
Software Reliability Prediction using Correlation 
Constrained Multi-Objective Evolutionary 
Optimization Algorithm

935

Original Scientific Paper 

Abstract – Software reliability frameworks are extremely effective for estimating the probability of software failure over time. 
Numerous approaches for predicting software dependability were presented, but neither of those has shown to be effective. Predicting 
the number of software faults throughout the research and testing phases is a serious problem. As there are several software metrics 
such as object-oriented design metrics, public and private attributes, methods, previous bug metrics, and software change metrics. 
Many researchers have identified and performed predictions of software reliability on these metrics. But none of them contributed 
to identifying relations among these metrics and exploring the most optimal metrics. Therefore, this paper proposed a correlation-
constrained multi-objective evolutionary optimization algorithm (CCMOEO) for software reliability prediction. CCMOEO is an 
effective optimization approach for estimating the variables of popular growth models which consists of reliability. To obtain the 
highest classification effectiveness, the suggested CCMOEO approach overcomes modeling uncertainties by integrating various 
metrics with multiple objective functions. The hypothesized models were formulated using evaluation results on five distinct datasets 
in this research. The prediction was evaluated on seven different machine learning algorithms i.e., linear support vector machine 
(LSVM), radial support vector machine (RSVM), decision tree, random forest, gradient boosting, k-nearest neighbor, and linear 
regression. The result analysis shows that random forest achieved better performance.

Keywords: Reliability, Faults, Bugs, Object-oriented, Evolutionary optimization, Machine learning

1.  INTRODUCTION

Software development involves creating software with 
potential flaws, leading to negative consequences and fi-
nancial losses [1]. To address these risks, decision-makers 
use software defect prediction (SDP) to anticipate faulty 
modules through testing and coding inspection [2]. En-
suring software reliability during development is chal-
lenging, especially with constant changes in the software 
engineering sector. Estimating models' accuracy can vary 
with different datasets, and improving reliability requires 
finding a suitable reliability allocation paradigm within 
constraints [3-6]. Software reliability refers to a system 
or component's probability of functioning properly in a 
specific environment for a certain period [7-10]. Evaluat-
ing software reliability during the design phase compares 
current reliability to previous performance, using mod-
els to analyze release time and estimate future reliabil-
ity [11-17]. However, testing complex software becomes 
difficult, impacting the effectiveness of software models 
[18-24]. Various approaches, including machine learning 
techniques, have been explored to model software reli-
ability and quality [25-27]. Throughout the software de-

velopment lifecycle, estimation techniques are used in 
the early stages, while reliability growth models are used 
during testing to reduce failure rates and predict defect 
density after deployment. Inference techniques fit the 
curve to the data for software reliability forecasting and 
estimation, with failure intensity being a simpler measure 
often derived from the reliability estimate. Estimating 
software reliability is challenging due to unbalanced and 
inaccurate data. Researchers are exploring machine learn-
ing algorithms for software defect prediction but haven't 
delved into it extensively. Software reliability prediction 
aims to identify fault-prone components early, reducing 
costs and time while ensuring desired quality. Various 
prediction approaches for effort, privacy, quality, defect, 
cost, and reusability are still in the early stages of devel-
opment [24]. Software Reliability Prediction (SRP) involves 
using machine learning to find problematic classes/mod-
ules before testing [6,25]. Neural networks and statistical 
approaches like logistic regression are used, but they lack 
optimal parameter selection for software fault determina-
tion. This paper proposes a novel multi-objective evolu-
tionary-based strategy that integrates machine learning 
algorithms to predict software reliability by anticipating 
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errors during testing using past failure data [27]. There-
fore, the major contribution of the paper is:

•	 The paper presented a novel approach using a 
machine learning algorithm for software reliability 
prediction using software metrics correlation-con-
strained multi-objective evolutionary optimization 
algorithm. The algorithm is based on the identifica-
tion of the software metrics based on certain hy-
potheses.

•	 The paper presented the comparative perfor-
mance evaluation of the presented hypothesis on 
different classification techniques. 

•	 The comparative state-of-art is presented to show 
the effectiveness of the proposed method.

The rest of the paper is organized as section 2 presents 
the related contributions of researchers for software reli-
ability prediction using optimization. Section 3 present-
ed an overview of the proposed evolutionary optimiza-
tion algorithm and a detailed flowchart and working 
of the proposed methodology along with a hypothesis 
description. Section 4 describes the result analysis and 
comparative analysis. Section 5 presents the discussion 
of the proposed method and the result obtained. Finally 
in section 6 conclusion and future scope are presented.

2. RElATED WORk

Dhavakumar and Gopalan [5] proposed a Chaotic- 
GWO. It uses the Pham-Zhang model to forecast param-
eters and improves reliability by approximating SRGM 
parameters using TEF and chaotic maps. The findings 
show a good convergence rate and a link between se-
lected variables and the fitness criterion. The desired out-
come is an automated SRGM using CGWO, eliminating 
the need for customer involvement. Rani and Mahapatra 
[22] presented the exponential software reliability model 
to quantify numerous aspects, particularly fault initiation 
and time-varying fault diagnosis frequency. To optimize 
software reliability while lowering allocation costs, an 
expanded particle swarm optimization (EPSO) is pre-
sented. Researchers do trials utilizing completely random 
testing-resource sets and the entropy function to modify 
performance. Gupta et al. [9] proposed a nonlinear MO-
optimizer regarding data envelopment analysis (DEA) for 
choosing software systems in the context of optimum re-
dundancy to assure software reliability. Kumar et al. [18] 
presented a novel comparison analysis to determine the 
most appropriate and accurate artificial neural network. 
In this study, we present a backpropagation-based feed-
forward neural network for improving software reliability 
and accuracy. Jaiswal et al. [13] used machine learning 
techniques such as the adaptive neuro-fuzzy system (AN-
FIS),  and other techniques are used to predict software 
reliability on a variety of datasets derived from the oper-
ating system. Sangeeta et al. [27] proposed a novel tech-
nique for optimizing parameter values depending on the 
Ant Colony Optimizer with differential evolutions idea of 
ecological space has boosted the exploration capabilities 
of the ABC algorithm. The suggested algorithm's efficien-

cy is further validated by comparing it to hybrid PSO algo-
rithms. The newly proposed ABCDE algorithm estimates 
the system's reliability to be up to 85 percent. Diwaker et 
al. [4] proposed a novel quantitative model is provided 
that uses series and parallel reliability frameworks to cal-
culate the SR. To compare the best reliability value, the 
performance of the proposed method is assessed to the 
output of soft computing approaches PSO and Fuzzy log-
ic. The development of a big combination of parameters 
increases the complexity of the suggested model as more 
components are included. Jabeen et al. [12] proposed a 
highly precise error iteration analysis technique (HPEIAM) 
based on error-residuals is suggested to improve the pre-
dictive performance of current PSRGMs. SRGMs compute 
residual errors repeatedly, improving and correcting pre-
diction accuracy to the intended level. HPEIAM's perfor-
mance is evaluated using various PSRGMs and two sets of 
actual software failure data, with three quality criteria in 
mind. Table 1 presents the comparative feature of related 
works with the presented work.

Table 1. Recent Contribution

Ref Objectives Contribution Research Gaps

[6]

The aim is to 
cover all finite 
paths of the 
control flow 
graph of the 

software under 
the test.

Presents  a memetic 
algorithm for 
automatically 

generating test data

To solve the 
software cost 

problem because 
Software testing 

is very time-
consuming and 

expensive

[8]

To predict future 
software faults 
by deploying 
the classifier 
algorithms

Build the model and 
predict the occurrence 

of the software bugs 
based on historical 
data by deploying 

the classifiers Logistic 
regression, Naive Bayes, 

and Decision Tree

To solve Software 
bug prediction 

issues as  bugs are a 
serious challenge for 
system consistency 

and efficiency

[11]

To  estimate the 
software release 

time and cost 
of the testing 

effort

A high-precision error 
iterative analysis 

method (HPEIAM) 
Proposes to enhance 

the prediction accuracy 

 Limitations of them 
mean that their 

predictive capacities 
differ from one 

dataset to others

[12]

To predict 
software 
reliability 

and evaluate 
them based 
on selected 

performance 
criteria

Applied ML including 
(ANFIS), feed forward 

back propagation 
neural network, SVM, 

etc

To solve various 
challenges in 

developing highly 
reliable software.

[13]

The aim is to 
provide software 
reliability within 
the allotted time 

& budget.

Presents a genetic 
programming-based 
decision tree model 

which facilitates 
a multi-objective 

optimization in the 
context of the software 

quality classification 
problem

Improved by 
the allocated 

software quality-
improvement 
resources, and 
on the project-
specific costs of 

misclassifications. 

[19]

Aims to remove 
the wrong 

solution during 
the algorithm 

execution 
process, and 

adds knowledge 
to improve 

the solution 
accuracy

Proposes parameter 
estimation method 

of software reliability 
model based on hybrid 

PSO-ABC

The existing 
software reliability 

models are 
nonlinear, and 
the parameter 

estimation of these 
models is difficult. 
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[21]

The aim is to 
provide   an 

extensive 
comparison of 
the explanative 
and predictive 
power of well-

known bug 
prediction 

approaches

Present a benchmark 
for defect prediction Low Accuracy

[23]

Aim to predict 
bugs in software 
using machine 

learning

Used dynamic classifier 
for detection Low Accuracy

3. METHODOlOGY

In this paper, we have designed an evolutionary al-
gorithm-based software reliability prediction. For these 
object-oriented metrics are considered and some hy-
potheses are designed. These hypotheses are consid-
ered objective functions for evolutionary algorithms. 
The below sub-section describes the steps and work-
ing model of the proposed methodology.

3.1. MUlTI-ObJECTIVE EVOlUTIONARY  
 AlGORITHM

We apply evolutionary algorithms, which are a kind 
of artificial intelligence, in our suggested study. These 
algorithms optimize problems through mutation and 
recombination. Multi-objective evolutionary optimiza-
tion improves machine learning performance. The al-
gorithms simulate natural evolution, where solutions 
represent humans and the problem specification rep-
resents the environment. A population of solutions is 
created and evaluated using objective functions. Bet-
ter solutions have a higher chance of being selected for 
recombination. Crossover and mutation are key repro-
duction phases. The population is regulated through 
replacement. The process is repeated until a stop crite-
rion is met. These algorithms follow natural processes 
and focus on populations rather than individual solu-
tions. The first generation is randomly initialized and 
evaluated. Traditional optimization approaches vary 
from evolutionary algorithms in the following ways: 

•	 While some CCMOEO scans a population concur-
rently, some just look for a specific position.

•	 Just the objectives functional part and fitness level 
are required for CCMOEO, without derivation vari-
ables.

•	 It utilizes probability ideas.
•	 Because there were minimal restrictions on the 

definition of objective functional area, CCMOEO is 
often simple to use.

Natural selection for resources in the environment is 
what drives evolution. Those kids who are more likely to 
survive to live longer and pass on their genetic material. 
Asexual reproduction is used to encode genetic infor-
mation, resulting in kids that are genetically identical to 
their parents. Nowadays, evolutionary algorithms may 
be found everywhere, having been effectively applied 

to a variety of issues in fields such as social systems, au-
tomated programming, signal processing, and bioinfor-
matics. These methods are highly beneficial for optimiz-
ing outcomes from many domains [3]. There are several 
evolutionary algorithms strategies, such as ant colonies, 
bee colonies, and so on. We may utilize these types of 
algorithms to optimize the outcome in the area of soft-
ware quality optimization. There are numerous stages to 
the optimization: i)  An initialization of random solutions 
is formed, referred to as individuals. ii) The simulation 
model evaluates each individual's goal functions. 

Fig. 1. Multi-Objective Evolutionary Algorithm

All software functionality, processing time, profiles, 
and costs are fixed input factors in our scenario since 
they do not vary throughout the optimization. iii) Each 
person is graded based on their "fitness," or the values 
of their goal functions. iv) Following the ranking of 
all individuals, the MOEA develops a new population 
of people (the next "generation") using the standard 
genetic algorithm operators of parent selection, cross-
over, and mutation. v) The MOEA generates a Pareto 
front after a certain number of generations (see Fig. 1).

3.2 ObJECT-ORIENTED DESIGN METRICS 
 (OODMS)

One of the commonly used metrics in existing soft-
ware reliability models is object-oriented design metrics 
(OODMs). Apart from this, there are several other Metrics 
also that can help determine software reliability growth. 
In the literature review, we have analyzed that there are 
several machine learning, optimization, and statisti-
cal techniques that are being used to predict software 
reliability. Many researchers also presented the correla-
tion between OODMs and defective and non-defective 
classes of software. But relations among other metrics 
are still not that enlightening. For this, some hypotheses 
are presented in this paper which are discussed in the 
below sub-section. To prove this hypothesis, the paper 
proposed a software metrics correlation-constrained 
multi-objective evolutionary optimization algorithm 
whose steps are discussed below (Fig 2). 
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The methodology is divided into three basic steps: 
(a) pre-processing, (b) Correlation-Constraint Multi-ob-
jective Evolutionary Optimization, and (c) classification. 
These steps are described in detail below sub-sections.

3.2.1. Preprocessing 

In this paper, the dataset contains a mixed set of data 
i.e., numerical and categorical parameters. Due to the 
dynamic nature of software reliability parameters, it is 
required to distinguish between parameters. For this pre-
processing step is required. As machine learning can only 
handle numerical data. Therefore, for the proper estima-
tion of the hyperparameter’s performance, these mixed 
data are converted into an array of numerical data.

Transformation of Hyperparameters: In this step, a 
set of data features is used to estimate the reliability 
level of software. Fig 2 represents the pre-processing 
steps used for reliability prediction.

Data Type detection: In this step, a simple, type of 
data is detected i.e., numeric, categorical, and boolean. 

Some samples of datasets and their type are presented 
in Table 2.

Mapping: In this step, two major works are performed. 
In the first step, the redundant data are removed and in 
the second step, unnamed columns are removed. As it 
is known that data redundancy generally occurs when 
some parameters or Metrics are stored multiple times 
in the database. These redundant data don’t seem a big 
issue but when the size of data increases, then these 
redundant data create unnecessary computational 
complexity for the learning model. Therefore, these 
data must be removed. Another major issue that occurs 
while the learning/analytics process is the presence of 
unnamed or unknown columns (software parameters) 
in the dataset. If these data are not removed then it will 
result in ambiguous analysis. 

Merging: In this step, parameters related to soft-
ware metrics are selected i.e., Object-Oriented Design 
Metrics, Previous Bug Metrics, Methods Metrics, and 
Entropy Metrics. These Metrics are most important for 
analytical purposes.

(a) Pre-processing

(b) Correlation-Constraint Multi-objective Evolutionary Optimization

(c) Classification
Fig. 2. Proposed Methodology

bug Metrices Object-Oriented Metrics Entropy Metrics
Parameters Type Parameters Type Parameters Type

class name Mixed CBO Mixed CvsEntropy Mixed

Bugs Found Integer Fin Decimal CvsWEntropy Decimal

Trivial bugs Integer Fout Decimal LinEntropy Decimal

Major Bugs Integer No. of attributes Decimal LogEntropy Decimal

Critical Bugs Integer No. of LOC Decimal ExpEntropy Decimal

Priority Bugs Integer No of Methods Decimal Defect Boolean

Defect Boolean Defect Boolean - -

Table 2. Data Type Detection
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Encoding In this step, the one-hot encoding method 
is used to convert the merged data so that they can 
result in me better prediction results.  so they can be 
provided to machine learning algorithms to improve 
predictions. This method is adopted because it of bet-
ter prediction results of machine learning with those 
data that show no relationship to each other. After en-
coding data normalization is performed. Normalizing 
an attribute by evaluating the percentage of a value to 
the attribute's summation value is known as frequency 
normalization. It's described as:

(1)

Frequency normalization also scales an attribute into 
[0,1].

3.2.2. Correlation-Constraint Multi-objective 
 Evolutionary Optimization

In this section, an MOEA algorithm is proposed based 
on correlation constraints on the following hypothesis:

•	 Hypothesis 1 (H1): Previous bug metrics (BM) is un-
able to predict defect in the software. 

•	 Hypothesis 2 (H2): Changed method metrics (CMM) 
is unable to predict defect in the software.

•	 Hypothesis 3 (H3): Object-oriented metrics (OOM) 
is unable to predict defect in the software.

•	 Hypothesis 4 (H4): Entropy metrics EM) is unable to 
predict defect in the software.

•	 Hypothesis 5 (H5): Bug matrices (BM), object-ori-
ented metrics (OOM), changed method metrics 
CMM) and entropy metrics (EM) correlate them to 
predict defects in the software.

Scientific application is generally formulated as con-
strained optimization problems and mathematically it 
is represented as:

min{f(X)}=X = {x1, x2,...xn} such that LB<xn<UB
(2)subjects to: g(X)≤0 {inequality constraints}

subjects to: h(X)=0 {equality constraints}
Where, f(X)= objective function, 

{x1, x2,...xn} = decision vectors

LB and UB = lower and upper bound respectively

The equality constraint violation on all constraints is 
mathematically represented as:

(3)

Where, i= inequality constraints

The solution that satisfies G(X) is termed a feasible so-
lution. Therefore, the target of any constraint-oriented 
optimization is to locate optimal G(X). The evolutionary 
algorithm possesses a powerful searching ability that can 
solve above mentioned constraint problem efficiently. 
Therefore, this paper has adopted evolutionary opti-
mization as a solution. The framework of the proposed 
correlation-constrained multi-objective evolutionary 
optimization algorithm (CCMOEO) is given in Fig. 3. Two 
basic steps are performed in this algorithm: learning and 
evolution. In the learning stage, five hypotheses are de-
signed to establish a correlation between constraints 
and objective function. As a result, in the evolving stage, 
the correlation is used to direct the evolution process. To 
avoid a local optimum induced by complex constraints, 
correlation is employed to determine how much informa-
tion of the objective function is utilized. As a result, the 
inhabitants can more easily enter the area. Constraint and 
goal function variation tendencies are more important 
to us in this work. That’s why it’s possible to catch a trend 
early on since the population is spread out throughout a 
large area. Learning is followed by evolution, which uses 
the rest of the computer’s processing power.

Fig. 3. CCMOEO Architecture

In the stage of learning, the notion of correlation in-
dex (CI) is proposed to mine the correlation between 
the variables. The closer the value of CI is to one, the 
greater the degree to which the constraints and the 
goal function are correlated. During the period of de-

velopment, two different approaches are designed. 
The first method is referred to as the weighted sum 
updating strategy, and it states that the fitness value 
of an individual is determined by the weighted sum of 
normalized G(X) and normalized f.(X).
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3.2.3. Classification

In this step, the optimized data is fed into a classifier 
for learning the pattern of failure and success of software 
metrics. For classification, the paper analyzed the perfor-
mance of seven classifiers. These are discussed below:

Linear support vector machine (LSVM): A support vec-
tor machine is a machine learning model that is capable 
to simplify between two dissimilar classes if the fixed of 
categorized data is provided in the training set to the 
algorithm. The key purpose of the SVM is to distribute 
the data samples according to hyperplane and distin-
guish among different classes. Linearly Separable 2D 
Data is a two-dimensional database separated by line if 
we can distinguish positive from negative objects by a 
straight line. It does not matter if there is more than one 
such line. If data cannot be categorized, linearization 
cannot completely separate these two categories. For 
many non-linear databases, the line separator will still 
be “good enough” and segment multiple cases correctly.

Radial support vector machine (RSVM): The RBF ker-
nel is one of the most popular kernels because it is the 
most general form of the kernel and resembles a Gauss-
ian distribution. The RBF kernel function for two points 
Y₁ and Y₂ computes the similarity or how close they are 
to each other. An RBF kernel is a function whose value 
depends on the origin or distance from some point.

Decision tree: In machine learning, a decision tree is a 
predicting approach. It's a flowchart-like layout where 
every other block contains an attribute "test." Classi-
fication rules are represented by the results from one 
block to the next. Nodes may be classified into three 
categories: Squares are used to symbolize decision 
nodes. Ending nodes are depicted by triangles, where-
as chance nodes are depicted by circles. The following 
is how a decision tree works: begin with the root node, 
which holds the whole dataset. By using Attribute Se-
lection Measure, discover the perfect attribute in the 
dataset. Divide the root node into subgroups that in-
clude the best attribute's potential values. Create the 
node of the decision tree that holds the best attribute. 
Make new decision trees recursively using subsets of 
the dataset, Repeat this procedure till the nodes could 
no longer be classified and the last node is designated 
as a leaf node. It's utilized in data mining research. This 
is the most effective instrument for forecasting. The de-
cision tree has a few benefits, like being easy to use and 
requiring minimal data preparation. The following are 
some disadvantages: it may result in too complicated 
trees, which is known as overfitting.

Random forest: It is a commonly used ML method 
that is classified as supervised learning. It may be used 
in ML for both classifiers and as well as for regression 
data. It is based on the notion of supervised methods, 
which is the act of combining numerous classifications 
to tackle a difficult problem and increase the individu-
al's effectiveness. This approach consists of some deci-
sion trees, each of which can be built up of datasets re-

trieved from a training dataset, referred to as the boot-
strap sample. The RF considers each tree's forecast and 
generates an outcome based on the plurality of predic-
tions. The forest's enormous number of trees provides 
greater precision, avoiding the issue of overfitting.

Gradient boosting: Gradient boosting is an ML boosting 
technique. It is based on the assumption that combining 
the best subsequent modeling with the prior model re-
duces the total estimation error. To reduce mistakes, the 
key concept is to define target outcomes for the following 
concepts. To decrease bias error, the GB Algorithm is of-
ten utilized. Both prediction and classification techniques 
may benefit from the gradient-boosting approach. MSE 
is the cost function in a regression problem, and function 
Loss is the cost function in a classifier. GB  Machine inte-
grates results from many decision trees to create a final 
prediction. Take into account that in a gradient-boosting 
machine, each learning rate is a decision tree.

k-nearest neighbor: K-Nearest Neighbors (KNN) is a 
machine learning method that uses case similarities to 
classify data points. It is a non-parameterized approach 
that relies on comparing the characteristics of data 
points to determine their classifications. The process 
involves selecting a value for K, calculating the Euclid-
ean distance between the K nearest neighbors, and 
then assigning a category based on the majority of the 
neighbors. The KNN algorithm identifies the closest data 
points in terms of feature similarity, with K represent-
ing the number of data points used in the analysis. The 
distance measure, typically Euclidean distance, and the 
corresponding values play a crucial role in the KNN clas-
sifier. By considering the K nearest neighbors and their 
associated labels, KNN can classify new data points in 
the feature space.

Logistic regression: The most widely used ML algo-
rithm is logistic regression. It is a statistical technique 
that is also known as the Logit model. Depending on 
the dataset of independent factors, it calculates the 
likelihood of an event occurring. In binary logistic re-
gression, there is just one binary dependent variable, 
coded by an indicator variable, with two parameters 
labeled 0 and 1, and the independent variables may be 
either binary or continuous. Important assumptions to 
keep in mind are that the dependent variable has to be 
categorized and that the independent variable should 
not be multi-collinear. The dependent variable is con-
fined between 0 and 1 since the outcome is a probabil-
ity. A logit transformation is performed to the odds in 
logistic regression, which is the likelihood of success 
divided by the probability of failure.

4. RESUlTS AND DISCUSSIONS

In this section, the paper presents the results ob-
tained after prediction. Section 4.1 describes dataset 
taken in this paper for evaluation. Section 4.2 describes 
the implementation details. Section 4.3 describes the 
data visualization and finally in section 4.4 results are 
analyzed with a comparative state-of-art.
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4.1. DATASET DESCRIPTION

This paper introduces a software fault dataset de-
signed for comparing bug prediction models [21]. The 
dataset includes information necessary for estimating 
bugs based on source code measures, historic mea-
surements, and access to data. The dataset covers sev-
eral software systems, including Eclipse, PDE, Equinox, 
Lucene, and Mylyn. It provides historical information, 
biweekly versions of systems, source code metrics, and 
post-release defect numbers for each class. A sample of 
the dataset is presented in Table 3.

Dataset Samples
Eclipse 5372

Equinox 325

PDE 1492

Lucene 692

Mylyn 1863

4.2. IMPlEMENTATION DETAIlS

This paper has implemented and trained the models in 
the Keras framework with TensorFlow. The proposed mod-
el was trained using GPU on Google colab. Following the 
performance, parameters are used to evaluate the model's 
efficiency in terms of Accuracy, precision, and recall. 

Table. 3. Dataset Representation

(4)

(5)

(6)

Where, TP = True Positive, FP= False Positive, FN= 
False Negative and TN = True Negative

4.3. ExPlORATORY DATA VISUAlIzATION

Fig. 4 shows the feature correlation map using the 
eclipse dataset considering all the pre-determined con-
ditions and variables and this map shows the correlation 
coefficient for different variables for all the possible pair of 
variables and helps in visualizing the given eclipse dataset.

Fig. 4. Feature Correlation Map

4.4. RESUlT ANAlYSIS

Table 4 shows the accuracy, precision, and recall com-
parison of for eclipse dataset for different classifiers. The 
Accuracy of the Random Forest Classifier is maximum and 
it is minimum for the K-neighbors classifier. Precision is 
maximum for the Linear SVM classifier and minimum for 
the logistic regression classifier. The recall is maximum for 
the Decision Tree classifier and minimum for the Radial 
SVM classifier. Table 5 shows the accuracy, precision, and 
recall comparison of for equinox dataset for different clas-
sifiers. The Accuracy of Linear SVM, Random Forest, and 
Gradient Boosting is maximum and it is minimum for the 
K-Neighbors classifier. Precision is maximum for Linear 
SVM and Gradient Boosting classifier and minimum for 
logistic regression classifier. The recall is maximum for the 
Decision Tree classifier and minimum for the Decision Tree 
classifier. Table 6 shows the accuracy, precision, and recall 
comparison of for equinox dataset for different classifiers. 
The Accuracy of Linear SVM, Random Forest, and Gradient 
Boosting is maximum and it is minimum for the Logistic 
Regression classifier. Precision is maximum for different 
classifiers and minimum for Decision Tree classifiers. The 
recall is maximum for the Decision Tree classifier and mini-
mum for Random Forest and K-Neighbors classifier. Table 
7 shows the accuracy, precision, and recall comparison of 
for Mylyn dataset for different classifiers. The Linear SVM, 
Random Forest is maximum and it is minimum for Radial 
SVM classifier. Precision is maximum for the Linear SVM 
classifier and minimum for the K-Neighbors classifier. The 
recall is maximum for the Decision Tree classifier and min-
imum for the Gradient Boosting classifier. Table 8 shows 
the accuracy, precision, and recall comparison of for PDE 
dataset for different classifiers. The Accuracy of the Linear 
SVM Classifier is maximum and it is minimum for the Radi-
al SVM classifier. Precision is maximum for the Linear SVM 
classifier and minimum for the Decision Tree classifier. The 
recall is maximum for 4 classifiers and minimum for the 
Logistic Regression classifier. Fig 5 represents the com-
parative state-of-art. In Fig 5, the paper compares with 
works presented by [16] and [23]. [16] proposed a Hyper-
parameter optimization algorithm and achieved an aver-
age of 87% accuracy whereas [23] proposed a dynamic 
parameter selection algorithm and achieved an accuracy 
of approx. 76%. From the result, we can observe that the 
proposed multi-constraint multi-optimization algorithm 
achieves better accuracy of approx. 99%.

Classifier Accuracy Precision Recall

Decision Tree 99.39 % 66.66 % 97.47 %

Random Forest 99.47 % 95.85 % 96.46 %

Logistic Regression 86.07 % 46.4 % 96.46 %

Linear SVM 98.43 % 100 % 93.43 %

Gradient Boosting 99.18 % 56.93 % 26.26 %

K-Neighbors 84.66 % 97.94 % 22.72 %

Radial SVM 86.37 % 97.96 % 15.15 %

Table 4. Parameter Comparison for Eclipse Dataset
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Table 5. Parameter Comparison for Equinox Dataset

Classifier Accuracy Precision Recall

Linear SVM 97.53 % 100 % 100 %

K-Neighbors 80.24 % 100 % 93.54 %

Random Forest 97.53 % 86.95 % 93.54 %

Logistic Regression 80.23 % 74.14 % 93.54 %

Decision Tree 97.53 % 82.60 % 74.19 %

Gradient Boosting 97.53 % 100 % 64.51 %

Radial SVM 82.17 % 100 % 61.29 %

Table 6. Parameter Comparison Lucene Dataset

Classifier Accuracy Precision Recall

Linear SVM 100 % 100 % 100 %

Logistic Regression 91.3 % 100 % 100 %

Radial SVM 90.17% 100 % 100 %

Decision Tree 100 % 83.3 % 100 %

Gradient Boosting 100 % 100 % 26.13 %

Random Forest 100 % 100 % 10.5 %

K-Neighbors 90.17% 100 % 10.5 %

Table 7. Parameter Comparison for Mylyn Dataset

Classifier Accuracy Precision Recall

Linear SVM 99.78 % 100 % 98.8 %

Radial SVM 81.9 % 97.67  % 98.8 %

Decision Tree 99.57 % 87.87 % 98.8 %

K-Neighbors 83.4 % 63.33 % 98.8 %

Logistic Regression 87.12 % 98.8 % 34.11 %

Random Forest 99.78 % 66.66 % 22.3 %

Gradient Boosting 99.35 % 100 % 2.3 %

Table 8. Parameter Comparison for PDE Dataset

Classifier Accuracy Precision Recall

Linear SVM 100 % 100 % 100 %

Random Forest 99.46 % 96.7 % 100 %

Gradient Boosting 100 % 55.17 % 100 %

Decision Tree 100 % 12.5 % 100 %

K-Neighbors 82.13 % 100 % 27.11 %

Radial SVM 82.66 % 31.8 % 11.86 %

Logistic Regression 85.066 % 100 % 1.6 %

Fig 5. Comparative Accuracy Evaluation

5. DISCUSSION

Based on the information provided, the final result 
suggests that the proposed multi-constraint multi-
optimization algorithm achieves a significantly higher 
accuracy of approximately 99% compared to other 
classifiers and state-of-the-art approaches. This is be-
cause the CCMOEO algorithm combines the power of 
evolutionary optimization with the incorporation of 
correlations between metrics and defect prediction. 
By leveraging these correlations, the algorithm aims to 
improve the accuracy of defect prediction in software 
and find better solutions to the constrained optimiza-
tion problem. This indicates that the algorithm is highly 
effective in accurately classifying the datasets used in 
the study (Eclipse, Equinox, Mylyn, and PDE). The algo-
rithm's superior performance in terms of accuracy, pre-
cision, and recall makes it a promising solution for the 
classification tasks considered in the study. 

6. CONClUSION

Software systems have a significant impact on soci-
ety, and ensuring their trustworthiness is crucial. Bug-
free software is a key factor in achieving trust, and re-
liability models are used to assess software reliability 
and predict faults. Researchers are exploring computa-
tional intelligence methods, including machine learn-
ing and optimization, to improve prediction models. In 
this paper, a software reliability prediction model is de-
veloped using a software metrics correlation multi-ob-
jective evolutionary algorithm-based model proposed 
for the identification of defect metrics for establishing 
the reliability of software. The result analysis was ob-
served on seven classifiers and achieved an average ac-
curacy of 99% which is approx. 13% improvement over 
comparative state-of-art. Future research can focus on 
training the algorithm on larger datasets, identifying 
failure points in AI software, and identifying weak reli-
able points that may lead to attacks.
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