J. Koh, “Increas-
ing Accuracy of Hand Gesture Recognition using 
Convolutional Neural Network”, Proceedings of the 
International Conference on Artificial Intelligence in 
Information and Communication, Jeju Island, Korea, 
21-24 February 2022, pp. 251-255.

[26] G. Park, V. K. Chandrasegar, J. Koh, “Accuracy En-
hancement of Hand Gesture Recognition using 
CNN,” IEEE Access, Vol. 11, 2023, pp. 26496-26501.

[27] Y. Yu, X. Si, C. Hu, J. Zhang, “A Review of Recurrent 
Neural Networks: LSTM Cells and Network Architec-
tures”, Neural Computation, Vol. 31, No. 7, 2021, pp. 
1235-1270.

[28] H. Liu, Z. Liu, “A Multi-Modal Dynamic Hand Gesture 
Recognition Based on Radar-Vision Fusion”, IEEE 
Transactions on Instrumentation and Measurement, 
Vol. 72, 2023, pp. 1-15.

[29] S. Skaria, A. Al-Hourani, Da Huang, “Radar-Thermal 
Sensor Fusion Methods for Deep Learning Hand 
Gesture Recognition”, Proceedings of the Interna-
tional Conference of IEEE Sensors, Sydney, Australia, 
31 October - 3 November 2021, pp. 1-4.

[30] L. O. Fhager, S. Heunisch, H. Dahlberg, A.    Evertsson, 
L. E. Wernersson, “Pulsed Millimeter Wave Radar for 
Hand Gesture Sensing and Classification”, IEEE Sen-
sors Letters, Vol. 3, No. 12, 2019, pp. 1-4.

[31] S. Z. Gurbuz, M. G. Amin, “Radar-based human-
motion recognition with deep learning: Promising 

applications for indoor monitoring”, IEEE Signal Pro-
cessing Magazine, Vol. 36, No. 4, 2019, pp. 16-28.

[32] S. Ahmed, D. Wang, J. Park, S. H. Cho, “UWB-gestures, 
a public dataset of dynamic hand gestures acquired 
using impulse radar sensors”, Scientific Data, Vol. 8, 
No. 1, 2021, pp. 1-9.

[33] F. Khan, S. K. Leem, S. H. Cho, “In-Air Continuous Writ-
ing Using UWB Impulse Radar Sensors”, IEEE Access, 
Vol. 8, 2020, pp. 99302-99311.

[34] F. M. Noori, M. Z. Uddin, J. Torresen, “Ultra-Wideband 
Radar-Based Activity Recognition Using Deep Learn-
ing”, IEEE Access, Vol. 9, 2021, pp. 138132-138143.

[35] J. Park, J. Jang, G. Lee, H. Koh, C. Kim, T. W. Kim, “A 
Time Domain Artificial Intelligence Radar System Us-
ing 33-GHz Direct Sampling for Hand Gesture Rec-
ognition”, IEEE Journal of Solid-State Circuit, Vol. 55, 
No. 4, 2020, pp. 879-888.

[36] S. Skaria, A. Al-Hourani, R. J. Evans, “Deep-learning 
methods for hand-gesture recognition using ul-
tra-wideband radar”, IEEE Access, Vol. 8, 2020, pp. 
203580-203590.

[37] S. Skaria, D. Huang, A. Al-Hourani, R. J. Evans, M. Lech, 
“Deep-Learning for Hand-Gesture Recognition with 
Simultaneous Thermal and Radar Sensors”, Proceed-
ings of the International Conference of IEEE Sensors 
Conference, Rotterdam, Netherlands, 25-28 October 
2020, pp. 1-4.

[38] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Cour-
ville, Y. Bengio, “Maxout networks”, Proceedings of 
the International Conference on Machine Learning 
Research, Atlanta, Georgia, USA, 17-19 June 2013, 
pp. 1319-1327.

[39] R. Rajeswari, M. Prabhakar, G. Padmapriya, B. S. Kumar, 
“Blood vessel detection using enhanced DeepJoint 
fuzzy clustering algorithm with deep Maxout network 
for glaucoma detection”, Concurrency and Computa-
tion: Practice and Experience, Vol. 35, No. 6, 2023, p. 1.

[40] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, “Op-
tuna: A Next-generation Hyperparameter Optimiza-
tion Framework”, Proceedings of the 25th Interna-
tional Conference on Knowledge discovery & Data 
mining, Anchorage, AK, USA, 4-8 August 2019, pp. 
2623-2631.

[41] GitHub, three_input_CNN_LSTM_SVM, https://
github.com/souhila1998/HGR_CNN-LSTM-SVM (ac-
cessed: 2023)

International Journal of Electrical and Computer Engineering Systems


