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Abstract –Developing accurate classification models for radar-based Human Activity Recognition (HAR), capable of solving real-
world problems, depends heavily on the amount of available data. In this paper, we propose a simple, effective, and generalizable data 
augmentation strategy along with preprocessing for micro-Doppler signatures to enhance recognition performance. By leveraging 
the decomposition properties of the Discrete Wavelet Transform (DWT), new samples are generated with distinct characteristics 
that do not overlap with those of the original samples. The micro-Doppler signatures are projected onto the DWT space for the 
decomposition process using the Haar wavelet. The returned decomposition components are used in different configurations to 
generate new data. Three new samples are obtained from a single spectrogram, which increases the amount of training data 
without creating duplicates. Next, the augmented samples are processed using the Sobel filter. This step allows each sample to be 
expanded into three representations, including the gradient in the x-direction (Dx), y-direction (Dy), and both x- and y-directions 
(Dxy). These representations are used as input for training a three-input convolutional neural network-long short-term memory 
support vector machine (CNN-LSTM-SVM) model. We have assessed the feasibility of our solution by evaluating it on three datasets 
containing micro-Doppler signatures of human activities, including Frequency Modulated Continuous Wave (FMCW) 77 GHz, FMCW 
24 GHz, and Impulse Radio Ultra-Wide Band (IR-UWB) 10 GHz datasets. Several experiments have been carried out to evaluate the 
model's performance with the inclusion of additional samples. The model was trained from scratch only on the augmented samples 
and tested on the original samples. Our augmentation approach has been thoroughly evaluated using various metrics, including 
accuracy, precision, recall, and F1-score. The results demonstrate a substantial improvement in the recognition rate and effectively 
alleviate the overfitting effect. Accuracies of 96.47%, 94.27%, and 98.18% are obtained for the FMCW 77 GHz, FMCW 24 GHz, and IR-
UWB 10 GHz datasets, respectively. The findings of the study demonstrate the utility of DWT to enrich micro-Doppler training samples 
to improve HAR performance. Furthermore, the processing step was found to be efficient in enhancing the classification accuracy, 
achieving 96.78%, 96.32%, and 100% for the FMCW 77 GHz, FMCW 24 GHz, and IR-UWB 10 GHz datasets, respectively. 

Keywords: human activity recognition, radar, micro-Doppler signature, data augmentation, preprocessing, feature concatenation

1.  INTRODUCTION

With the emergence of IoT and sensing technolo-
gies, Human Activity Recognition (HAR) has gained 
significant attention and found applications in various 
fields [1, 2]. Numerous sensing technologies have been 
investigated for HAR, including video devices, wear-

able sensors, and radars [3]. The key features of radar 
technology, including non-invasiveness, privacy pres-
ervation, low energy consumption, and environmental 
insensitivity, have made this technology very popular 
for HAR [4]. Non-contact radar sensors can continuous-
ly detect and monitor human activities, including gait, 
falls, gestures, and activities of daily living [4]. 
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Two commonly employed radar sensors for the de-
tection of human activities are Impulse Radio Ultra-
Wide Band (IR-UWB) [5] and Frequency Modulated 
Continuous Wave (FMCW) [6]. Radar echoes caused by 
electromagnetic signals reflected from different parts 
of the body contain valuable information about human 
motion, known as the micro-Doppler effect. The Micro-
Doppler signatures encompass frequency components 
derived from the translational motion of the body or 
the vibration and rotation of its non-rigid parts. These 
distinctive features can be directly exploited to identify 
various human activities [7-9].

Due to the ability of deep feature self-learning, Deep 
Neural Networks (DNNs) have been successfully ap-
plied for HAR based on micro-Doppler signatures [10]. 
DNNs mainly focus on automatic feature learning, 
which neither requires manual intervention nor relies 
on prior knowledge. Recent studies have shown that 
hybrid models like CNN-LSTM [8, 11, 12] are very use-
ful and can improve performance over individual net-
works in identifying human activities. Although DNNs 
have been shown to be effective for micro-Doppler 
recognition, their performance is sometimes lacking 
due to data sparsity [13, 14]. DNNs are known to be da-
ta-intensive, requiring large amounts of labeled train-
ing samples to obtain satisfactory results [15]. Unfor-
tunately, the requirement for a large amount of radar 
data is difficult to meet. Data acquisition and annota-
tion remain complex, expensive, and time-consuming 
tasks.

Data augmentation is an effective technique used 
to increase the size and diversity of the training set 
by generating new synthetic samples from the origi-
nal data. Several approaches in computer vision have 
been proposed, including geometric transformations 
and photometric transformations [16, 17]. However, 
in some cases, radar data cannot be augmented by 
performing transformations as it might distort the 
signature patterns [18, 19]. Advanced approaches, in-
cluding Generative Adversarial Network (GAN), have 
emerged as a popular class of modern deep learning 
models for synthetically generating image data [20]. 
Various works on GAN extensions, such as Deep Con-
volution GANs (DCGANs), Auxiliary Classifier GAN (AC-
GAN), CycleGANs, and Progressively-Growing GANs 
[21, 22], have been adopted in the radar area and have 
shown a great ability to mimic complex real-world 
data. However, the fidelity of the generated data is not 
guaranteed. Moreover, training GANs is very challeng-
ing and requires a lot of effort for implementation. An-
other alternative workaround in situations where large 
training data are difficult to access is by using transfer 
learning (TF) and Domain Adaptation (DA) [23, 24]. 
These approaches involve training models on a large 
dataset and then fine-tuning their weights on a small 
target dataset. However, the required accuracy cannot 
be met only by directly transferring the features. The 
models may exhibit unpredictable performance when 

a mismatch occurs between the source and target 
training content.

This work aims to develop an automated HAR sys-
tem that achieves both lower computational require-
ments and high classification accuracy with small 
micro-Doppler datasets, with two main objectives in 
mind. The first objective is to propose a simple and ef-
ficient strategy for generating micro-Doppler spectro-
grams used for training classification algorithms. The 
main contribution of this research lies in the creation 
of new samples derived from the original dataset with 
non-overlapping features. Our focus is on developing 
an augmentation process that ensures the preserva-
tion of essential features in the micro-Doppler sig-
natures without introducing unintended distortions. 
Additionally, we strive to establish a robust and adapt-
able augmentation strategy that can be applied to var-
ious datasets, rather than relying on a specific one. In 
contrast to previous studies [13], our approach stands 
out through its exclusive utilization of image manipu-
lation techniques directly applied to micro-Doppler 
signatures. Instead of resorting to conventional im-
age transformations [25], we propose the application 
of Discrete Wavelet Transform (DWT) as a novel alter-
native. This unique approach sets our work apart and 
contributes to the advancement in the context of data 
augmentation strategies. 

The original micro-Doppler spectrograms are pro-
jected onto the DWT subspace. From this projection, 
spectrograms are decomposed, resulting in different 
sub-band images. Next, the decomposition compo-
nents returned by the DWT process are used in differ-
ent configuration to generate new samples. From a 
single spectrogram, three samples are generated, in-
creasing the number of training data without creating 
duplicates. This approach makes it possible to enhance 
human motion characteristics to improve the accuracy 
of the final classifier without adding prior knowledge 
or re-acquiring data. The second objective is to extend 
our previous work [26] based on Hand Gesture Rec-
ognition (HGR) to the HAR application. Our previous 
contribution consisted of extending a single sample to 
three representations by extracting low-level feature 
images using the Sobel filter. 

The generated low-level feature images are then 
used as independent input for the model. We used a 
lightweight CNN-LSTM-SVM to classify hand gestures 
using IR-UWB. Compared to existing models, our ap-
proach provides simplicity with significantly high per-
formance. 

The remainder of the paper is organized as follows: 
Section 2 briefly reviews scholarly works related to data 
augmentation for Micro-Doppler signatures. Section 3 
describes the proposed approach. Section 4 provides 
the evaluation datasets and implementation details. 
Section 5 presents the experimental results and com-
parative analysis. The discussion is presented in Section 
6, and Section 7 concludes the paper.
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2. RELATED WORKS

In order to significantly reduce the cost and effort 
of data measurement, several data augmentation 
strategies have been proposed. Researchers in the 
radar-based HAR field have attempted to use Trans-
fer Learning (TL) and Domain Adaptation (DA) meth-
ods [27, 28]. These greatly reduce the dependence of 
models on large training samples, improve recognition 
accuracy, and convergence speed. Several DNN mod-
els pre-trained on the ImageNet dataset have been 
used to classify limited micro-Doppler signatures for 
human activities [29, 30]. Du et al. [29] presented a 
transfer-learned residual network to classify human ac-
tivity based on micro-Doppler spectrograms. The per-
formance of the model was evaluated on the CMU Mo-
cap dataset. Du et al. [30] proposed using pretrained 
VGG-19 on the ImageNet dataset for the classification 
of micro-Doppler measurements. The experimental 
results demonstrate that transfer-learned VGG-19 out-
performs the trained model from scratch and gives a 
reduction in the number of parameters and computing 
operations. However, the required accuracy cannot be 
met only by directly transferring the features. The char-
acteristics of radar signatures differ widely from those 
of optical images. 

The models may exhibit unpredictable performance 
when a mismatch occurs between the source and tar-
get training content. Another approach for dealing with 
low sample support is the simulation of micro-Doppler 
signatures using motion capture [31]. This approach 
enables generating a large number of micro-Doppler 
signatures with different postures and motion speeds 
of the human model. Moreover, different technical as-
pects of the radar are supported, such as frequency, 
angle, and location of the radar. However, the main 
drawback of this approach is that the generated data 
is too clean and perfect, while in real scenarios the data 
is affected by various environmental factors, sensor pa-
rameters, and target characteristics. For example, varia-
tions introduced by the surrounding environment such 
as obstructions caused by walls, objects, or movements 
that are not related to the target. The gap between the 
real world and the simulation can considerably dete-
riorates the performance of the models. To tackle this 
problem, GAN has been proposed as a means to gener-
ate highly realistic simulated images [32, 33]. An early 
effort at applying GAN to synthesize new micro-Dop-
pler signatures was first proposed in [34] for walking 
gaits at different speeds. A similar approach has been 
proposed in [35] to generate different human actions, 
extended to other movements than simply walking. 
Gurbuz et al. [13] used a GAN to synthesize micro-Dop-
pler signatures collected from three radars for cross-
frequency training. Results show an increase in the 
overall classification accuracies. Erol et al. [36] used AC-
GAN to generate more diverse and crisp synthetic mi-
cro-Doppler signatures. The results showed the effec-
tiveness of synthetic ACGAN data adapted to different 

detection locations and environments. Zhong et al. [37] 
proposed using DCGAN to achieve data augmentation 
of the micro-Doppler samples set. Experimental stud-
ies have shown that the combination of GAN and CNN 
can achieve effective recognition. However, the ex-
perimental simulation is set up in an ideal environment 
without other target interference. A major drawback of 
the synthetic data generated by GAN is that its fidelity 
is not guaranteed. Although GAN has demonstrated its 
ability to generate realistic synthetic data, their fidelity 
is not guaranteed. Micro-Doppler signatures generated 
by GAN have been found to correspond to kinemati-
cally impossible behaviors or to classes of motions dif-
ferent from those expected [38, 39]. 

3. PROPOSED METHODOLOGY

The proposed methodology comprises three steps: 
data augmentation, data preprocessing, and classifi-
cation. In the data augmentation step, DWT is applied 
to the original samples for the decomposition process. 
The obtained components are manipulated and used 
in different configurations to generate new samples to 
enrich the training set. In the preprocessing step, the 
Sobel filter is applied to each sample to expand the da-
taset and generate low-level image features to be used 
as independent input for the classification model. In 
the classification phase, a three-input CNN-LSTM-SVM 
is applied to classify the processed data into the cor-
responding activity. 

The schematic diagram of the proposed methodol-
ogy is depicted in Fig. 1.

3.1. DWT AUGMENTATION

In this work, we focus on the generation of 2D micro-
Doppler samples to enrich the training set. We propose 
to use DWT with the aim of investigating its notable 
feature that allows the decomposition of an image into 
components. The DWT scheme is shown in Fig. 2.

Fig. 1. Schematic diagram of the proposed 
methodology
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Fig. 2. 2D discrete wavelet decomposition process

3.1. DWT AUGMENTATION

In this work, we focus on the generation of 2D micro-
Doppler samples to enrich the training set. We propose 
to use DWT with the aim of investigating its notable 
feature that allows the decomposition of an image into 
components. The DWT scheme is shown in Fig. 2. The 
DWT applies two filter banks, the low-pass filter, and 
the high-pass filter, to hierarchically decompose the 
input image into sub-bands, resulting in a single-level 
high and low-frequency parts. The low-frequency part 
is further divided into high and low-frequency parts for 
further levels of decomposition. The decomposition 
process is achieved by means of small waves called 
wavelets, of variable frequency and limited duration. 
There are many types of wavelet functions, including 
Haar, Daubechies, Symlets, and Coifflets [40]. Due to 
its low computing requirements, the Haar transfor-
mation has been primarily used for image processing 
and pattern recognition and is adopted in this work. 
By employing the DWT with the Haar wavelet, we can 
effectively decompose the micro-Doppler signatures 
into different frequency sub-bands, enabling further 
manipulation to enrich the training set.

Starting with the original image of size NxN, the Micro-
Doppler signatures augmentation process is as follows:

•	 The low-pass and high-pass filters are applied 
to each row of the image and then sampled by a 

factor of 2, giving two half-images. One with scal-
ing coefficients and the other with wavelet coef-
ficients. Both images correspond to half the line 
width of the original image (N/2xN).

•	 The low-pass and high-pass filters are applied in 
the column direction of the image generated by 
the first step. This results in four quarter sub-bands 
representing different frequency ranges and spatial 
orientations within the original image. The quarter 
sub-bands refer to the single-level decomposition 
coefficients including approximation cA1, diagonal 
cD1, horizontal cH1, and vertical coefficients of size 
N/2 x N/2 as shown in Fig. 3. We consider a single-
level decomposition to be an appropriate size, as 
additional levels of decomposition may result in 
the loss of useful information.

•	 The important information is concentrated in the 
approximation coefficient cA1. The horizontal cH1, 
vertical cV1, and diagonal cD1 coefficients can eas-
ily be perturbed by noises. Therefore, we propose 
to inject each of these coefficients on the cA1 and 
sum the pixels between the two images as shown 
in Fig. 3. This way three new images are generated 
as follows:

cA1 + cD1
cA1 + cV1
cA1 + cH1

Fig. 3. Proposed augmentation process

3.2. PREPROCESSING

For the preprocessing phase, we adopt the proposed 
approach in [26]. This method is designed to improve 
the image content in order to extract and learn dis-
criminative features. It makes use of the Sobel filter to 

generate low-level image features to be used as inde-
pendent inputs for the model. These features include 
the image gradient in the x-direction (Dx), y-direction 
(Dy), and both x and y-directions (Dxy). The samples 
are first binarized and then extended using the Sobel 
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filters. The latter uses two directional filters to convo-
lute the input image, respectively, to obtain Dx, Dy and 
Dxy. More details about the data preprocessing can be 
found in [26].

3.3. CLASSIFICATION

Micro-Doppler signatures are, by nature, variable 
time series data. They represent the time-varying ve-
locity of different parts of the human body. Therefore, it 
is necessary to involve a process that exploits the tem-
poral correlations of spatial features rather than simply 
detecting the global geometric shape.

For the classification stage, the three-input CNN-
LSTM-SVM model [26] is considered for activity clas-
sification. The results from our previous work have 
demonstrated the effectiveness of combining CNN and 
LSTM for automatic spatiotemporal feature learning. 
The spatiotemporal feature extraction is carried out 
by the Three-input CNN-LSTM. The CNN part consists 
of three branches with similar layer configurations. 
Each of the Dx, Dy and, Dxy images is processed in a 
separate branch by performing multiple convolution 
operations to extract spatial features. The three CNN 
branches operate in parallel, and their outputs are 
combined for further processing by the LSTM. The con-
catenated features are reshaped and provided as input 
to the LSTM for temporal feature extraction. The LSTM 
captures and memorizes how the features extracted 

by the CNN layers change over time. The output of the 
LSTM is put into vector form and fed into the multiclass 
SVM. The SVM uses the OneVsRest strategy and gives 
the prediction result.

4. MATERIALS AND METHOD

4.1. DATASET

We evaluate the proposed approach on the Multi-
Frequency Sensor Network Human Activity Database 
proposed by Gurbuz et al. [13]. The database consists 
of three datasets acquired from three synchronized ra-
dar sensors operating in monostatic mode. The sensors 
include the 77 GHz FMCW radar IWR1443 from Texas 
Instruments, the 24 GHz FMCW radar from Ancortek, 
and the 10 GHz XeThru X4 UWB pulse radar from XeTh-
ru. Each dataset comprises 11 classes of human activi-
ties, namely WLKT (walking towards the radar), WALKA 
(walking away from the radar), PICK (picking up an ob-
ject from the ground), BEND (bending over), SIT (sitting 
on a chair), KNEEL (kneeling), CRWL (crawling towards 
the radar), LIMP (limping with a stiff right leg), WTOES 
(walking on both toes), SHTEPS (walking with small 
steps), and SCSSR (walking with scissors). Data acquisi-
tion involved six participants of various ages, heights, 
and weights. Each activity is performed 10 times by a 
participant, resulting in 60 signatures per class per sen-
sor. The micro‐Doppler signatures from all three radar 
sensors for all eleven activities are shown in Fig. 4.

Fig. 4. Micro‐Doppler signatures for each human activity class/radar

4.2. IMPLEMENTATION

The implementation of the proposed augmentation 
technique is performed using Matlab R2021 on a ma-
chine running an environment with an Intel (R) Core  
(TM) i5 2.40 GHz CPU, 16GB of RAM, 1TB of hard disk, 
and Windows 10. To consistently visualize the impact of 
the augmentation strategy on the model's generaliza-
tion ability, we divided the datasets into three subsets: 
training, validation, and test. The validation set is used 
as an intermediary checkpoint, allowing us to assess 
the model's behavior during the training phase. When 
using the original datasets with a restricted number 
of samples, the validation set serves the purpose of 
identifying overfitting. Furthermore, when utilizing 
augmented samples, the validation set serves a dual 
purpose. Firstly, it enables us to ensure that the model 
effectively learns from the augmented samples. Sec-
ondly, it assists in ensuring that the augmented sam-
ples closely match the characteristics of the test data. 

The operations of training, validation, and testing were 
conducted on Google Collaboratory. 

To evaluate our proposal in the experimental analy-
sis, four experiments are performed for each dataset. 

•	 Experiment 1: use the original datasets without 
augmentation or preprocessing. Each dataset is 
split into 80% for training, 10% for validation, and 
10% for test. The same sample is simultaneously 
provided to all three CNN branches. To facilitate a 
concise comparison, we utilize the same test set 
across all experiments. To achieve this, we employ 
the random seed parameter to ensure consistent 
partitioning.

•	 Experiment 2: use the preprocessed original da-
tasets without augmentation. Each dataset is split 
into 80% for training, 10% for validation, and 10% 
for test similar to experiment 1. Each CNN branch is 
fed with Dx, Dy, and Dxy, respectively.
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•	 Experiment 3: use the augmented samples for 
training and the original samples for testing. The 
augmented samples are binarized and split into 
90% for train and 10% for validation. Two tests are 
realized. Test (a): Use only a 10% portion of the 
original dataset as the test set, as mentioned in Ex-
periment 1. Test (b): To prevent biased evaluation, 
we test the model on the entire original dataset, 
including all samples.

•	 Experiment 4: use the processed augmented sam-
ples for training and the processed original sam-
ples for testing. The model is trained using extend-
ed augmented images, where each CNN branch is 
fed with Dx, Dy, and Dxy, respectively. For the test, 
we follow the same procedure as Experiment 3. 
The test process of Experiment 3 is replicated.

Note that the model for all experiments is trained 
from scratch for 100 epochs with a batch size of 16 
using the Adam optimizer with a learning rate set to 
0.001. All the default configurations of the model are 
left intact as mentioned in [26]. Except for the LSTM 
layer, the number of units is changed to 300. For the 
SVM classifier, the number of binary classifiers is set to 
11 corresponding to the number of class activities. We 
use the same SVM hyperparameters as mentioned in 
[26]. By keeping hyperparameters constant over all da-
tasets for all experiments, we can demonstrate that the 
mitigation of overfitting is attributed to data augmen-
tation rather than hyperparameter tuning.

4.3. EvALUATION METHOD

To evaluate the classification performance of the mod-
el, five assessment measures are used, including accu-
racy, precision, recall, F1-score, and the confusion matrix. 
These metrics are calculated based on the number of 
true positives (TP), true negatives (TN), false positives (FP), 
and false negatives (FN) using the following equations:

Table 1. Comparative classification performance on 
the 77 GHz dataset

Experiment Train 
Acc %

val Acc 
%

Test 
Acc %

Precision 
%

Recall 
%

F1-score 
%

Exp 1 100 93.32 92.36 92.58 92.33 92.30 

Exp 2 100 95.44 93.93 95.12 93.94 93.82

Exp 3
(a) 100 98.01 95.45 97.47 95.45 94.73

(b) 100 98.01 96.47 96.61 96.42 96.40

Exp 4
(a) 100 98.21 98.48 98.99 98.18 98.45

(b) 100 98.21 96.78 96.97 96.71 96.67

(1)

(2)

(3)

(4)

5. EXPERIMENTAL RESULTS

The results of each experiment within the proposed 
framework will be provided in this section. Each subsec-
tion will display the results separately for each dataset.

5.1. 77 GHZ DATASET

The results are presented in Table 1. The confusion 
matrix and the classification report obtained from the 
combination of augmentation and preprocessing ap-

plied to the test data are depicted in Fig. 5 (A) and Fig. 
6 (A), respectively.

5.2. 10 GHZ DATASET

The results are presented in Table 2. The confusion 
matrix and the classification report obtained from the 
combination of augmentation and preprocessing ap-
plied to the test data are depicted in Fig. 5 (B) and Fig. 
6 (B), respectively.

Table 2. Comparative classification performance on 
the 10 GHz dataset

Experiment Train 
Acc %

val Acc 
%

Test 
Acc %

Precision 
%

Recall 
%

F1-score 
%

Exp 1 100 88.29 81.33 86.58 81.82 80.33

Exp 2 100 91.52 83.33 88.71 83.33 82.80

Exp 3
(a) 100 99.48 100 100 100 100

(b) 100 99.48 98.18 98.23 98.15 98.17

Exp 4
(a) 100 100 100 100 100 100

(b) 100 100 100 100 100 100

5.3. 24 GHZ DATASET

The results are presented in Table 3. The confusion 
matrix and the classification report obtained from the 
combination of augmentation and preprocessing ap-
plied to the test data are depicted in Fig. 5 (C) and Fig. 
6 (C), respectively.

Table 3. Comparative classification performance on 
the 24 GHz dataset

Experiment Train 
Acc %

val Acc 
%

Test 
Acc %

Precision 
%

Recall 
%

F1-score 
%

Exp 1 100 86.44 84.84 85.12 87.86 85.25

Exp 2 100 88.41 86.63 86.49 86.64 85.87

Exp 3
(a) 100 95.91 92.42 92.10 94.60 92.81

(b) 100 95.91 94.27 94.50 94.14 94.14

Exp 4
(a) 100 98.09 98.18 98.18 98.18 97.98

(b) 100 98.09 96.32 96.40 96.30 96.30
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(a) (b) (c)

Fig. 5. Confusion matrix exp 4 (b) : (a) 77 Ghz, (b) 10 GHz, (c) 24 GHz, dataset

5.4. COMPARISON TO STATE-OF-THE-ART 
 APPROACHES

Our proposed model results can be directly com-
pared with those of Gurbuz et al. [13] and Vishwakarma 
et al. [25] as they also used the same 77 GHz dataset. 
The results are shown in Table 4.

Table 4. Comparative classification performance on 
the 77 GHz dataset with state of art methods.

Reference Model Accuracy

Gurbuz et al. [13] CAE 85.40%

Vishwakarma et al. [25] Modified Alexnet 96.44%

Our approach Three input-CNN-LSTM-SVM 96.78%

Fig. 6. Classification report exp 4 (b) : (a) 77 Ghz, (b) 10 GHz, (c) 24 GHz, dataset.

(a) (b) (c)

6. DISCUSSION

The results of Experiment 1 in Tables 1, 2, and 3 dem-
onstrate that the model is suffering from overfitting. 
During the training phase, the model exhibits excep-
tional accuracy, reaching 100% on all three datasets. 
Nevertheless, when validated/tested on new, unseen 
data, the model's accuracy drops significantly and re-
mains notably lower than its training accuracy. This dis-
crepancy between training and validation/test accu-
racy is due to the limited size of the training set, which 
causes a lack of generalization. With restricted training 
data, the model is unable to capture all possible pat-
terns and variations in the data. As a result, it tends to 
memorize rather than learn generalizable patterns.

From Experiment 2 in Tables 1, 2, and 3, we observe 
that using preprocessed data helps to enhance the 
model’s accuracy on all datasets. An improvement rate 
in the test accuracy of 1.52%, 2%, and 2.2% is noticed 
for the 77 GHz, 10 GHz, and 24 GHz datasets, respec-
tively. The preprocessing stage plays a crucial role in 
enhancing the content of images and facilitating the 
extraction and concatenation of additional features. 
Despite these benefits, the model's generalization abil-

ity remains limited. This is due to insufficient exposure 
to variations necessary for learning robust features that 
can effectively generalize to new data.

As observed from Experiment 3, the inclusion of the 
augmentation process during the training phase en-
hanced robustness and improved the model’s perfor-
mance. After conducting test (a) from Experiment 3, as 
shown in Tables 1, 2, and 3, a significant improvement in 
accuracy across all three datasets is observed. This note-
worthy progress is primarily attributed to introducing 
higher variability among training samples. This variation 
enables the model to effectively discern patterns and 
overcome the limitations associated with generaliza-
tion. Consequently, the model becomes better at mak-
ing accurate predictions on unseen data, reducing the 
detrimental effects of overfitting that were apparent in 
the results of Experiments 1 and 2. The analysis of test 
(b) results from Experiment 3, as presented in Tables 1, 
2, and 3, highlights the comparative performance with 
the results of test (a). The model achieved an accuracy 
of 96.43%, 98.18%, and 94.27% on the 77 GHz, 10 GHz, 
and 24 GHz datasets, respectively. This indicates that the 
model is well-generalized and has the potential to per-
form effectively on large new unseen data. This further 
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substantiates the reliability of the proposed augmenta-
tion approach. However, when comparing the model's 
performance on test (a) and test (b) from Experiment 3, 
employing a larger test set yielded superior accuracy for 
both the 77 GHz and 24 GHz datasets. This difference in 
accuracy suggests that using only a fraction of samples, 
often obtained through random splitting, might intro-
duce greater variability. This issue arises from the pos-
sibility that the selected instances may not accurately 
represent the entire dataset, leading to biased evalua-
tions. To address this concern, it is more appropriate to 
consider evaluating the model on a larger number of 
test samples, promoting a fair assessment.

Following Experiment 4, further improvement is 
achieved by combining data augmentation and pre-
processing. The classification reports depicted in Fig.6 
shows consistent results in terms of precision, recall, and 
F1-score for all three datasets. The model achieved ac-
curacies of 96.78%, 100%, and 96.32% on the 77 GHz, 10 
GHz, and 24 Ghz datasets, respectively. The analysis of 
the confusion matrices (A) and (C) in Fig. 5, correspond-
ing to the 77 GHz and 24 GHz datasets respectively, re-
veals slight overfitting. The model encounters difficulty 
in accurately distinguishing between different activities 
within the various classes. This challenge can be attrib-
uted to the presence of highly similar features shared 
among these classes. The existence of common char-
acteristics leads to confusion and misclassification, con-
tributing to the model's limitations in differentiation. We 
believe that a review of the model's architecture and pa-
rameters could contribute to enhancing its ability to dis-
cern between activities. The classification report (B) pre-
sented in Fig. 6 indicates that the model performs better 
on the 10 GHz dataset in terms of classification metrics. 
Moreover, upon examining the confusion matrix (B) de-
picted in Fig. 5, it becomes apparent that the number 
and percentage of false positives and false negatives in 
the test set are zero. This achievement gains even great-
er significance as the dataset includes more discriminat-
ing patterns, enabling the model to effectively distin-
guish between different activities. This advantage stems 
from the high resolution of the IR-UWB, which allows for 
the detection of subtle motion patterns. As a result, the 
model achieves superior accuracy and the capacity to 
capture unique patterns associated with distinct activi-
ties and individuals.

To justify the relevance of the proposed approach, a 
comparative analysis of the performances with those 
reported in the literature using the same dataset is car-
ried out. The results are reported in Table 4.

Gurbuz et al. [13] proposed to use GAN-synthesized 
data from the 77 GHz dataset to train a Convolutional 
AutoEncoder (CAE). Their model achieved a modest ac-
curacy of 85.40%. The authors attributed this subopti-
mal performance to a mismatch between the distribu-
tions of synthetic and real data. In contrast, our model 
provided an improvement rate of 11.38%, reaching an 
accuracy of 96.78%. Through our approach, we success-

fully mitigated the mismatch problem by introducing 
an augmentation strategy that fosters better generaliza-
tion on unseen data. Vishwarkarma et al. [25] proposed 
to artificially add Additive White Gaussian Noise (AWGN) 
to the 77 GHz dataset samples and use them to train a 
modified AlexNet with an attention mechanism. Com-
pared to their model, which reached an accuracy of 
96.44%, ours provided a slight improvement of 0.34%. In 
contrast to our approach, which makes use only of aug-
mented samples, the authors in [25] utilized a combina-
tion of original and augmented samples for training pur-
poses. Introducing original samples likely contributed to 
their improved performance as these samples share the 
same distribution as the test samples. Additionally, the 
authors employed a complex architecture with millions 
of parameters, while our model consists of a simple and 
lightweight structure maintained with 635397 trainable 
parameters. Furthermore, it is important to acknowl-
edge that their approach has solely been evaluated on 
the 77 GHz dataset, and therefore, its generalizability to 
other datasets remains uncertain.

In conclusion, the proposed approach has been dem-
onstrated to enhance data efficiency during the train-
ing process. The generated augmented samples exhib-
it significant attributes, as affirmed by the outcomes of 
Experiment 3. These results provide robust validation 
of the efficacy of the augmentation mechanism. As a 
result, we can infer that the predictive performance 
of the model, trained with augmented images using 
wavelet decomposition, showcases favorable charac-
teristics pertaining to generalization and relevance.

7. CONCLUSION

The significance of this paper lies in offering a 
practical and effective solution to tackle the scarcity 
of micro-Doppler signatures for HAR. Our DWT-based 
augmentation strategy along with preprocessing 
mitigates the need for extensive data collection and 
complex models, making it feasible to achieve high 
performance. Future work in this research aims to 
explore the impact of using different wavelet basis 
functions on classification performance and investigate 
the design of a new architecture to further enhance the 
classification performance.
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