
Software Reliability Prediction using Correlation
Constrained Multi-Objective Evolutionary
Optimization Algorithm

935

Original Scientific Paper

Abstract – Software reliability frameworks are extremely effective for estimating the probability of software failure over time.
Numerous approaches for predicting software dependability were presented, but neither of those has shown to be effective. Predicting
the number of software faults throughout the research and testing phases is a serious problem. As there are several software metrics
such as object-oriented design metrics, public and private attributes, methods, previous bug metrics, and software change metrics.
Many researchers have identified and performed predictions of software reliability on these metrics. But none of them contributed
to identifying relations among these metrics and exploring the most optimal metrics. Therefore, this paper proposed a correlation-
constrained multi-objective evolutionary optimization algorithm (CCMOEO) for software reliability prediction. CCMOEO is an
effective optimization approach for estimating the variables of popular growth models which consists of reliability. To obtain the
highest classification effectiveness, the suggested CCMOEO approach overcomes modeling uncertainties by integrating various
metrics with multiple objective functions. The hypothesized models were formulated using evaluation results on five distinct datasets
in this research. The prediction was evaluated on seven different machine learning algorithms i.e., linear support vector machine
(LSVM), radial support vector machine (RSVM), decision tree, random forest, gradient boosting, k-nearest neighbor, and linear
regression. The result analysis shows that random forest achieved better performance.

Keywords: Reliability, Faults, Bugs, Object-oriented, Evolutionary optimization, Machine learning

1. INTRODUCTION

Software development involves creating software with
potential flaws, leading to negative consequences and fi-
nancial losses [1]. To address these risks, decision-makers
use software defect prediction (SDP) to anticipate faulty
modules through testing and coding inspection [2]. En-
suring software reliability during development is chal-
lenging, especially with constant changes in the software
engineering sector. Estimating models' accuracy can vary
with different datasets, and improving reliability requires
finding a suitable reliability allocation paradigm within
constraints [3-6]. Software reliability refers to a system
or component's probability of functioning properly in a
specific environment for a certain period [7-10]. Evaluat-
ing software reliability during the design phase compares
current reliability to previous performance, using mod-
els to analyze release time and estimate future reliabil-
ity [11-17]. However, testing complex software becomes
difficult, impacting the effectiveness of software models
[18-24]. Various approaches, including machine learning
techniques, have been explored to model software reli-
ability and quality [25-27]. Throughout the software de-

velopment lifecycle, estimation techniques are used in
the early stages, while reliability growth models are used
during testing to reduce failure rates and predict defect
density after deployment. Inference techniques fit the
curve to the data for software reliability forecasting and
estimation, with failure intensity being a simpler measure
often derived from the reliability estimate. Estimating
software reliability is challenging due to unbalanced and
inaccurate data. Researchers are exploring machine learn-
ing algorithms for software defect prediction but haven't
delved into it extensively. Software reliability prediction
aims to identify fault-prone components early, reducing
costs and time while ensuring desired quality. Various
prediction approaches for effort, privacy, quality, defect,
cost, and reusability are still in the early stages of devel-
opment [24]. Software Reliability Prediction (SRP) involves
using machine learning to find problematic classes/mod-
ules before testing [6,25]. Neural networks and statistical
approaches like logistic regression are used, but they lack
optimal parameter selection for software fault determina-
tion. This paper proposes a novel multi-objective evolu-
tionary-based strategy that integrates machine learning
algorithms to predict software reliability by anticipating

Volume 14, Number 8, 2023

Neha Yadav
KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
nehayadav1508@gmail.com

Vibhash Yadav
Rajkiya Engineering College, Banda, India
vibhashds10@gmail.com

936 International Journal of Electrical and Computer Engineering Systems

errors during testing using past failure data [27]. There-
fore, the major contribution of the paper is:

•	 The paper presented a novel approach using a
machine learning algorithm for software reliability
prediction using software metrics correlation-con-
strained multi-objective evolutionary optimization
algorithm. The algorithm is based on the identifica-
tion of the software metrics based on certain hy-
potheses.

•	 The paper presented the comparative perfor-
mance evaluation of the presented hypothesis on
different classification techniques.

•	 The comparative state-of-art is presented to show
the effectiveness of the proposed method.

The rest of the paper is organized as section 2 presents
the related contributions of researchers for software reli-
ability prediction using optimization. Section 3 present-
ed an overview of the proposed evolutionary optimiza-
tion algorithm and a detailed flowchart and working
of the proposed methodology along with a hypothesis
description. Section 4 describes the result analysis and
comparative analysis. Section 5 presents the discussion
of the proposed method and the result obtained. Finally
in section 6 conclusion and future scope are presented.

2. RElATED WORk

Dhavakumar and Gopalan [5] proposed a Chaotic-
GWO. It uses the Pham-Zhang model to forecast param-
eters and improves reliability by approximating SRGM
parameters using TEF and chaotic maps. The findings
show a good convergence rate and a link between se-
lected variables and the fitness criterion. The desired out-
come is an automated SRGM using CGWO, eliminating
the need for customer involvement. Rani and Mahapatra
[22] presented the exponential software reliability model
to quantify numerous aspects, particularly fault initiation
and time-varying fault diagnosis frequency. To optimize
software reliability while lowering allocation costs, an
expanded particle swarm optimization (EPSO) is pre-
sented. Researchers do trials utilizing completely random
testing-resource sets and the entropy function to modify
performance. Gupta et al. [9] proposed a nonlinear MO-
optimizer regarding data envelopment analysis (DEA) for
choosing software systems in the context of optimum re-
dundancy to assure software reliability. Kumar et al. [18]
presented a novel comparison analysis to determine the
most appropriate and accurate artificial neural network.
In this study, we present a backpropagation-based feed-
forward neural network for improving software reliability
and accuracy. Jaiswal et al. [13] used machine learning
techniques such as the adaptive neuro-fuzzy system (AN-
FIS), and other techniques are used to predict software
reliability on a variety of datasets derived from the oper-
ating system. Sangeeta et al. [27] proposed a novel tech-
nique for optimizing parameter values depending on the
Ant Colony Optimizer with differential evolutions idea of
ecological space has boosted the exploration capabilities
of the ABC algorithm. The suggested algorithm's efficien-

cy is further validated by comparing it to hybrid PSO algo-
rithms. The newly proposed ABCDE algorithm estimates
the system's reliability to be up to 85 percent. Diwaker et
al. [4] proposed a novel quantitative model is provided
that uses series and parallel reliability frameworks to cal-
culate the SR. To compare the best reliability value, the
performance of the proposed method is assessed to the
output of soft computing approaches PSO and Fuzzy log-
ic. The development of a big combination of parameters
increases the complexity of the suggested model as more
components are included. Jabeen et al. [12] proposed a
highly precise error iteration analysis technique (HPEIAM)
based on error-residuals is suggested to improve the pre-
dictive performance of current PSRGMs. SRGMs compute
residual errors repeatedly, improving and correcting pre-
diction accuracy to the intended level. HPEIAM's perfor-
mance is evaluated using various PSRGMs and two sets of
actual software failure data, with three quality criteria in
mind. Table 1 presents the comparative feature of related
works with the presented work.

Table 1. Recent Contribution

Ref Objectives Contribution Research Gaps

[6]

The aim is to
cover all finite
paths of the
control flow
graph of the

software under
the test.

Presents a memetic
algorithm for
automatically

generating test data

To solve the
software cost

problem because
Software testing

is very time-
consuming and

expensive

[8]

To predict future
software faults
by deploying
the classifier
algorithms

Build the model and
predict the occurrence

of the software bugs
based on historical
data by deploying

the classifiers Logistic
regression, Naive Bayes,

and Decision Tree

To solve Software
bug prediction

issues as bugs are a
serious challenge for
system consistency

and efficiency

[11]

To estimate the
software release

time and cost
of the testing

effort

A high-precision error
iterative analysis

method (HPEIAM)
Proposes to enhance

the prediction accuracy

 Limitations of them
mean that their

predictive capacities
differ from one

dataset to others

[12]

To predict
software
reliability

and evaluate
them based
on selected

performance
criteria

Applied ML including
(ANFIS), feed forward

back propagation
neural network, SVM,

etc

To solve various
challenges in

developing highly
reliable software.

[13]

The aim is to
provide software
reliability within
the allotted time

& budget.

Presents a genetic
programming-based
decision tree model

which facilitates
a multi-objective

optimization in the
context of the software

quality classification
problem

Improved by
the allocated

software quality-
improvement
resources, and
on the project-
specific costs of

misclassifications.

[19]

Aims to remove
the wrong

solution during
the algorithm

execution
process, and

adds knowledge
to improve

the solution
accuracy

Proposes parameter
estimation method

of software reliability
model based on hybrid

PSO-ABC

The existing
software reliability

models are
nonlinear, and
the parameter

estimation of these
models is difficult.

937Volume 14, Number 8, 2023

[21]

The aim is to
provide an

extensive
comparison of
the explanative
and predictive
power of well-

known bug
prediction

approaches

Present a benchmark
for defect prediction Low Accuracy

[23]

Aim to predict
bugs in software
using machine

learning

Used dynamic classifier
for detection Low Accuracy

3. METHODOlOGY

In this paper, we have designed an evolutionary al-
gorithm-based software reliability prediction. For these
object-oriented metrics are considered and some hy-
potheses are designed. These hypotheses are consid-
ered objective functions for evolutionary algorithms.
The below sub-section describes the steps and work-
ing model of the proposed methodology.

3.1. MUlTI-ObJECTIVE EVOlUTIONARY
 AlGORITHM

We apply evolutionary algorithms, which are a kind
of artificial intelligence, in our suggested study. These
algorithms optimize problems through mutation and
recombination. Multi-objective evolutionary optimiza-
tion improves machine learning performance. The al-
gorithms simulate natural evolution, where solutions
represent humans and the problem specification rep-
resents the environment. A population of solutions is
created and evaluated using objective functions. Bet-
ter solutions have a higher chance of being selected for
recombination. Crossover and mutation are key repro-
duction phases. The population is regulated through
replacement. The process is repeated until a stop crite-
rion is met. These algorithms follow natural processes
and focus on populations rather than individual solu-
tions. The first generation is randomly initialized and
evaluated. Traditional optimization approaches vary
from evolutionary algorithms in the following ways:

•	 While some CCMOEO scans a population concur-
rently, some just look for a specific position.

•	 Just the objectives functional part and fitness level
are required for CCMOEO, without derivation vari-
ables.

•	 It utilizes probability ideas.
•	 Because there were minimal restrictions on the

definition of objective functional area, CCMOEO is
often simple to use.

Natural selection for resources in the environment is
what drives evolution. Those kids who are more likely to
survive to live longer and pass on their genetic material.
Asexual reproduction is used to encode genetic infor-
mation, resulting in kids that are genetically identical to
their parents. Nowadays, evolutionary algorithms may
be found everywhere, having been effectively applied

to a variety of issues in fields such as social systems, au-
tomated programming, signal processing, and bioinfor-
matics. These methods are highly beneficial for optimiz-
ing outcomes from many domains [3]. There are several
evolutionary algorithms strategies, such as ant colonies,
bee colonies, and so on. We may utilize these types of
algorithms to optimize the outcome in the area of soft-
ware quality optimization. There are numerous stages to
the optimization: i) An initialization of random solutions
is formed, referred to as individuals. ii) The simulation
model evaluates each individual's goal functions.

Fig. 1. Multi-Objective Evolutionary Algorithm

All software functionality, processing time, profiles,
and costs are fixed input factors in our scenario since
they do not vary throughout the optimization. iii) Each
person is graded based on their "fitness," or the values
of their goal functions. iv) Following the ranking of
all individuals, the MOEA develops a new population
of people (the next "generation") using the standard
genetic algorithm operators of parent selection, cross-
over, and mutation. v) The MOEA generates a Pareto
front after a certain number of generations (see Fig. 1).

3.2 ObJECT-ORIENTED DESIGN METRICS
 (OODMS)

One of the commonly used metrics in existing soft-
ware reliability models is object-oriented design metrics
(OODMs). Apart from this, there are several other Metrics
also that can help determine software reliability growth.
In the literature review, we have analyzed that there are
several machine learning, optimization, and statisti-
cal techniques that are being used to predict software
reliability. Many researchers also presented the correla-
tion between OODMs and defective and non-defective
classes of software. But relations among other metrics
are still not that enlightening. For this, some hypotheses
are presented in this paper which are discussed in the
below sub-section. To prove this hypothesis, the paper
proposed a software metrics correlation-constrained
multi-objective evolutionary optimization algorithm
whose steps are discussed below (Fig 2).

938 International Journal of Electrical and Computer Engineering Systems

The methodology is divided into three basic steps:
(a) pre-processing, (b) Correlation-Constraint Multi-ob-
jective Evolutionary Optimization, and (c) classification.
These steps are described in detail below sub-sections.

3.2.1. Preprocessing

In this paper, the dataset contains a mixed set of data
i.e., numerical and categorical parameters. Due to the
dynamic nature of software reliability parameters, it is
required to distinguish between parameters. For this pre-
processing step is required. As machine learning can only
handle numerical data. Therefore, for the proper estima-
tion of the hyperparameter’s performance, these mixed
data are converted into an array of numerical data.

Transformation of Hyperparameters: In this step, a
set of data features is used to estimate the reliability
level of software. Fig 2 represents the pre-processing
steps used for reliability prediction.

Data Type detection: In this step, a simple, type of
data is detected i.e., numeric, categorical, and boolean.

Some samples of datasets and their type are presented
in Table 2.

Mapping: In this step, two major works are performed.
In the first step, the redundant data are removed and in
the second step, unnamed columns are removed. As it
is known that data redundancy generally occurs when
some parameters or Metrics are stored multiple times
in the database. These redundant data don’t seem a big
issue but when the size of data increases, then these
redundant data create unnecessary computational
complexity for the learning model. Therefore, these
data must be removed. Another major issue that occurs
while the learning/analytics process is the presence of
unnamed or unknown columns (software parameters)
in the dataset. If these data are not removed then it will
result in ambiguous analysis.

Merging: In this step, parameters related to soft-
ware metrics are selected i.e., Object-Oriented Design
Metrics, Previous Bug Metrics, Methods Metrics, and
Entropy Metrics. These Metrics are most important for
analytical purposes.

(a) Pre-processing

(b) Correlation-Constraint Multi-objective Evolutionary Optimization

(c) Classification
Fig. 2. Proposed Methodology

bug Metrices Object-Oriented Metrics Entropy Metrics
Parameters Type Parameters Type Parameters Type

class name Mixed CBO Mixed CvsEntropy Mixed

Bugs Found Integer Fin Decimal CvsWEntropy Decimal

Trivial bugs Integer Fout Decimal LinEntropy Decimal

Major Bugs Integer No. of attributes Decimal LogEntropy Decimal

Critical Bugs Integer No. of LOC Decimal ExpEntropy Decimal

Priority Bugs Integer No of Methods Decimal Defect Boolean

Defect Boolean Defect Boolean - -

Table 2. Data Type Detection

939Volume 14, Number 8, 2023

Encoding In this step, the one-hot encoding method
is used to convert the merged data so that they can
result in me better prediction results. so they can be
provided to machine learning algorithms to improve
predictions. This method is adopted because it of bet-
ter prediction results of machine learning with those
data that show no relationship to each other. After en-
coding data normalization is performed. Normalizing
an attribute by evaluating the percentage of a value to
the attribute's summation value is known as frequency
normalization. It's described as:

(1)

Frequency normalization also scales an attribute into
[0,1].

3.2.2. Correlation-Constraint Multi-objective
 Evolutionary Optimization

In this section, an MOEA algorithm is proposed based
on correlation constraints on the following hypothesis:

•	 Hypothesis 1 (H1): Previous bug metrics (BM) is un-
able to predict defect in the software.

•	 Hypothesis 2 (H2): Changed method metrics (CMM)
is unable to predict defect in the software.

•	 Hypothesis 3 (H3): Object-oriented metrics (OOM)
is unable to predict defect in the software.

•	 Hypothesis 4 (H4): Entropy metrics EM) is unable to
predict defect in the software.

•	 Hypothesis 5 (H5): Bug matrices (BM), object-ori-
ented metrics (OOM), changed method metrics
CMM) and entropy metrics (EM) correlate them to
predict defects in the software.

Scientific application is generally formulated as con-
strained optimization problems and mathematically it
is represented as:

min{f(X)}=X = {x1, x2,...xn} such that LB<xn<UB
(2)subjects to: g(X)≤0 {inequality constraints}

subjects to: h(X)=0 {equality constraints}
Where, f(X)= objective function,

{x1, x2,...xn} = decision vectors

LB and UB = lower and upper bound respectively

The equality constraint violation on all constraints is
mathematically represented as:

(3)

Where, i= inequality constraints

The solution that satisfies G(X) is termed a feasible so-
lution. Therefore, the target of any constraint-oriented
optimization is to locate optimal G(X). The evolutionary
algorithm possesses a powerful searching ability that can
solve above mentioned constraint problem efficiently.
Therefore, this paper has adopted evolutionary opti-
mization as a solution. The framework of the proposed
correlation-constrained multi-objective evolutionary
optimization algorithm (CCMOEO) is given in Fig. 3. Two
basic steps are performed in this algorithm: learning and
evolution. In the learning stage, five hypotheses are de-
signed to establish a correlation between constraints
and objective function. As a result, in the evolving stage,
the correlation is used to direct the evolution process. To
avoid a local optimum induced by complex constraints,
correlation is employed to determine how much informa-
tion of the objective function is utilized. As a result, the
inhabitants can more easily enter the area. Constraint and
goal function variation tendencies are more important
to us in this work. That’s why it’s possible to catch a trend
early on since the population is spread out throughout a
large area. Learning is followed by evolution, which uses
the rest of the computer’s processing power.

Fig. 3. CCMOEO Architecture

In the stage of learning, the notion of correlation in-
dex (CI) is proposed to mine the correlation between
the variables. The closer the value of CI is to one, the
greater the degree to which the constraints and the
goal function are correlated. During the period of de-

velopment, two different approaches are designed.
The first method is referred to as the weighted sum
updating strategy, and it states that the fitness value
of an individual is determined by the weighted sum of
normalized G(X) and normalized f.(X).

940 International Journal of Electrical and Computer Engineering Systems

3.2.3. Classification

In this step, the optimized data is fed into a classifier
for learning the pattern of failure and success of software
metrics. For classification, the paper analyzed the perfor-
mance of seven classifiers. These are discussed below:

Linear support vector machine (LSVM): A support vec-
tor machine is a machine learning model that is capable
to simplify between two dissimilar classes if the fixed of
categorized data is provided in the training set to the
algorithm. The key purpose of the SVM is to distribute
the data samples according to hyperplane and distin-
guish among different classes. Linearly Separable 2D
Data is a two-dimensional database separated by line if
we can distinguish positive from negative objects by a
straight line. It does not matter if there is more than one
such line. If data cannot be categorized, linearization
cannot completely separate these two categories. For
many non-linear databases, the line separator will still
be “good enough” and segment multiple cases correctly.

Radial support vector machine (RSVM): The RBF ker-
nel is one of the most popular kernels because it is the
most general form of the kernel and resembles a Gauss-
ian distribution. The RBF kernel function for two points
Y₁ and Y₂ computes the similarity or how close they are
to each other. An RBF kernel is a function whose value
depends on the origin or distance from some point.

Decision tree: In machine learning, a decision tree is a
predicting approach. It's a flowchart-like layout where
every other block contains an attribute "test." Classi-
fication rules are represented by the results from one
block to the next. Nodes may be classified into three
categories: Squares are used to symbolize decision
nodes. Ending nodes are depicted by triangles, where-
as chance nodes are depicted by circles. The following
is how a decision tree works: begin with the root node,
which holds the whole dataset. By using Attribute Se-
lection Measure, discover the perfect attribute in the
dataset. Divide the root node into subgroups that in-
clude the best attribute's potential values. Create the
node of the decision tree that holds the best attribute.
Make new decision trees recursively using subsets of
the dataset, Repeat this procedure till the nodes could
no longer be classified and the last node is designated
as a leaf node. It's utilized in data mining research. This
is the most effective instrument for forecasting. The de-
cision tree has a few benefits, like being easy to use and
requiring minimal data preparation. The following are
some disadvantages: it may result in too complicated
trees, which is known as overfitting.

Random forest: It is a commonly used ML method
that is classified as supervised learning. It may be used
in ML for both classifiers and as well as for regression
data. It is based on the notion of supervised methods,
which is the act of combining numerous classifications
to tackle a difficult problem and increase the individu-
al's effectiveness. This approach consists of some deci-
sion trees, each of which can be built up of datasets re-

trieved from a training dataset, referred to as the boot-
strap sample. The RF considers each tree's forecast and
generates an outcome based on the plurality of predic-
tions. The forest's enormous number of trees provides
greater precision, avoiding the issue of overfitting.

Gradient boosting: Gradient boosting is an ML boosting
technique. It is based on the assumption that combining
the best subsequent modeling with the prior model re-
duces the total estimation error. To reduce mistakes, the
key concept is to define target outcomes for the following
concepts. To decrease bias error, the GB Algorithm is of-
ten utilized. Both prediction and classification techniques
may benefit from the gradient-boosting approach. MSE
is the cost function in a regression problem, and function
Loss is the cost function in a classifier. GB Machine inte-
grates results from many decision trees to create a final
prediction. Take into account that in a gradient-boosting
machine, each learning rate is a decision tree.

k-nearest neighbor: K-Nearest Neighbors (KNN) is a
machine learning method that uses case similarities to
classify data points. It is a non-parameterized approach
that relies on comparing the characteristics of data
points to determine their classifications. The process
involves selecting a value for K, calculating the Euclid-
ean distance between the K nearest neighbors, and
then assigning a category based on the majority of the
neighbors. The KNN algorithm identifies the closest data
points in terms of feature similarity, with K represent-
ing the number of data points used in the analysis. The
distance measure, typically Euclidean distance, and the
corresponding values play a crucial role in the KNN clas-
sifier. By considering the K nearest neighbors and their
associated labels, KNN can classify new data points in
the feature space.

Logistic regression: The most widely used ML algo-
rithm is logistic regression. It is a statistical technique
that is also known as the Logit model. Depending on
the dataset of independent factors, it calculates the
likelihood of an event occurring. In binary logistic re-
gression, there is just one binary dependent variable,
coded by an indicator variable, with two parameters
labeled 0 and 1, and the independent variables may be
either binary or continuous. Important assumptions to
keep in mind are that the dependent variable has to be
categorized and that the independent variable should
not be multi-collinear. The dependent variable is con-
fined between 0 and 1 since the outcome is a probabil-
ity. A logit transformation is performed to the odds in
logistic regression, which is the likelihood of success
divided by the probability of failure.

4. RESUlTS AND DISCUSSIONS

In this section, the paper presents the results ob-
tained after prediction. Section 4.1 describes dataset
taken in this paper for evaluation. Section 4.2 describes
the implementation details. Section 4.3 describes the
data visualization and finally in section 4.4 results are
analyzed with a comparative state-of-art.

941Volume 14, Number 8, 2023

4.1. DATASET DESCRIPTION

This paper introduces a software fault dataset de-
signed for comparing bug prediction models [21]. The
dataset includes information necessary for estimating
bugs based on source code measures, historic mea-
surements, and access to data. The dataset covers sev-
eral software systems, including Eclipse, PDE, Equinox,
Lucene, and Mylyn. It provides historical information,
biweekly versions of systems, source code metrics, and
post-release defect numbers for each class. A sample of
the dataset is presented in Table 3.

Dataset Samples
Eclipse 5372

Equinox 325

PDE 1492

Lucene 692

Mylyn 1863

4.2. IMPlEMENTATION DETAIlS

This paper has implemented and trained the models in
the Keras framework with TensorFlow. The proposed mod-
el was trained using GPU on Google colab. Following the
performance, parameters are used to evaluate the model's
efficiency in terms of Accuracy, precision, and recall.

Table. 3. Dataset Representation

(4)

(5)

(6)

Where, TP = True Positive, FP= False Positive, FN=
False Negative and TN = True Negative

4.3. ExPlORATORY DATA VISUAlIzATION

Fig. 4 shows the feature correlation map using the
eclipse dataset considering all the pre-determined con-
ditions and variables and this map shows the correlation
coefficient for different variables for all the possible pair of
variables and helps in visualizing the given eclipse dataset.

Fig. 4. Feature Correlation Map

4.4. RESUlT ANAlYSIS

Table 4 shows the accuracy, precision, and recall com-
parison of for eclipse dataset for different classifiers. The
Accuracy of the Random Forest Classifier is maximum and
it is minimum for the K-neighbors classifier. Precision is
maximum for the Linear SVM classifier and minimum for
the logistic regression classifier. The recall is maximum for
the Decision Tree classifier and minimum for the Radial
SVM classifier. Table 5 shows the accuracy, precision, and
recall comparison of for equinox dataset for different clas-
sifiers. The Accuracy of Linear SVM, Random Forest, and
Gradient Boosting is maximum and it is minimum for the
K-Neighbors classifier. Precision is maximum for Linear
SVM and Gradient Boosting classifier and minimum for
logistic regression classifier. The recall is maximum for the
Decision Tree classifier and minimum for the Decision Tree
classifier. Table 6 shows the accuracy, precision, and recall
comparison of for equinox dataset for different classifiers.
The Accuracy of Linear SVM, Random Forest, and Gradient
Boosting is maximum and it is minimum for the Logistic
Regression classifier. Precision is maximum for different
classifiers and minimum for Decision Tree classifiers. The
recall is maximum for the Decision Tree classifier and mini-
mum for Random Forest and K-Neighbors classifier. Table
7 shows the accuracy, precision, and recall comparison of
for Mylyn dataset for different classifiers. The Linear SVM,
Random Forest is maximum and it is minimum for Radial
SVM classifier. Precision is maximum for the Linear SVM
classifier and minimum for the K-Neighbors classifier. The
recall is maximum for the Decision Tree classifier and min-
imum for the Gradient Boosting classifier. Table 8 shows
the accuracy, precision, and recall comparison of for PDE
dataset for different classifiers. The Accuracy of the Linear
SVM Classifier is maximum and it is minimum for the Radi-
al SVM classifier. Precision is maximum for the Linear SVM
classifier and minimum for the Decision Tree classifier. The
recall is maximum for 4 classifiers and minimum for the
Logistic Regression classifier. Fig 5 represents the com-
parative state-of-art. In Fig 5, the paper compares with
works presented by [16] and [23]. [16] proposed a Hyper-
parameter optimization algorithm and achieved an aver-
age of 87% accuracy whereas [23] proposed a dynamic
parameter selection algorithm and achieved an accuracy
of approx. 76%. From the result, we can observe that the
proposed multi-constraint multi-optimization algorithm
achieves better accuracy of approx. 99%.

Classifier Accuracy Precision Recall

Decision Tree 99.39 % 66.66 % 97.47 %

Random Forest 99.47 % 95.85 % 96.46 %

Logistic Regression 86.07 % 46.4 % 96.46 %

Linear SVM 98.43 % 100 % 93.43 %

Gradient Boosting 99.18 % 56.93 % 26.26 %

K-Neighbors 84.66 % 97.94 % 22.72 %

Radial SVM 86.37 % 97.96 % 15.15 %

Table 4. Parameter Comparison for Eclipse Dataset

942 International Journal of Electrical and Computer Engineering Systems

Table 5. Parameter Comparison for Equinox Dataset

Classifier Accuracy Precision Recall

Linear SVM 97.53 % 100 % 100 %

K-Neighbors 80.24 % 100 % 93.54 %

Random Forest 97.53 % 86.95 % 93.54 %

Logistic Regression 80.23 % 74.14 % 93.54 %

Decision Tree 97.53 % 82.60 % 74.19 %

Gradient Boosting 97.53 % 100 % 64.51 %

Radial SVM 82.17 % 100 % 61.29 %

Table 6. Parameter Comparison Lucene Dataset

Classifier Accuracy Precision Recall

Linear SVM 100 % 100 % 100 %

Logistic Regression 91.3 % 100 % 100 %

Radial SVM 90.17% 100 % 100 %

Decision Tree 100 % 83.3 % 100 %

Gradient Boosting 100 % 100 % 26.13 %

Random Forest 100 % 100 % 10.5 %

K-Neighbors 90.17% 100 % 10.5 %

Table 7. Parameter Comparison for Mylyn Dataset

Classifier Accuracy Precision Recall

Linear SVM 99.78 % 100 % 98.8 %

Radial SVM 81.9 % 97.67 % 98.8 %

Decision Tree 99.57 % 87.87 % 98.8 %

K-Neighbors 83.4 % 63.33 % 98.8 %

Logistic Regression 87.12 % 98.8 % 34.11 %

Random Forest 99.78 % 66.66 % 22.3 %

Gradient Boosting 99.35 % 100 % 2.3 %

Table 8. Parameter Comparison for PDE Dataset

Classifier Accuracy Precision Recall

Linear SVM 100 % 100 % 100 %

Random Forest 99.46 % 96.7 % 100 %

Gradient Boosting 100 % 55.17 % 100 %

Decision Tree 100 % 12.5 % 100 %

K-Neighbors 82.13 % 100 % 27.11 %

Radial SVM 82.66 % 31.8 % 11.86 %

Logistic Regression 85.066 % 100 % 1.6 %

Fig 5. Comparative Accuracy Evaluation

5. DISCUSSION

Based on the information provided, the final result
suggests that the proposed multi-constraint multi-
optimization algorithm achieves a significantly higher
accuracy of approximately 99% compared to other
classifiers and state-of-the-art approaches. This is be-
cause the CCMOEO algorithm combines the power of
evolutionary optimization with the incorporation of
correlations between metrics and defect prediction.
By leveraging these correlations, the algorithm aims to
improve the accuracy of defect prediction in software
and find better solutions to the constrained optimiza-
tion problem. This indicates that the algorithm is highly
effective in accurately classifying the datasets used in
the study (Eclipse, Equinox, Mylyn, and PDE). The algo-
rithm's superior performance in terms of accuracy, pre-
cision, and recall makes it a promising solution for the
classification tasks considered in the study.

6. CONClUSION

Software systems have a significant impact on soci-
ety, and ensuring their trustworthiness is crucial. Bug-
free software is a key factor in achieving trust, and re-
liability models are used to assess software reliability
and predict faults. Researchers are exploring computa-
tional intelligence methods, including machine learn-
ing and optimization, to improve prediction models. In
this paper, a software reliability prediction model is de-
veloped using a software metrics correlation multi-ob-
jective evolutionary algorithm-based model proposed
for the identification of defect metrics for establishing
the reliability of software. The result analysis was ob-
served on seven classifiers and achieved an average ac-
curacy of 99% which is approx. 13% improvement over
comparative state-of-art. Future research can focus on
training the algorithm on larger datasets, identifying
failure points in AI software, and identifying weak reli-
able points that may lead to attacks.

Data Availability Statement:
All data are made available in the manuscript.

Conflict of Interest:
The authors declare no conflict of interest.

Funding Information: None.

7. REFERENCES

[1] A. K. Behera, M. Panda, S. C. Nayak, C. S. K. Dash,

“An Artificial Electric Field Algorithm and Artificial

Neural Network-Based Hybrid Model for Software

Reliability Prediction”, Computational Intelligence

in Data Mining, Springer, 2022, pp. 271-279.

[2] X. Chen, Y. Shen, Z. Cui, X. Ju, “Applying Feature Se-

lection to Software Defect Prediction Using Multi-

objective Optimization”, Proceedings of the IEEE

943Volume 14, Number 8, 2023

41st Annual Computer Software and Applications

Conference, Turin, Italy, 4-8 July 2017, pp. 54-59.

[3] C. A. Coello Coello, S. González Brambila, J.

Figueroa Gamboa, M. G. Castillo Tapia, R. Hernán-

dez Gómez, “Evolutionary multiobjective optimi-

zation: open research areas and some challenges

lying ahead”, Complex & Intelligent Systems, Vol.

6, No. 2, 2020, pp. 221-236.

[4] C. Diwaker et al. “A New Model for Predicting Com-

ponent-Based Software Reliability Using Soft Com-

puting”, IEEE Access, Vol. 7, 2019, pp. 147191-147203.

[5] P. Dhavakumar, N. P. Gopalan, “An efficient param-

eter optimization of software reliability growth

model by using chaotic grey wolf optimization

algorithm”, Journal of Ambient Intelligence and

Humanized Computing, Vol. 12, No. 2, 2021, pp.

3177-3188.

[6] S. K. Dubey, B. Jasra, “Reliability assessment of

component based software systems using fuzzy

and ANFIS techniques”, International Journal of

Systems Assurance Engineering and Manage-

ment, Vol. 8, No. 2, 2017, pp. 1319-1326.

[7] F. El Hajj Chehade, R. Younes, “Structural reliability

software and calculation tools: a review”, Innovative

Infrastructure Solutions, Vol. 5, No. 1, 2020, p. 29.

[8] M. Esnaashari, A. H. Damia, “Automation of soft-

ware test data generation using genetic algorithm

and reinforcement learning”, Expert Systems with

Applications, Vol. 183, 2021, p. 115446.

[9] P. Gupta, M. K. Mehlawat, D. Mahajan, “Data envel-

opment analysis based multi-objective optimiza-

tion model for evaluation and selection of soft-

ware components under optimal redundancy”,

Annals of Operations Research, Vol. 312, No. 1,

2022, pp. 193-216.

[10] D. D. Hanagal, N. N. Bhalerao, “Literature Survey in

Software Reliability Growth Models”, Software Re-

liability Growth Models, Springer Singapore, 2021,

pp. 13-26.

[11] S. Delphine Immaculate, M. Farida Begam, and M.

Floramary, “Software Bug Prediction Using Super-

vised Machine Learning Algorithms”, Proceedings

of the International Conference on Data Science

and Communication, 2019, pp. 1-7.

[12] G. Jabeen, P. Luo, W. Afzal, “An improved software

reliability prediction model by using high preci-

sion error iterative analysis method”, Software

Testing, Verification and Reliability, Vol. 29, No. 6-7,

2019, p. e1710.

[13] A. Jaiswal, R. Malhotra, “Software reliability predic-

tion using machine learning techniques”, Interna-

tional Journal of Systems Assurance Engineering

and Management, Vol. 9, No. 1, 2018, pp. 230-244.

[14] A. Jindal, A. Gupta, Rahul, “Comparative Analysis

of Software Reliability Prediction Using Machine

Learning and Deep Learning”, Proceedings of the

Second International Conference on Artificial In-

telligence and Smart Energy, 2022, pp. 389-394.

[15] M. Job, S. Battista, R. Stanzani, A. Signori, M. Testa,

“Quantitative Comparison of Human and Soft-

ware Reliability in the Categorization of Sit-to-

Stand Motion Pattern”, IEEE Transactions on Neu-

ral Systems and Rehabilitation Engineering, Vol.

29, 2021, pp. 770-776.

[16] F. Khan, S. Kanwal, S. Alamri, B. Mumtaz, “Hyper-

Parameter Optimization of Classifiers, Using an

Artificial Immune Network and Its Application to

Software Bug Prediction”, IEEE Access, Vol. 8, 2020,

pp. 20954-20964.

[17] T. M. Khoshgoftaar, Y. Liu, “A Multi-Objective Soft-

ware Quality Classification Model Using Genetic

Programming”, IEEE Transactions on Reliability,

Vol. 56, No. 2, 2007, pp. 237-245.

[18] P. Kumar, S. K. Singh, S. Deo Choudhary, “Reliability

prediction analysis of aspect-oriented application

using soft computing techniques”, Materials To-

day: Proceedings, Vol. 45, 2021, pp. 2660-2665.

[19] Z. Li, M. Yu, D. Wang, H. Wei, “Using Hybrid Algo-

rithm to Estimate and Predicate Based on Soft-

ware Reliability Model”, IEEE Access, Vol. 7, 2019,

pp. 84268-84283.

[20] K. Lwin, R. Qu, G. Kendall, “A learning-guided multi-

objective evolutionary algorithm for constrained

portfolio optimization”, Applied Soft Computing,

Vol. 24, 2014, pp. 757-772.

[21] M. D’Ambros, M. Lanza, R. Robbes, “An extensive

comparison of bug prediction approaches”, Pro-

ceedings of the 7th IEEE Working Conference on

944 International Journal of Electrical and Computer Engineering Systems

Mining Software Repositories, Cape Town, South
Africa, 2-3 May 2010, pp. 31-41.

[22] P. Rani, G. S. Mahapatra, “Entropy based enhanced
particle swarm optimization on multi-objective
software reliability modelling for optimal testing
resources allocation”, Software Testing, Verifica-
tion and Reliability, Vol. 31, No. 6, 2021, p. e1765.

[23] S. S. Rathore, S. Kumar, “Software fault prediction
based on the dynamic selection of learning tech-
nique: findings from the eclipse project study”,
Applied Intelligence, Vol. 51, No. 12, 2021, pp.
8945-8960.

[24] S. K. Rath, M. Sahu, S. P. Das, S. K. Mohapatra, “Hy-
brid Software Reliability Prediction Model Using
Feature Selection and Support Vector Classifier”,
Proceedings of the International Conference on

Emerging Smart Computing and Informatics,
Pune, India, 9-11 March 2022, pp. 1-4.

[25] K. Sahu, R. K. Srivastava, “Revisiting Software Reli-
ability”, Data Management, Analytics and Innova-
tion, Springer, 2019, pp. 221-235.

[26] S. P. Sahu, B. R. Reddy, D. Mukherjee, D. M. Shy-
amla, B. S. Verma, “A hybrid approach to software
fault prediction using genetic programming and
ensemble learning methods”, International Jour-
nal of Systems Assurance Engineering and Man-
agement, Vol. 13, 2022, pp. 1746-1760.

[27] Sangeeta, K. Sharma, M. Bala, “An ecological space
based hybrid swarm-evolutionary algorithm for
software reliability model parameter estimation”, In-
ternational Journal of Systems Assurance Engineer-
ing and Management, Vol. 11, No. 1, 2020, pp. 77-92.

