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Abstract –The most important issues for improving the performance of modern wireless communication systems are interference 
cancellation, efficient use of energy, improved spectral efficiency and increased system security. Beamforming Array Antenna (BAA) 
is one of the efficient methods used for this purpose. Full band BAA, on the other hand, will suffer from a large number of controllable 
elements, a long convergence time and the complexity of the beamforming network. Since no attempt had previously been made 
to use Partial Update (PU) for BAA, the main novelty and contribution of this paper was to use PU instead of full band adaptive 
algorithms. PU algorithms will connect to a subset of the array elements rather than all of them. As a result, a common number of 
working antennas for the system's entire cells can be reduced to achieve overall energy efficiency and high cost-effectiveness. In this 
paper, we propose a new architectural model that employs PU adaptive algorithms to control and minimize the number of phase 
shifters, thereby reducing the number of base station antennas. We will concentrate on PU LMS (Least Mean Square) algorithms such 
as sequential-LMS, M-max LMS, periodic-LMS, and stochastic-LMS. According to simulation results using a Uniform Linear Array 
(ULA) and three communications channels, the M-max-LMS, periodic LMS, and stochastic LMS algorithms perform similarly to the 
full band LMS algorithm in terms of square error, tracking weight coefficients, and estimation input signal, with a quick convergence 
time, low level of error signal at steady state and keeping null steering's interference-suppression capability intact.

Keywords: Beamforming Array Antenna, Partial Update Adaptive Algorithm, Full band LMS, M-max PU LMS, sequential PU LMS, 
periodic PU LMS and stochastic PU LMS algorithms.

1.  INTRODUCTION

In next-generation cellular communication networks, 
numerous antennas are used to improve spectral and 
energy efficiency, as well as performance against in-
terference caused by constrained spectrum. This is 
possible through the use of various antenna designs, 
one of which is Beamforming Array Antenna (BAA). The 
development of 5G and upcoming wireless communi-
cation systems is anticipated to depend mainly on BAA 
technology [1].

Signals are correctly controlled in adaptive array 
beamforming at wireless communication link base 
stations (BSs) and mobile stations with the aim of en-
hancing the wireless mobile link and boosting system 
performance. The antenna boosts the capacity of wire-
less communication networks by effectively decreas-
ing multipath fading and channel interference. This is 
accomplished by employing beamforming techniques 
to focus signal radiation in the desired direction and 
adapt it to the signal environment. [1, 2]. The most 
well-known and powerful beamforming scheme is the 
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well-known Phased Array Antenna (PAA), which is an 
array of antenna elements driven by signals with well-
defined phase relationships between those elements 
[1]. ULA with N-antenna elements required N phase 
shifters or other active control units. There are only a 
few papers in the literature that propose algorithms or 
techniques for reducing the number of ULA elements 
and thus the number of phase shifters [2-10].

To achieve high cost-effectiveness and total energy 
efficiency, the system can reduce the number of op-
erational antennas for all of the cells. [2-10] The over-
all energy efficiency of the cell is mostly influenced by 
how many functioning antenna elements there are in 
the cell for each BS's stipulated power consumption. As 
novel ideas, the authors of [2] proposed the cascaded 
angle offset phased array antenna (CAO-PAA) and the 
dimensionality reduced CAO-PAA (DRCAO-PAA). They 
represent phase shift steering in all directions using 
a coefficient matrix. The dimensionality of the coeffi-
cient matrix is then lowered by reducing the number 
of phase shifters [2].

Other strategies for reducing the active number of 
antennas have been proposed [3-9], including reduced 
active controller-based vector synthesis. Another 
method is sub-array compression, which employs a dif-
ferent phase shifter for each sub-array. The author of 
[10] proposed that an adaptive algorithm (such as LMS, 
RLS, CG, or CMA) be connected to only a small number 
of the array elements located in the center of the ar-
ray rather than all elements, leaving the other elements 
that have less of an impact on the pattern of the array 
unaffected by the adaptation process.

The Partial Update (PU) algorithms have gained 
significant attention in recent years, both in terms of 
research and practical applications [11-24], but they 
have yet to be applied to array beamforming systems. 
According to our knowledge, no previous studies have 
used adaptive partial update (PU) methods for beam-
forming array antennas. This study proposes using PU 
techniques for beamforming array antennas by pro-
posing a new architecture system model, which was 
thought to be the paper's main innovation, in order to 
reduce the number of antennas used. Rather than con-
necting to the entire set of antenna elements, partial 
update adaptive methods will connect to a subset of 
them.

Then, we will be applying PU LMS algorithms such 
as sequential-LMS, M-max-LMS, periodic-LMS, and sto-
chastic-LMS algorithms.

As a result, in terms of convergence time and ability to 
suppress interference signals via null steering, the per-
formance of these methods will be comparable to that 
of full band adaptive arrays. The performance of the pro-
posed model will then be compared to three different 
multipath fading propagation LTE channel models.

The reminder for this paper will be as follows: Section 
2 covers beamforming theory and Partial Update LMS 

adaptive algorithms. Section 3 describes the proposed 
model's architecture. Section 4 presents simulation re-
sults, Section 5 compare results with previous work and 
Section 6 concludes the study.

2.  BACKgROUND

2.2. BEAMfORMINg ARRAy SIgNAl MODEl

The use of beamforming antennas by mobile carriers 
is crucial for the development of next-generation net-
works. Beamforming antennas dynamically shape their 
main and null beam directions based on the location 
of their connected users, in contrast to older antennas 
that could only transmit and receive on set radiation 
patterns.

Because of this, these futuristic antennas are often 
referred to as "beamformers" In addition to greatly 
enhancing the signal-to-interference-and-noise ratio 
(SINR) and the end user experience, beamforming an-
tennas stand out for their ability to successfully mini-
mize interference.

By lowering the amount of signal interference from 
other users, maximizing the signal strength received 
by each user, and transmitting beamforming aims to 
boost capacity. By entirely constructing the processed 
signals in the direction of the desired terminals and 
canceling the beams of competing signals, the goal of 
the beamforming process is to construct an antenna's 
radiated beam patterns.

ULA is the most commonly studied method in array 
signal processing due to its simplicity. Consider an N-
element uniform linear antenna array (ULA), as depict-
ed in figure 1. Let the spacing between each antenna 
element be d = 0.5 λ, where λ is the wavelength of in-
coming signals.

This diagram shows how the weight vector w=[w1  
w2  ….wN]H

 can be changed to reduce errors as much as 
possible when iterating the array weights [25]. The sig-
nal s(n) and interferers i1 (n), i2 (n),…iN (n) are received 
by a collection of N elements, each having N potential 
weights. Additionally, there is additive Gaussian noise 
in every element. Each of the nth time samples are a rep-
resentation of time.

2.2. fUll BAND lEAST MEAN SqUARES (lMS)

The LMS beamforming method is simple and wide-
ly used in wireless communication applications. As a 
result, this method is frequently used as an adaptive 
beamforming technique in a variety of applications. 
The weighted array output in Fig. (1) is written as fol-
lows: [25].

y(n)= wH (n) x(n) (1)

x(n) = a0 s(n) + [a1 a2….aN ] . [i1 (n) i1 (n) ⋮  
iN (n)]+z(n) (2)

= xs (n)+xi (n)+z(n) =input signal
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fig. 1. Adaptive Array Beam forming System

With:

w=[w1  w2  ….wN]T= array weights

xs (n) = desired signal vector

xi (n) = interfere signals vector

z(n) = Gaussian noise with a zero mean for each 
channel

s(n) is desired signal 

θ0 is desired signal direction

θ1 ..... θN  is  interfere signals direction

a = steering vector forθi  direction of arrival using an 
N-element array.

The difference between the desired signal d(n) (eq. (1)) 
and the output signal y(n) is the error signal e(n) [25]:

e(n)=d(n)-wH (n) x(n) (3)

The weight vector of LMS is calculated using the gra-
dient of the cost function [1]:

w(n+1)=w(n)+μ e(n) x(n) (4.1.)

If update vector f(n) = μ e(n) x(n) , then:

w(n+1)=w(n)+f(n) (4.2.)

The parameter μ is a step-size directly influences the 
LMS algorithm's convergence in equation (4.1).

2.3. PU lMS AlgORIThMS

Processing work can be reduced during the adaptive 
filter update phase using a technique called partial 
updates (PU). In recent years, these algorithms have 
drawn a lot of interest from both users and researchers 
[23].

The partial-update approach updates only the M ×1 
coefficients, where M < N, as opposed to updating all of 
the N-1 coefficients. This paper considers fundamental 
partial update techniques such as (periodic, sequential, 
stochastic, and M-max) PU approaches. A general 
update equation can be used to characterize each PU 
algorithm studied in this study [14] [26]:

w(n+1)=w(n)+μ IM (n) e(n) x(n) (5)

The matrix, IM (n), which is known as a weight selection 
matrix, represents the only distinction between PU 
techniques (5) and the full update LMS algorithm (4.1). 
It can be calculated as [14, 26]:

IM (n)= [i0 (n)  ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ iL-1 (n)  ], 
ik (n)ϵ {0,1},     ∑k=0   ik (n)=M(L-1) (6)

Hence, a diagonal matrix with entries of (0 or 1) makes 
up the weight selection matrix, where M denotes the 
sum of the number of 1s in the matrix indicating which 
M coefficients are to be updated at iteration n and the 
diagonal of the matrix, which has N-M zeros.

The number M, which represents how many 
adaptive filter weights are chosen for the update at 
each sampling interval, is likewise subscripted to 
the selection matrix. The selection matrix's diagonal 
elements are set to 0 or 1 in each consecutive sample 
interval using the procedure below: [14, 26]:

ik (n)= {1  if k ∈ IM (n) 0  otherwise (7)

Where IM (n) stands for a collection of filter weight 
indices with a count of M, indicating the coefficients 
to be modified in the nth iteration. This set's definition 
changes based on which PU LMS algorithm is used.

The main advantage of the partial updates in (5) is 
that they minimize complexity to meet hardware com-
plexity restrictions. The slower convergence speed of 
partial updates could be a drawback. Partial updates 
might be viewed in this situation as a trade-off between 
computational complexity and convergence speed.

2.4. PU SEqUENTIAl lMS AlgORIThM

By updating a piece of the adaptive filter coefficients 
at each iteration, sequential PU reduces the computa-
tion required for the adaptation process.

For each iteration of the sequential PU approach, a 
portion of the coefficient vector is modified to fit the 
complexity restrictions [14]. The adaptive filter coeffi-
cient vector is, in this sense, "decimated" by the use of 
consecutive PU.

Deterministically, the coefficient subsets to be up-
dated are chosen in a round-robin fashion. As a result, 
regardless of the input signal, the updates follow a pe-
riodic pattern. The coefficient selection matrix IM (n) is 
computed as follows: (6).

For given N and M, IM (n) is not explicitly specified. 
Consider the distinct M-subsets of the coefficient index 
set (that is, subsets with M members) S = {1, 2, . . . , N}, 
denoted by ( I1, I2, . . . , IC )where C = (N/M). The symbol 
S is the period of coefficient updates. 

Suppose that (B = N/M) is an integer. The sequential 
partial update method can then be implemented by 
using any B M-subsets of S. The complexity of the ad-
aptation process can be reduced by updating M coeffi-
cients in an adaptive filter of length N at every iteration.  
As a result, the algorithm has a number of flaws, such as 
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a slow rate of convergence, instability for cyclostation-
ary input signals, and more [11-12].

2.5. PU M-MAx-lMS AlgORIThM

The M-max LMS selects M elements from the input 
vector x(n) that cause the greatest changes in the mag-
nitude of the filter weights. When partial updates are ap-
plied to the generic adaptive filter in (5), the result is [14]:

w(n+1)=w(n)+ IM (n) f(n) (8)

Where: f(n) is update vector

f(n)= [f1 (n),f2 (n)m…,fN (n)]T (9)

The entries in the selection matrix's diagonal of the 
coefficient selection matrix IM(n), specified in (6), are [14]:

ik(n)= {1    if |f_k (n)|  ∈ 
(|fl (n)|, M )  0   otherwise (10)

where max (fl, M) represents a set of M maxima of ele-
ments fl [26]. M-max updates are similar to sequential 
partial updates in that they both 'decimate' the update 
vector.

2.6. PU PERIODIC lMS AlgORIThM

The updating weights vector is as follows when peri-
odic partial updates are applied to the adaptive filter 
coefficients in (4.2.):

0≤l≤N

w((n+1)S)=w(nS)+ f(nS) n = 0, 1, 2, (11)

w((nS+i))=w(nS)   i = 0, 1, . . ., S−1 (12)

The periodic PU method decimates the coefficient 
update w(n) by a factor of  S. The coefficients of adap-
tive filter update every Sth iteration at k = 0, S, 2 S, 3 
S, . . ., while the coefficients of adaptive filter are held 
constant between updates, i.e., 

w(n S) = w(n S + 1) = · · · = w(n S + S − 1) . 
The adaptation process can calculate the update vec-

tor in S iterations due to the decimation of updates by 
S. As a result, the typical processing demands of each 
iteration are reduced by S [14].

2.7. PU STOChASTIC lMS AlgORIThM

To implement the stochastic method, a randomized 
variation of the sequential approach can be used, in 
which the coefficient of adaptive filter subsets is cho-
sen at random rather than in a deterministic manner 
[14]. The stochastic PU method employs the following 
coefficient selection matrix:

IM (n)= [i0 (n)⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ iN (n)  ], 
ik (n)= {1    if k ϵ  Im(n)   0   otherwise (13)

where m(n) is an independent random process.

By using stochastic PU methods, complexity can be re-
duced to a level equivalent to that gained by sequential 
PU [26], if the overheads for producing the random sig-
nal m(k) are disregarded. Moreover, the stochastic par-
tial update algorithm surpasses the sequential partial 
update technique in terms of network performance [19].

3. ARChITECTURE Of ThE PROPOSED MODEl

In next-generation networks with numerous anten-
nas in the precoders and/or detectors, adaptive array 
beamforming is essential [27]. Next-generation net-
works have lower power consumption and amplifier 
costs due to lower power requirements of beamform-
ing array antennas for sending signals to the intended 
user and cost reductions.

To achieve high cost-effectiveness and total energy 
efficiency, a common number of functional antennas 
for the system's cells might be decreased. The number 
of working antenna elements in the cell has a relatively 
significant impact on overall energy efficiency for the 
specified power consumption of each BS.

The most popular and effective method for providing 
adaptive array beamforming is the well-known phased 
array antenna (PAA), which is an array of antenna ele-
ments controlled by signals with well-defined phase 
relations between those elements [28].

A N-phased array antenna typically requires N phase 
shifters or other active control components. Many 
plans exist to reduce the use of phase shifters, but more 
active control units should be added as a substitute.

Although many ULA researchers have studied these 
issues, update partial (PU) adaptive filtering has never 
been used before. Fig. 2 depicts the architecture-pro-
posing model, which employs update partial adaptive 
filtering to select or deselect the RF chain for each ULA 
element to increase or decrease the number of anten-
nas (M), such that M < N. 

This selection process implies that at each coefficient 
update, M coefficients are updated while the remain-
ing (N-M) coefficients remain unchanged. In theory, 
the chosen M coefficients should change with each it-
eration to allow all adaptive filter coefficients to be up-
dated over time. This reduction also has important im-
plications, such as minimizing each antenna element's 
radio frequency (RF) chain and reducing the total size 
and weight of the antenna array system. Another criti-
cal component is to streamline signal processing and 
reduce the amount of storage required as fewer signals 
are received. As a result, the overall cost of the system 
is reduced.
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The process of reducing the number of antenna ele-
ments in antenna arrays while maintaining their radia-
tion pattern features close to the full band, on the other 
hand, has a significant impact on wireless communica-
tion systems. When the number of elements is reduced, 
the radiation pattern exhibits minimal distortion and is 
symmetric in all orthogonal planes of the array.

4. SIMUlATION RESUlTS

The array beamforming base station, as depicted in 
Fig. (2), comprises a linear antenna array made up of 
eight (N=8). It is assumed that the x-axis contains all of 
the array's elements, and that each element is d=0.5 λ 
units apart. Three users broadcast at a specific eleva-
tion angle, with the intended user's angle being 00 and 
the other two users' angles being 300 and -200, respec-
tively. There have been 400 iterations in total. Table 1 
show the simulation parameters:

Table 1. The simulation parameters

Parameter Value

Carrier Frequency (FC) 900 MHz

Signal Frequency 200 KHz

Spacing between element (d) 0.5 𝜆

Type of antenna Uniform N element linear array 
antenna

Number of elements N = 8 (full band) &  
(M = 1, 3 , and 5 for partial band)

Channel EPA, EVA, and ETU

Given that all algorithms tested had the same step 
size μ value, which was calculated automatically within 
the MATLAB program according to (14). It was demon-
strated that using this selection criterion would pro-
duce results that were as close as possible to the full 
band LMS algorithm's performance. The formula in (14) 
is dependent on the maximum eigenvalue λmax of the 
input correlation matrix estimation Rxx: [24] ̂

Were  , can be instantaneous estimates as:

(14)

(15)

(16)

The crucial design parameter is the number of filters 
taps that must be changed with each sampling inter-
val. In the PU-LMS algorithms, M coefficients out of the 
adaptive filter's N coefficients are updated at each iter-
ation. To select the suitable value of M parameter, sev-
eral values of M will used which are 1,3 and 5 respec-
tively. Then a comparison result obtained to choose the 
best value of M that perform the best performance of 
the algorithms. Then best value for M will used for the 
rest of the work. The chosen M coefficient values starts 
at 5 then 3 , then 1 which represents the worst case [23] 
using EPA channel.

4.1.  SIMUlATION RESUlTS USINg EPA 
 (ExTENDED PEDESTRIAN MODEl) 
 lTE ChANNEl MODEl 

The Extended Pedestrian is the first model. A wireless 
channel model (EPA) with seven pathways and a gain of 
[0 -1 -2 -3 -8 -17.2 -20.8] dB with a delay of [0 30 70 90 
110 190 410] *1e-9 for each path [29-30]. This channel 
simulates small cell size and low delay spread situations 
found inside buildings.  Fig. (3 & 4 & 5) show the error 
square performance for all algorithms (EPA channel) at 
M=1 & M=3 & M=5, respectively.

fig. 3. Error Square performance for all algorithms 
(EPA channel) at M=1.

fig. 4. Error Square performance for all 
algorithms (EPA channel) at M=3.

fig. 5. Error Square performance for all algorithms 
(EPA channel) at M=5
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Table 2 show square error convergence time compar-
ison results for applying a different type of algorithms 
and EPA channel.

Table 2. Square error convergence time 
comparison EPA channel

Type of algorithm
Convergence time at iteration number 

M=1 M=3 M=5
Full band-LMS(N=8) 60 60 60

M max-LMS 110 70 60

Periodic-LMS 60 100 110

Sequential-LMS 400 200 70

Stochastic-LMS 150 100 70

Fig. (6 ,7, and 8) show the performance for different 
values of M in terms of output estimation signal when 
the input desired signal is a pure sinewave.

fig. 6. Array output and desired signals of 
algorithms for EPA channel model, at M = 1

fig. 7. Array output and desired signals of 
algorithms for EPA channel model, at M = 3

fig. 8. Array output and desired signals of 
algorithms for EPA channel model, at M = 5

Table 3 show convergence time of estimation array 
output performance comparison of algorithms.

Type of algorithm
Convergence time at iteration number 

M=1 M=3 M=5

Full band-LMS(N=8) 60 60 60

M max-LMS 100 70 60

Periodic-LMS 60 100 115

Sequential-LMS Very slow 110 80

Stochastic-LMS 150 100 80

Table 3. Convergence time comparison of 
estimation array output over EPA channel

Convergence times and estimate accuracy of M-max 
algorithm are best at M=3,5, but decrease at M=1. In con-
trast, periodic algorithm provides reliable estimates at 
M=1, but starts to degrade around M = 3,5. In addition, 
the Stochastic method provides reliable forecasts when 
M=5, but it degrades when M=1, 2, or 3. The algorithm 
Sequential PU LMS decreases when M is equal to 1 and 3.

fig. 9. shows the array pattern for algorithms when 
M equals 5.

fig. 9. The array pattern for algorithms with EPA 
channel model, M equals 5 elements

It is evident that in terms of steering the primary 
beam in the desired direction (0º) and nulling the beam 
in the direction of interference (-20º, 30º), for (M=5) the 
array structure of PU LMS algorithms is semi-similar to 
that of the full band LMS, except for the sequential PU 
algorithm.

We found that when the number of antennas was 
set to 5, the results were good and were more similar 
to the full band results than the other two options i.e., 
M=1 and 3.

4.3. SIMUlATION RESUlTS USINg EVA 
 (ExTENDED VEhICUlAR MODEl) 
 lTE ChANNEl MODEl 

Extended Vehicular (EVA) was the paradigm for the 
second LTE channel. A wireless channel model (EVA) 
with nine pathways and matching gain values of [0 -1.5 
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-1.4 -3.6 -0.6 -9.1 -7 -12 -16.9] dB and [0 30 150 310 370 
710 1090 1730 2510] *1e-9 for each path. This channel 
features a medium delay spread model and reflects 
metropolitan areas with big cells [29-30].

The error square performance of each algorithm 
is shown in Fig. 10 for EVA channel. This figure 
demonstrates that in terms of convergence rate and 
minimum error level in the steady state region, the 
performance of the M-max, Periodic, and Stochastic PU 
LMS algorithms is comparable to that of the respective 
full band LMS algorithms. In contrast, the performance 
of the sequential PU LMS algorithm has  little more than 
them because of slow convergence rates and high steady 
state error levels. This decrease occurred as a result of 
the demand for more iterations (> 400 iterations) and for 
step size parameter selection by trial and error.

fig. 10. Error Square performance for all algorithms 
(EVA channel)

Table 4 show the summary results for applying a dif-
ferent type of algorithms over EVA channel.

Table 4. Square error convergence time 
comparision (EVA channel)

Number of elements 
of antenna Type of algorithm Convergence time at 

iteration number
8 Full band-LMS 40
5 M max-LMS 40
5 Periodic-LMS 70
5 Sequential-LMS 150
5 Stochastic-LMS 50

Fig. 10. depicts the estimation output signal. It is 
evident that the M-max, Sequential and Stochastic PU 
LMS algorithms have accurate estimates, but they de-
cline for the Periodic PU LMS algorithm.

fig. 11. Array output and desired signals of 
algorithms for EVA channel model

Table 5 show convergence time comparison when 
using EVA channel:

Number of elements 
of antenna Type of algorithm Convergence time 

(Iteration number)
8 Full band-LMS 40

5 M max-LMS 45

5 Periodic-LMS 80

5 Sequential-LMS 50

5 Stochastic-LMS 45

4.3. SIMUlATION RESUlTS USINg ETU 
 (ExTENDED TyPICAl URBAN MODEl) 
 lTE ChANNEl MODEl 

The third channel was the Extended Typical Urban 
Model (ETU) wireless channel model, which is used 
to simulate urban settings with large cells and has 
significant delay spread situations [14]. There are nine 
pathways in this channel model, each having a gain of 
[-1 -1 -1 0 0 0 -3 -5 -7] dB and a matching delay of [0 50 
120 200 230 500 1600 2300 5000] *1e-9 [29-30].

The error square performance of each algorithm 
is shown in Fig. 12. This figure demonstrates that in 
terms of convergence rate and minimum error level 
in the steady state region, the performance of the 
M-max, Periodic, and Stochastic PU LMS algorithms 
is comparable to that of the respective full band 
LMS algorithms. In contrast, the performance of the 
Sequential PU LMS algorithm has little more than them 
because to slow convergence rates and high steady 
state error levels. This decrease occurred as a result of 
the demand for more iterations (> 400 iterations) and 
for step size parameter selection by trial and error.

fig. 12. Error Square performance for all algorithms 
(ETU channel)

Table 6 show the summary results for applying a dif-
ferent type of algorithms and ETU channel.

Table 6. Convergence time comparison of square 
error curves (ETU channel)

Number of elements 
of antenna Type of algorithm Convergence time 

(Iteration number)
8 Full band-LMS 45

5 M max-LMS 46

5 Periodic-LMS 80

5 Sequential-LMS 55

5 Stochastic-LMS 47
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Fig. 13 depicts the accurate estimates output signal us-
ing M-max, Sequential and Stochastic PU LMS algorithms, 
but they decline for the Periodic PU LMS algorithm.

fig.13. Array output and desired signals of 
algorithms for ETU channel model

Table 7 show convergence time comparison when 
using ETU channel.

Table 7. Convergence time comparison of 
estimation array output (ETU channel)

Number of elements 
of antenna Type of algorithm Steady state at 

iteration number

8 Full band-LMS 48

5 M max-LMS 48

5 Periodic-LMS 80

5 Sequential-LMS 50

5 Stochastic-LMS 50

The results of the simulation may indicate which PU 
LMS algorithm performs best in terms of error square and 
convergence time, and whether any of the PU LMS algo-
rithms perform similarly to the full band LMS algorithm. 

Periodic-partial-updates LMS are has slower conver-
gence time than the LMS algorithm. Sequential partial 
updates aim to reduce computational complexity by 
updating a subset of the adaptive filter coefficients at 
each iteration. It is may not provide a satisfactory solu-
tion to the instability problem.

Table 8. the main comparison points between our 
proposed methods and [10].

Items [10] Our proposed 
model

N and M parameters N =12, M =4 N= 8, M= 5 ,3, and 1

Communications 
channel

Did not mentioned, 
Unknown

EPA, EVA, and ETU 
channels

Number of Iterations K K=100 K=400

Step size µ Fixed (µ= 0.006)
Automatic selectable 

µ eq (14)

Input desired signal (S)
Did not mentioned, 

Unknown
Sinewave input 
desirable signal

Method for Selectable 
number of antennas (M)

Did not mentioned 
how they choose 

M=4 out from N=12

PU algorithms 
(M- max, Periodic, 

Sequential, and 
Stochastic)

Carrier frequency (FC)
Did not mentioned, 

Unknown FC = 900 MHz

Figs. (14 and 15) shows comparison results between 
this paper and [10].

a) b) 

fig.14. MSE comparison; a) MSE [10] , b) Proposed

Stochastic partial updates are used to avoid instabil-
ity issues with sequential partial updates for non-sta-
tionary inputs. Stochastic partial updates are desirable 
due to their stability implications.

M-max updates where the maximum absolute value 
of the filter coefficients is limited to a predefined value. 
This modification can improve the stability of the algo-
rithm. It is the best PU LMS algorithm and comparable 
to the full band LMS algorithm.

5. RESUlTS COMPARISON  
wITh PREVIOUS wORK 

Our proposed paper will compare with very related 
and previously published paper in 2019 [10] that used 
adaptive algorithms also like LMS. Before make a com-
parison result, Table 8 shows the main comparison 
points between our proposed model and [10].
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a)

b) 

fig 15. Weights tracking comparison; a) [10] , b) Proposed

The research methodology employed in this study 
for reducing the number of antennas and consequent 
reduction in phase shifters is deemed more effective 
compared to research method [10]. This superiority can 
be attributed to the incorporation of intelligent deci-
sion-making in our approach, wherein the selection of 
antennas to be reduced is guided by the principles and 
equations of partial modernization. In contrast, meth-
od of [9] solely focuses on selecting antennas located 
in the center of the matrix, without providing a ratio-
nale for this choice or considering antennas situated 
elsewhere within the system. 

The absence of a theoretical foundation and expla-
nation for the exclusive selection of central antennas 
in method of [10] stands in contrast to our methodol-
ogy, which adheres to the rules and equations of mod-
ernization to inform the antenna selection process. If 
our method demonstrates superior effectiveness and 
efficiency, and the selection of fixed antennas is not ar-
bitrary but rather adheres to the prescribed laws and 

regulations of each respective method, then it can be 
concluded that this method is superior.

6. CONClUSION

This paper's key contribution was the first attempt to 
apply PU adaptable methods for selecting or choosing 
the number of antennas (M) by selecting or deselecting 
the RF chain for each element in the ULA such that M < N, 
which in turn reduced the number of active components.

The total size and weight of the antenna array system 
are reduced, and each antenna element's radio frequen-
cy (RF) chain is minimized as a result of this decrease in 
size and weight. Another crucial element is to streamline 
signal processing and decrease the amount of storage 
needed as a result of fewer signals being received. As a 
result, the cost of the entire system has decreased.

 The performance of PU algorithms, with the excep-
tion of Sequential PU LMS, is comparable to that of the 
full band LMS algorithm in terms of convergence time 
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and low level of minimal error in steady state. While 
the M-Max algorithm is significantly quicker than other 
PU methods, the Stochastic algorithm is considerably 
more reliable because it is not affected by cyclo-sta-
tionary input. When utilizing Periodic PU in the BAA 
system with LMS algorithm, it is sufficient to utilize a 
maximum of half of the coefficients. This is due to the 
fact that increasing the number of coefficients beyond 
this threshold does not result in a significant difference.

The nulling effect affects beam-forming array an-
tenna radiation patterns. The null control was designed 
to emit low power in areas where unapproved listeners 
may be present. Adjusting excitation amplitude, phase, 
array distance spacing, and element number can 
achieve null control. Radiation patterns show a higher 
primary beam orientation and a lower secondary inter-
ference direction. 

From simulation results, the convergence time by us-
ing the partial update (with exception of sequental one) 
is combarable or semicombarable to full band LMS. 
While convergence time of perodic PU algorithm be-
came slow with increasing M as contrary to the others.

As for nulling, the array structure of PU LMS algorithms 
demonstrates clear effectiveness in directing the prima-
ry beam towards the desired direction (0º) and nullify-
ing the beam in the direction of interference (-20º, 30º), 
particularly for an array size of M=5. This array structure 
exhibits a semi-similarity to the full band LMS, with the 
exception of the sequential PU algorithm. the M-max-
LMS, periodic LMS and stochastic LMS algorithms per-
form similarly to the full band LMS algorithm in terms of 
square error (SE), tracking weight coefficients and esti-
mation input signal, with a quick convergence time and 
a low level of error signal at steady state.

Additionally, the PU algorithms retain the radiation 
patterns' minimal distortion and symmetrical proper-
ties, which have a big impact on wireless communica-
tion systems.

The total number of coefficients required was re-
duced by 62% (M=5) compared to the total number 
used by the full update method.
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