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Abstract – Early detection of patient deterioration in the Intensive Care Unit (ICU) can play a crucial role in improving patient 
outcomes. Conventional severity scales currently used to predict patient deterioration are based on a number of factors, the majority 
of which consist of multiple investigations. Recent advancements in machine learning (ML) within the healthcare domain offer the 
potential to alleviate the burden of continuous patient monitoring. In this study, we propose an optimized ML model designed to 
leverage variations in vital signs observed during the final 24 hours of an ICU stay for outcome predictions. Further, we elucidate 
the relative contributions of distinct vital parameters to these outcomes The dataset compiled in real-time encompasses six pivotal 
vital parameters: systolic (0) and diastolic (1) blood pressure, pulse rate (2), respiratory rate (3), oxygen saturation (SpO2) (4), and 
temperature (5). Of these vital parameters, systolic blood pressure emerges as the most significant predictor associated with mortality 
prediction. Using a fivefold cross-validation method, several ML classifiers are used to categorize the last 24 hours of time series data 
after ICU admission into three groups: recovery, death, and intubation. Notably, the optimized Gradient Boosting classifier exhibited 
the highest performance in detecting mortality, achieving an area under the receiver-operator curve (AUC) of 0.95. Through the 
integration of electronic health records with this ML software, there is the promise of early notifications regarding adverse outcomes, 
potentially several hours before the onset of hemodynamic instability.

Keywords: Mortality Prediction, Clinical Decision Support Systems, Healthcare Informatics

1.  INTRODUCTION

In critical care applications, the process of taking prac-
tical decisions on managing the care of intensive care 
patients can help augment the efficiency of caregivers, 
through the use of predictive data analysis on the large 
amounts of data generated while monitoring these pa-
tients. The most important aspect of a clinical decision 
support system (CDSS) in the ICU is, undoubtedly, its abil-
ity to accurately predict in advance the mortality or sever-
ity risk of a patient so that doctors and other healthcare 
personnel can be prepared to intervene in time with the 
resources available in the ICU. Apart from measuring the 
severity of illness, mortality prediction can also play a cru-
cial role in the assessment of treatment and critical care 

policies in a hospital. Hence, ICU mortality prediction has 
remained a well-researched problem over the years. De-
tecting the deterioration of patients in the ICU at an early 
stage has the potential to enhance patient outcomes. In 
ICUs, conventional severity scores, including the Acute 
Physiology and Chronic Health Evaluation (APACHE) score 
and the Simplified Acute Physiology Score [1], have be-
come essential tools for assessing mortality risk. Globally, 
APACHE-II, SAPS-II, SOFA [2-6] remain the most widely 
utilized techniques for gauging mortality risk. However, 
the factors considered and the severity level assigned can 
vary significantly based on the chosen severity scale. The 
computation of severity scores relies on laboratory find-
ings and a patient’s medical history, and this process is 
both time-consuming and complex.
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Given the limitations of traditional scoring systems, 
there is a growing interest among researchers in le-
veraging machine learning (ML) techniques to predict 
mortality [7]. Various studies, such as those conducted 
by Wong et al. [8], Johnson et al. [9], and Schuetz et al. 
[10], have demonstrated the superior performance of 
ML models compared to conventional severity scores. 
The mortality prediction algorithm put forth by Pir-
racchio et al. [11] utilized a set of 17 variables that are 
present in the SAPS- II score. In their study, Nemati et al. 
[12] utilized a set of 65 variables computed on an hourly 
basis and subsequently given to a ML algorithm to fore-
cast the initiation of sepsis. In a different study, Zahid 
et al. [13] employed a self-normalizing neural network, 
leveraging over 20 parameters, to foresee the mortality 
outcomes for patients within the ICU. Another recent 
investigation by Camacho-Cogollo et al. [14] adopted a 
distinct approach by employing 31 medically relevant 
features (MRF) to predict sepsis. These features were me-
ticulously chosen from a pool of 145 potential features, 
guided by the expert medical insights of a proficient 
physician. Subsequently, a variety of ML models were 
tested using this refined set of features. Weissman et al. 
[15] found that the inclusion of clinical notes along with 
structured clinical data dramatically improved the abil-
ity of ML models to predict ICU mortality. Payrovnaziri 
et al. [16] used both unstructured (discharge summaries) 
and structured patient data for performing myocardial 
infarction based mortality prediction. In a recent study 
by Huang et al. [17], a novel stacking ensemble model 
was devised to address the challenge of mortality risk 
assessment in patients with cerebrovascular conditions. 
This innovative model made use of multimodal data, in-
tegrating various sources, including laboratory test data, 
structured information, and textual radiology reports. 
However, the incorporation of these predictive systems 
into the healthcare realm encounters noteworthy chal-
lenges. This is primarily due to the need for a substantial 
number of features, including intricate laboratory find-
ings, measurements of urine output, evaluations based 
on the Glasgow Coma Scale (GCS), and even clinical 
notes. These intricacies create impediments for the prac-
tical implementation of these systems, as they necessi-
tate medical personnel to manually input a multitude of 
parameters to ensure the precision of predictions. Often, 
this process demands repeated investigations, further 
contributing to the intricacy and potentially hindering 
the effective application of these predictive models.

Conducting statistical analysis through bivariable 
trend models, Churpek et al. [18] determined that vital 
sign trends play a pivotal role in the detection of criti-
cal illness. In the study conducted by Bloch et al. [19], 
the authors manually selected four important features. 
These features were determined by analyzing their sig-
nificance across a range of tested models. The select-
ed features include the median change in heart rate, 
the number of trend changes in respiratory rate, the 
minimal change in respiratory rate, and arterial pres-
sure. Recent studies by Baker et al. [20] emphasize the 

significance of vital signs as influential factors. In their 
work, they fused convolutional (CNN) layers with bidi-
rectional long short-term memory (BiLSTM) networks 
to anticipate mortality using statistics characterizing 
variations in heart rate, blood pressure, respiratory rate, 
blood oxygen levels, and temperature. They derived a 
total of 49 statistical features for each of the seven vital 
signs. It’s apparent from the study that prior to employ-
ing ML models, it’s imperative to compute the statistical 
properties of the vital signs. The need to perform these 
computations prior to implementing the ML models in-
troduces complexities that could hinder the seamless 
application of this approach in a clinical setting.

A substantial amount of time and effort is dedicated to 
recording vital signs in the ICU. However, there is a scar-
city of studies focused solely on recognizing trends de-
rived from these fundamental and straightforward pa-
rameters. The importance of vial sign trends in relation 
to patient outcomes remains relatively underexplored. 
The primary objective of this study is to identify discern-
ible patterns within essential vital signs, namely blood 
pressure, respiratory rate, pulse rate, and SpO2. These vi-
tal signs have been observed to display correlations with 
the eventual outcomes of patients in the ICU. This inves-
tigation employs optimized ML techniques to achieve 
this objective and further examines the individual con-
tributions of each vital parameter to these outcomes.

The rest of the paper is organized as follows: Sec-
tion 2 provides a comprehensive review of the most 
relevant and effective mortality prediction systems re-
ported in the literature. Section 3 details the data col-
lation process and the methodology used for patients’ 
pattern recognition and correlation identification of vi-
tal parameters. Section 4 documents the evaluation of 
the ML models and details the extensive experiments 
conducted using ML models trained under different 
timelines and hyperparameter optimization. Section 5 
concludes the proposed experimental study and pres-
ents future work.

2. LITERATURE REVIEW

Mortality prediction plays a crucial role in assessing 
the severity of an illness and aiding in the enhancement 
of patients’ prognoses. In recent years, researchers have 
focused on designing non-parametric CDSSs built using 
data mining, ML, and deep learning (DL) techniques to 
enable higher accuracy for ICU mortality prediction. The 
majority of these studies have made use of publicly ac-
cessible datasets such as the multiparameter intelligent 
monitoring in intensive care (MIMIC) dataset [21-23], the 
PhysioNet computing in cardiology challenge dataset 
[24], the high time-resolution ICU dataset (HiRID) [25], 
and the women in data science (WiDS) challenge data-
set [26]. Through these studies, the versatility and effec-
tiveness of ML in the critical care domain have been con-
vincingly demonstrated. Nevertheless, a notable chal-
lenge arises from the complexity of these datasets, each 
containing more than 20 parameters. This complexity 
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poses a hindrance to the practical implementation of 
these ML systems, as it requires medical personnel to 
manually input a multitude of parameters to ensure the 
accuracy and precision of the predictions. This manual 
input process can be time-consuming and prone to er-
rors, potentially undermining the overall utility of these 
predictive systems.

As the field of ML continues to evolve, addressing 
this challenge is pivotal for achieving seamless integra-
tion of these predictive models into real-world clinical 
settings. Streamlining the data input process, reduc-
ing the number of required parameters, or developing 
automated methods for data extraction could all con-
tribute to enhancing the feasibility and effectiveness of 
ML applications in critical care scenarios. This ongoing 
effort to bridge the gap between complex datasets and 
practical implementation holds the potential to revolu-
tionize the way critical care is managed and optimized. 
Recent studies utilized automated feature selection 
[27-30] and reduction [31, 32] techniques to select the 
important parameters from the recorded ICU datasets. 
As the number of ICU patients increases, accumulating 
a large number of parameters becomes increasingly 
difficult. In this investigation, we conducted a pilot 
study with only six vital signs that are routinely moni-
tored during ICU stays. According to recent studies, ML 
models were found to have superior predictive capa-
bilities with structured data input than DL models [17]. 

Therefore, this study focuses on optimizing ML models 
for predicting mortality using crucial vital signs.

3. MATERIALS AND METHODS

3.1. PARTICIPANTS AND DATA

The study was conducted in ICUs attached to Kasturba 
Medical College, Mangalore, and Manipal Academy of 
Higher Education, Manipal, India. Patients with an age 
greater than 18 years who are admitted to the ICU from 
August 2019 to November 2020 and who provide their 
consent in a written informed form are included in this 
study. Patients who stayed less than 24 hours in the ICU 
or who were admitted before August 2019 and those 
who denied consent are excluded from the study. A total 
of 285 patients’ data were considered for the study. Each 
patient record includes age, gender, length of ICU stay, 
outcome (recovered, death, intubated), and the last 24 
hours of time series data. Time series data includes six 
vital parameters: systolic (0), diastolic (1), pulse rate (2), 
respiratory rate (3), SpO2 (4), and temperature (5). Fig. 
1 illustrates the comprehensive procedure employed 
during data collection, with the utilization of the Philips 
mp20 monitor for recording vital signs. The distribution 
of the ICU patient data is depicted in Fig. 2. It can be ob-
served that the data is highly imbalanced in terms of re-
corded patient outcomes.

Fig 1. Structure of the Proposed CVD Prediction System

Fig 2. Patient Data Analysis: (a)Gender-wise distribution (b)Age-wise distribution (c)Outcome
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3.2.  METHODOLOGY

Due to the fact that a subset of rows (about 250) were 
marked as ”not recorded” (NR), these cases were imput-
ed using the ”backward filling” method, which used the 
set of recorded patient data that came before it. The 
dataset encompassed a total of 285 patient records, 
each encompassing six vital parameters, and spanned 
a continuous 24-hour period. This data was organized 
in a structured format (285, 24, 6). Because ML models 
work best with one-dimensional (1D) data, the data for 
each patient record, which was a sequence of 24 values 
for each of six vitals, was put into a linear  format with a 
row major layout, which led to 144 features. As a result 
of this reformatting, a distinct 1D dataset was generat-
ed for each individual patient, facilitating compatibility 
with the ML algorithms.

Ten different ML classifiers, including K-Nearest 
Neighbours (KNN), Support Vector Machine (SVM), 
Multi-Layer Perceptron (MLP), AdaBoost, RUSBoost, 
Random Forest (RF), Decision Tree (DT), Gradient Boost-
ing (GB), XGBoost classifier, and textRNN, were put 
through a thorough evaluation and fine-tuning pro-
cess. KNN is a simple and intuitive algorithm that clas-
sifies data records based on the majority class among 
their k-nearest neighbours in the feature space. It mea-
sures distances between data points and assigns labels 
based on the neighbours' labels. SVM seeks to find a 
hyperplane that best separates different classes of 
data. SVM aims to maximize the margin between class-
es and can handle both linear and non-linear separa-
tion. MLP consists of multiple layers of interconnected 
nodes (neurons). It is capable of learning complex rela-
tionships in data through forward and backward prop-
agation of signals, making it suitable for a wide range 
of tasks. AdaBoost (Adaptive Boosting) is an ensemble 
learning technique that combines the outputs of mul-
tiple weak classifiers to create a stronger overall classi-
fier. It assigns higher weights to misclassified instances 
in each iteration to improve classification performance. 
RUSBoost (Random Under- Sampling Boosting) is a 
variant of AdaBoost that incorporates random under-
sampling of the majority class. This helps address the 
class imbalance in the dataset, making it particularly 
useful for imbalanced data scenarios. RF is an ensemble 
method that constructs multiple DTs during training 
and combines their outputs to make predictions. It im-
proves accuracy and reduces overfitting by introduc-
ing randomness in the tree-building process. A DT is 
a hierarchical structure that recursively splits data into 
subsets based on the values of input features. It makes 
decisions by traversing the tree from the root node to a 
leaf node, where the final classification is determined. 
Gradient Boosting is another ensemble method that 
builds a strong model by sequentially adding weak 
learners (usually DTs) and focusing on instances that 
were previously misclassified. It aims to minimize the 
prediction error iteratively. XG Boost (Extreme GB) is an 
optimized and highly efficient implementation of GB. 

It includes regularization techniques, handling miss-
ing values, and parallel processing to enhance perfor-
mance and predictive accuracy. In order to configure 
the TextRNN model’s hyperparameters, a combination 
of empirical observations and systematic experimenta-
tion was utilized. Through careful calibration of mul-
tiple variables, it was determined that implementing 
GRU (Gated Recurrent Unit) units in a two-layer con-
figuration produced significantly enhanced outcomes.

The primary objective was to effectively categorize 
the input ICU time series dataset into 3 discrete classes: 
recovery, mortality, and intubation. Initially, each indi-
vidual vital parameter is used to predict the outcomes. 
Further, all possible combinations of vital signs were 
experimented to determine the most crucial vital pa-
rameters. Since the data is highly imbalanced, com-
bining the weak classifiers would improve the perfor-
mance of the model. So the experiment was conducted 
using boosting classifiers.

3.3.  ExPERIMENTS AND RESULTS

We evaluated the ML classifiers using a five-fold 
cross-validation method. Within this approach, a single 
fold was dedicated to testing, while the remaining folds 
were employed for training the classification model. 
This process was reiterated across all folds to ensure 
a uniform and stable performance evaluation. The Py-
thon open-source ML packages [33] were used for car-
rying out the experiments. Initially, the default values 
as set by the Python packages were set for network 
parameters. The results obtained are listed in Table 1. In 
our efforts to enhance performance, we endeavored to 
ensemble the top three performing ML models (RF, Ad-
aBoost, and Gradient Boost) using voting and stacking 
algorithms. However, the process of ensembling did 
not yield a substantial improvement in overall perfor-
mance. This could potentially indicate that the inherent 
ensembling nature of GB already integrated the advan-
tages offered by ensembling with different classifiers.

Classifier Precision Recall F1-score

TextCNN 0.51 0.57 0.54

RUSBoost 0.61 0.64 0.62

MLP 0.68 0.67 0.67

KNN 0.68 0.73 0.66

DT 0.68 0.69 0.69

AdaBoost 0.69 0.72 0.70

RF 0.73 0.75 0.73

XGBoost 0.74 0.76 0.74

SVM 0.65 0.74 0.68

GB 0.75 0.77 0.75

Table 1. Mortality prediction results



1007Volume 14, Number 9, 2023

Given the superior performance of tree-based al-
gorithms in comparison to other ML models, we me-
ticulously refined their hyperparameters through the 
utilization of the particle swarm optimizaiton (PSO) 
algorithm [34–36]. Notably, we observed that certain 
hyperparameters—namely, n_estimators, max_depth, 
min_samples_leaf, max_features, and min_samples_
split held significant importance across the spectrum 
of tree-based ML models. After achieving refined pa-
rameters using the PSO algorithm for the RF model, 
these fine-tuned hyperparameters were applied as ini-
tializations for the remaining ML models. Remarkably, 
it was discerned that the optimized hyperparameters 
from the initial RF tuning yielded the best performance 
across the other ML models as well. The hyperparam-
eter ranges and the corresponding optimal values de-
termined by the PSO approach have been detailed in 
Table 2. The outcomes achieved through this optimiza-
tion process, encompassing the refined hyperparam-
eters, have been documented in Table 3. Notably, to 
ensure a fair comparison, the same random state was 
upheld throughout the experiments. Evidently, the 
proposed optimization methodology led to a signifi-
cant performance enhancement, with improvements 
of up to 10%.

Table 2. Hyper-parameters Range

Hyperparameter Lower bound Upper bound PSO chosen 
value

n_estimators 10 200 168

max_features 1 20 8

max_depth 2 20 10

min_samples_split 2 20 10

min_samples_leaf 1 20 1

Table 3. Optimized classifiers adopted for mortality 
prediction

Classifier Precision Recall F1-score

RUSBoost 0.68 0.68 0.68

DT 0.69 0.71 0.70

AdaBoost 0.76 0.78 0.77

RF 0.80 0.81 0.79

XGBoost 0.75 0.77 0.76

GB 0.81 0.82 0.80

Due to the minimal variance observed in body tem-
perature among the studied cases within the last 24 
hours after admission, its contribution to predictive 
modelling was limited. Consequently, the focus shifted 
to the remaining vital parameters for subsequent ex-
perimentation, aimed at comprehending the individual 
significance of each parameter on performance. In this 
context, a minimum of three vital parameters were se-
lected at a time for classification using the GB classifier. A 
comprehensive set of 16 combinations was tested, and 
the corresponding accuracies for each combination are 
detailed in Table 4. Notably, the optimized models show-
cased enhancements in the classifier’s performance. 
While the combination of systolic blood pressure, pulse 
rate, and SpO2 demonstrated potential for achieving 
higher accuracy on its own, it was observed that incor-
porating all vital parameters led to improvements not 
only in accuracy but also in precision.

Table 4. Mortality prediction with Adaboost 
classifier using combinations of vitals

Combination of vitals Accuracy Precision Recall F1-score

systolic(0) 0.72 0.67 0.72 0.68

diastolic(1) 0.68 0.61 0.68 0.63

pulse rate(2) 0.71 0.66 0.71 0.68

respiratory rate(3) 0.69 0.64 0.69 0.65

SpO2(4) 0.71 0.67 0.71 0.68

(0,1,2) 0.74 0.67 0.74 0.69

(0,1,3) 0.74 0.69 0.74 0.70

(0,1,4) 0.76 0.73 0.76 0.74

(0,2,3) 0.75 0.70 0.75 0.71

(0,2,4) 0.82 0.80 0.80 0.80

(0,3,4) 0.78 0.75 0.78 0.76

(1,2,3) 0.74 0.69 0.74 0.70

(1,2,4) 0.78 0.76 0.78 0.77

(1,3,4) 0.75 0.72 0.75 0.73

(2,3,4) 0.79 0.77 0.79 0.77

(0,1,2,3) 0.75 0.71 0.75 0.71

(0,1,2,4) 0.79 0.77 0.79 0.78

(0,1,3,4) 0.76 0.73 0.76 0.74

(0,2,3,4) 0.82 0.80 0.81 0.80

(1,2,3,4) 0.79 0.77 0.79 0.77

(0,1,2,3,4) 0.82 0.81 0.82 0.80
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Fig. 3(a) illustrates the confusion matrix derived from 
the predictions generated by employing the combina-
tion of all vital parameters with the optimized GB clas-
sifier. Notably, the model demonstrates a substantial 
capacity to accurately distinguish between recovered 
patients and those at risk of mortality. However, due to 
the study’s limited inclusion of only 13% of intubated 
patients, the model struggled to discern the intricate 
patterns necessary for precise classification. To address 
this limitation, further analysis was undertaken with a 
focus on binary classification into two distinct catego-
ries: the possibility of death or survival. In pursuit of 
this, all data pertaining to intubated patients was ex-
cluded. The outcome of this refined classification strat-
egy is depicted in Fig. 3(b), showcasing an impressive 
90% accuracy achieved through the utilization of the 
proposed optimized GB classifier.

The study achieved remarkable results in binary clas-
sification using an optimized GB classifier. Precision, 
recall, accuracy, and F1 score were all recorded at 0.90, 
indicating a high level of performance. In the context 
of tree-based ML models, the process of identifying 
mortality instances can be understood by examining 
the DTs employed. The visualization of these DTs can 
be seen in Fig. 4. The data for each individual record, 
denoted as X in Fig. 4, is organized in a specific order: 
systolic blood pressure (0), diastolic blood pressure (1), 

pulse rate (2), respiratory rate (3), and SpO2 (4). Each 
parameter has associated data collected over a 24-hour 
period. By analyzing the DTs, it is possible to pinpoint 
the exact hour and parameter that contributed to a 
specific decision. This provides valuable insights into 
the factors influencing the classification outcome. 

The ROC curve, presented in Fig. 5(a), showcases the 
performance of the optimized GB binary classifier. This 
curve is constructed by plotting the true positive rate 
(TPR) against the false positive rate (FPR), with TPR rep-
resented on the y-axis and FPR on the x-axis. Remark-
ably, the area under the ROC curve, which amounts to 
0.95, signifies the model’s ability to make  accurate pre-
dictions approximately 95% of the time based on the 
last 24 hours of vital sign data. 

For a more detailed analysis, we conducted an as-
sessment by excluding vital sign data from the 12 hours 
immediately preceding the outcome within the last 24 
hours. Fig. 3(c) represents the confusion matrix derived 
from predictions made by the optimized GB binary 
classifier utilizing combinations of all vital parameters. 
Impressively, the model continues to exhibit substan-
tial accuracy in distinguishing between recovered pa-
tients and those potentially facing mortality. Illustrated 
in Fig. 5(b), the area under the ROC curve is presented, 
plotting the TPR against the FPR. 

(a) (c)(b)

Fig. 3. Confusion matrix obtained for (a)all classes (b)two classes (c)two classes for 12 hours data

Fig. 4. The decision tree for mortality detection
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(a)

(b)

Fig. 5. ROC curve obtained for mortality detection (a) for 24 hours input 
 (b) for 12 hours input

The performance mirrors the outcomes achieved with 
the 24-hour data window, showcasing the classifier’s 
consistency and ability to predict mortality effectively. In 
Table 5, a comprehensive summary of precision, recall, F1 
score, and accuracy for the initial 12-hour window preced-
ing the actual outcome is provided. The average preci-
sion, recall, and F1 score are detailed in the same table, re-
flecting the model’s performance. Notably, the optimized 

GB classifier achieves 87% accuracy in predicting mortal-
ity, even when utilizing data collected during the first 12 
hours before the actual outcome. This result underscores 
the classifier’s robust performance across this critical early 
time frame. In essence, the proposed optimized GB clas-
sifier showcases commendable performance across both 
12-hour and 24-hour time windows, attesting to its profi-
ciency in forecasting outcomes.

Micro-averaged One-vs-Rest 
Reciver Operating Characteristic

Micro-averaged One-vs-Rest 
Reciver Operating Characteristic
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dataset. Additionally, our study did not encompass 
data from post-intubated patients. Furthermore, pa-
tients who were recovered and discharged from the 
ICU were not monitored until their discharge, poten-
tially impacting the model’s predictive capability. The 
low variance in temperature observed within the last 
24 hours may have hindered its contribution to pre-
diction, and a more frequent temperature monitor-
ing interval would be necessary for a comprehensive 
generalization of findings. Notably, within our study, 
systolic blood pressure emerged as the most influen-
tial vital parameter for mortality prediction. However, 
it’s important to acknowledge that blood pressure 
fluctuations are often evident in patients facing ter-
minal cardiovascular collapse. The unique attribution 
of critical parameters by the ML model to each feature 
might be specific to our institution. Despite account-
ing for patient variability in our hospital and study, ex-
ternal and independent evaluations are imperative to 
validate the findings. It’s crucial to underscore that our 
results are reflective of a single hospital population, 
whereas other studies have drawn insights from pa-
tient data collected across multiple hospitals. There-
fore, external validation using data from a distinct 
institution is pivotal before broad conclusions can 
be drawn. Our research employed a smaller database 
compared to previous studies that aimed to make ex-
tensive population-level generalizations. Being retro-
spective in nature, our data gathering process could 
benefit from oversight post-results. While our dataset 
primarily captures the last 24 hours of a patient’s ICU 
stay, an approach involving data collected through-
out the entire ICU stay and analyzed across different 
time windows could enhance model accuracy. The 
exploration of DL techniques [38, 39], often deemed 
superior to supervised learning techniques, is an av-
enue worth exploring in future studies. However, de-
spite experimenting with state-of-the-art DL models, 
the limitations posed by our data’s scope led to rela-
tively lower performance with DL models. To realize 
practical applicability, the developed ML model must 
undergo testing in a real-world environment.

5. CONCLUSIONS

Among the vital parameters studied, systolic blood 
pressure emerged as the most significant predictor 
linked to mortality prediction, underscoring its piv-
otal role. Additionally, SpO2 and pulse rate exhibited 
notable associations with predictive outcomes. Con-
versely, temperature variance exhibited a limited con-
tribution to predicting outcomes in this study, poten-
tially due to its low variability. An intriguing observa-
tion is the potential of a combination of systolic blood 
pressure, pulse rate, and SpO2 to yield enhanced ac-
curacy. Moreover, incorporating all vital parameters 
not only enhances accuracy but also improves preci-
sion. To further refine the model’s accuracy in predict-
ing intubated patients, additional training with larger 
databases is essential.

Metric Recovered Death Weighted 
average

Precision 0.90 0.76 0.87

Recall 0.93 0.68 0.87

F1 Score 0.92 0.72 0.87

Accuracy - - 0.87

Table 5. Performance obtained for 12 hours data

4.  DISCUSSION 

In this work, we have proposed an optimized model 
for predicting hospital mortality in ICU patients, de-
signed to be especially applicable and beneficial in 
low- and middle-income countries. Our approach 
centers on utilizing a streamlined set of variables that 
are both readily accessible and straightforward to col-
lect. Notably, the model that exhibited the highest 
performance in our investigation was a GB classifier, 
which harnesses the strength of an ensemble of weak 
classifiers, requiring solely vital sign data. These are 
routinely measured and effortlessly acquired within 
an ICU setting. Significantly, these variables do not 
necessitate knowledge of the patient’s diagnosis or 
laboratory results.

Our findings closely align with those of a study con-
ducted by Alistair et al. [37]. In their work, Alistair et al. 
[37] developed a model relying on a staggering 148 
distinct variables, the majority of which emanate from 
intricate laboratory results, urine output, and Glasgow 
Coma Scale (GCS) measurements—a collection of vi-
tal parameters. This approach, however, introduces 
complexities that can hinder the model’s practical 
utility. Medical practitioners would need to measure 
and input an extensive array of factors for an accurate 
prognosis, which not only consumes time but also 
necessitates repeated investigations. In contrast, our 
study offers a user-friendly solution devoid of labour-
intensive data entry or cumbersome investigations 
during the ICU admission process. The optimized GB 
classifier showcased notable performance even when 
using vital sign data gathered 12 and 24 hours before 
the outcome. While our findings are encouraging, 
further research is required to explore the impact of 
more frequent intervals for vital sign data collection, 
aiming to enhance the accuracy of ML models in pre-
dicting outcomes.

4.1. LIMITATIONS

The performance of the ML model in identifying in-
tubation outcomes among patients in our study was 
limited, possibly due to inadequate training on a large 



1011Volume 14, Number 9, 2023

Remarkably, the proposed optimized GB classifier 
achieves 90% accuracy in predicting recovery or mor-
tality, utilizing a mere six recorded vital parameters. 
These findings suggest the viability of employing ML 
techniques for routine monitoring of ICU patients. This 
presents an opportunity to evolve beyond traditional 
prognostic scores like APACHE, SAPS, and SOFA and 
integrate more accessible and less intricate ML tech-
niques that rely solely on essential vital parameters. 
Regular implementation of such techniques can serve 
as a valuable supplement to conventional ICU scoring 
systems. As ICU technologies progress towards greater 
automation, integrating central monitors with ML soft-
ware could provide an early warning system, preemp-
tively alerting healthcare providers to potential ad-
verse outcomes hours before hemodynamic instability 
manifests.
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