
Empirical Validation of Variable Method
Interaction Cohesion Metric (VMICM)
for Enhancing Reusability of Object-Oriented
(O-O) Software

1097

Original Scientific Paper

Abstract – Any object-oriented (O-O) module's primary goal is to build classes with a high level of coherent interaction between
variables and methods. To increase the quality of O-O (Object-Oriented) software, various metrics emphasizing cohesiveness have
been established so far. These metrics operate on both the design and the code levels. However, these metrics still fall short of fully
measuring the cohesion of object-oriented (O-O) software. Based on several concepts of cohesive interlinkages between variables
and procedures, the study proposed an enhanced cohesion metric. The four forms of cohesive linkages (VMRv, VMMv, VMRTv, and
VMOv) between variables and procedures were the focus of this study. The axiomatic frame of reference was employed for theoretical
validation, and univariate logistic regression was applied in the MATLAB environment for empirical validation. The approach of
univariate logistic regression has been adopted because it provides incredibly accurate data and can even be applied to datasets that
can be linearly separated. The proposed metric exhibits high cohesion, which is the ultimate perspective of a highly reusable Object-
Oriented (O-O) module, as evidenced by the testing phase and even training the real dataset with reusability prediction in terms of
high values of precision, recall, R2, and low value of RSME of VMICM metric. The study results demonstrated that the proposed metric
can act as a measure for predicting the reusability of the Object-Oriented (O-O) system.

Keywords: cohesion, cohesive linkages, logistic regression, reusable, validation

1. INTRODUCTION

The importance of software applications has increased
in recent years, and the wide variety of advantages of-
fered by them is drawing a large global audience [1, 2].
Any software development phase involves a variety of
intricate [3] tasks that must be efficiently managed if
high-quality software is to be produced. It is possible to
reduce the work needed for similar procedures by using
the enhanced software generated after careful monitor-
ing of various activities at various stages, and this will
also assist in increasing the overall quality of newly de-
veloped software [4]. Measurement supports an institu-
tion's efforts to enhance the overall software develop-
ment process and even improve the product's overall
quality. Additionally, this would assist programmers in

addressing the complexity of a particular software com-
ponent at a very early stage of the process.

Building high-quality software, and Object-Orient-
ed- based techniques are still quite popular [5]. Good
modular designs maximize cohesion. The attributes of
high cohesion classes are not shared with other classes,
and they can be reused.

Therefore, by reducing complexity, a high level of co-
hesion promotes reusability. To assess software modules
concerning cohesion, many scholars have developed
numerous Object-Oriented (O-O) metrics [6]. However,
in several situations, such measures do not take into ac-
count cohesion properly and thus have only a limited
view of measuring it. To accurately measure cohesive-
ness, there is therefore a need to develop cohesion met-

Volume 14, Number 10, 2023

Bharti Bisht
Research scholar, School Of Computer Applications, MRIIRS
Faridabad, India
onebharti@gmail.com

Parul Gandhi
Professor, School Of Computer Applications, MRIIRS
Faridabad, India
parul.fca@mriu.edu

1098 International Journal of Electrical and Computer Engineering Systems

rics that vary given the idea of cohesive interactions. This
study presents the following contributions:

•	 Proposing a new cohesion metric called VMICM
that emphasizes variable-method interactions.

•	 Validating the proposed metric empirically using a
univariate logistic regression approach and study-
ing correlation with other cohesion-based metrics.

•	 Analyzing the relationship between metric and de-
gree of inheritance.

The framework of this work is further organized as
Section II provides a detailed literature analysis of vari-
ous studies. Section III details about designing phase of
the proposed metric i.e. VMICM metric and a case study.
The validation (theoretically and empirically) of the pro-
posed metric is discussed in Section IV. Section V finally
outlines the conclusion drawn from the study.

2. LITERATURE ANALYSIS

In the Object-Oriented (O-O) model, cohesion mea-
sures the relatedness between variables as well as
methods of a particular class [6, 7]. Relatedness depicts
the similarity between variable-method interactions.
Cohesion can be categorized into a range from highly
desirable i.e. functional cohesion to very low desirable
i.e. coincidental cohesion. Cohesion can be maximized
by effective as well as efficient O-O (Object-Oriented)
based systems. The complexity of particular software
can increase due to the low value of cohesion which
in turn increases bugs during the development phase.
Any class with a low value of cohesion can be further
segmented into many subclasses [7] that would help to
increase the value of cohesion.

The requirements of common instance variable us-
age by method pairs serve as the foundation for co-
hesion. measurements of Tight Class Coherence (TCC)
and Loose Class Cohesion (LCC) provided by Bieman
et al. [8] The authors suggested that the two methods
are considered related if they use or refer to the same
instance variable either directly or indirectly. The fact
that variable A occurs in the body of method M indi-
cates that variable A is being used directly by M. While
a direct reference to variable A by a method M' that
is either directly or indirectly invoked by method M
qualifies as an indirect use of variable A by method M.
TCC is defined as the proportion of method pairs that
are directly connected, whereas LCC is defined as the
proportion of method pairs that are either directly con-
nected or indirectly connected.

Kakkar et al. [9] developed a SCOM metric that em-
phasizes interlinkage intensity in addition to taking
weight into account. The ratio of the number of shared
variables between two techniques to the greatest
number of variables that any method can access is
used to determine how strongly two methods are in-
terconnected. The weight component is determined
by dividing the total number of variables in a certain
class by the number of variables that are shared by the

Table 1. Comparative Analysis of Various
Frameworks related to reusability enhancement

Ref.
No. Motive

Metric
used for

Study
Conclusion

[4]

Developers of Object-
Oriented software

can identify flaws in
class design and LSCC

metric

LSCC
metric

The findings imply
that the cohesion

metric which takes into
consideration the level
of interaction between

each pair of methods, can
more effectively explain

the class quality

[14]

High Precision
Cohesion Measure

(HPCM), a new
cohesion metric that
aims to address the
shortcomings of the
preceding metrics

HPCM
Metric

One of the desirable
characteristics of a good
object-oriented design

is a class with high
cohesiveness. A class

that works well together
is less likely to make

mistakes and is simple to
create and keep up with

method pair. SCOM value is the sum of the products
of the weight and interlinkage intensities of all poten-
tial method pairs. Kansal et al. [10] in their study do not
consider criteria based on similarity but focus on in-
terlinkage patterns between various methods to com-
pute cohesion. A class's protected or private meth-ods
never access any of the variables found in that class. If
protected or private methods are invoked by 2 public
methods then we can say that they are interconnected
to each other. Khajenoori et al. [11] suggested the first-
class-based cohesion metric, LCOM (Lack of Cohesion
in methods). This metric computes several method
pairs that do not share any variable. It also represents
the count of methods having zero similarity minus the
count of methods not having zero similarity. If there
are several pairs of comparable method definitions, the
class is more cohesive. If none of a class's method pairs
employ instance attributes, then there is no similarity
between them, and the LCOM metric's value will be
zero. The LCOM metric value is a measurement of the
distinctiveness of the various method pairings that are
present in the class.

Rasool et al. [12] discussed cohesive interlinkages be-
tween variables used by methods. They have proposed
3 types of cohesive interlinkages and then categorized
them based on the ranking as well as weights. Both
theoretical and empirical validation have been carried
out. Pearson analysis and logistic regression are used
to carry out experiments. Alsarraj et al. [13] introduced
AECC which measures the degree of interconnected-
ness between distinct methods via variable-variable
linkage as well as the invocation of methods in a specif-
ic class while taking the size of the cohesive fragment
into account. even correlation experimentation of this
metric with previously proposed class-based cohesion
metrics was completed in this study. The comparison
of related studies on cohesion-based metric approach-
es for reusability enhancement conducted by various
scholars is shown in Table 1.

1099Volume 14, Number 10, 2023

[15]

Variable Frequency-
Inverse Method

Frequency (VF-IMF)
metric is proposed to

evaluate the degree of
cohesion in modules
and to group module

methods to foster
high cohesion

VF-IMF
metric

To make it easier for a
developer to create a
module that ensures

code reuse, the variables
in this study are grouped
using the VF-IMF metric

to show what level of
cohesion exists in a

module among three
low, high, and medium

cohesions

[16]

Proposed a new
method of measuring

the cohesion of
object-oriented
software at the

module level, where
modules initially

denote a single class
and then a group
of classes in later

sections

UPBC
metric

The suggested method
aims to increase

the object-oriented
software’s cohesion

iteratively and repeatedly,
calculating the cohesion
score and using it to do
clustering up until there

is no longer a meaningful
increase in the system’s

overall cohesion

[17]

The method devised
in this study offers

a technique to
gauge cohesiveness
measures at the class

level

CSM
metric,
ACSM
metric

Very cohesive classes
must be designed

with a strong coupling
between their methods
and a coherent internal

description

3. MATERIAL AND METHODS

One of the most crucial aspects of an object-oriented
(O-O) module is its high cohesiveness, which even aids
in identifying the most reusable module. This section
summarises the methodology of the proposed VMICM
metric by anticipating high cohesiveness between vari-
able-method interlinkages.

3.1. PROPOSED METRIC- VARIABLE METHOD
 INTERACTION COHESION METRIC
 (VMICM)

The majority of cohesion metrics that have been
developed so far focus either on the use of methods
within a class or their similarity due to the sharing of
instance attributes. A new class cohesiveness metric,
which takes into account the interlinking of variable
methods from various contexts, has been proposed in
this study. To better understand the variable methods
interlinkages, this study has concentrated on four dis-
tinct coherent linkages between variables and meth-
ods. Considering variable vi ϵ V and method mn ϵ Md
of class F, this study elucidated four types of cohesive
interlinkages in the following manner:

i. Received (CRv) [17, 20]: (V × Md) such that vi*CRv*
mn, if vi ϵ V is received as a parameter to a particu-
lar method mn ϵ Md.

ii. Manipulated (CMV) [17, 20]: (V × Md) such that vi
*CMv *mn, if vi ϵ V is manipulated by method mn ϵ
Md. This computation could be done either math-
ematically or it could be in the form of a function
call [17, 20].

iii. Returned (CRtv) [20]: (V × Md) such that vi*CRtv* mn,
if the value of viϵV is returned by method mn ϵ Md.

iv. Override (COv): (V×Md) such that vi*COv*mn, if the
scope of vi is overridden by method mnϵMd.

3.1.1. Defining Proposed Metric- Variable Method
 Interaction Cohesion Metric (VMICM)

This proposed metric describes the MMI definition
[20], which serves as the foundation for the widely ac-
knowledged class-based cohesion features as indicat-
ed in [21], and this even has the potential to be utilized
as a signal for the reconstruction of classes with weak
cohesion. Non-inherited methods (both private as well
as public) have been taken into consideration for the
study. Eq.(1) represents the combination of several co-
hesive interlinkages in Class F as:

(1)

where CIv represents the union of all proposed co-
hesive interlinkages between different variables and
methods of Class F.

The two interconnected methodologies shown by
VMICM are AVU (Average Variable Usage) and CSv (Co-
hesive Strength). AVU (Average Variable Usage) as de-
fined in Eq. (2) denotes the average count of all vari-
ables used by all methods included in Class F:

(2)

where Md represents the total methods present in a
Class F.

The total count of common variables between vari-
ous methods pairs is represented by Eq. (3) as:

(3)

Based on the count of shared variables between
method pairs, Cohesive Strength (CSv) represents the
degree of [21, 22] cohesive interlinkages between
them. Cohesive Strength is defined by Eq. (3) as:

(4)

Where:

CVv = Total count of common variables between vari-
ous method pairs of Class F

AVU = Average count of all variables used by all
methods included in Class F

VMICM represents the average of cohesive strength
(CSv) between variables and methods available in a
particular class.

1100 International Journal of Electrical and Computer Engineering Systems

In the same way as an AVU analysis is carried out, it
will take account of both privately and publicly inherit-
ed methods, and then their cohesive strength is added
up. So, VMICM proposed by this study is represented by
Eq.(5) as follows:

(5)

3.2. RESEARCH METHODOLOGY

In this section, the process flow of the proposed met-
ric VMICM (Variable Method Interaction Cohesion Met-
ric) is discussed. The research methodology used in this
work was carried out in various phases as shown in Fig.
1. Different phases of the research flow are as follows:

•	 Initially, various metrics from the online MAVEN re-
pository were assimilated.

•	 To examine interlinkages between variable meth-
ods and their interaction with the reusability factor,
cohesion metrics derived from the MAVEN reposi-
tory have been applied as input.

•	 The concept of the MMI was used as a foundation
to create more coherent interlinkages.

•	 The next phase was the creation of a proposed
metric VMICM outline using 2 methodologies -
AVU (Average Variable Usage) and CSv (Cohesive
Strength).

•	 Theoretical validation has been performed using
an axiomatic frame of reference. Alternative mea-
surement hypotheses relating to the length, size,
coupling, complexity, and unity of the software are
analyzed using a base of reference for axioms in
this model.

•	 Univariate logistic regression has been used in the
MATLAB environment for empirical verification.
This method was used to assess both the efficiency
of the proposed VMICM metric as well as those
from the previous studies. It also demonstrates
how the proposed metric contributes significantly
to the reusability of Object-Oriented (O-O) soft-
ware systems.

•	 Open-source JAVA-based classes were used as data
sets in the testing and training phases.

•	 After repeated repetition of the training data set,
the work was able to achieve high precision, recall,
R2, and low RSME values for the proposed metric.

Thus, this paper demonstrated that the proposed met-
ric shows high cohesion and can act as a measure for pre-
dicting the reusability of Object-Oriented (O-O) classes.

4. RESULTS AND DISCUSSION

The theoretical and empirical validation of the pro-
posed metric VMICM using several techniques and ap-
proaches is discussed in this section.

4.1. THEORETICAL VALIDATION Of PROPOSED
 METRIC VMICM

This study incorporated the framework suggested
by Briand for validating the proposed metric VMICM
theoretically. In this work, an axiomatic frame of refer-
ence for different software properties such as length,
size, coupling, complexity, and cohesion are used to ex-
amine the various measurement parameters. To deter-
mine cohesion and verify that the VMICM metric com-
plies with the abovementioned benchmarks, there are
several properties applied in this framework:

•	 Non-negativity[14-16]: VMICM is calculated with
the help of the modulus of the union of four types
of cohesive interlinkages CRv, CMv, CRtv, and COv
and the resultant value of VMICM obtained was
not less than

•	 Normalization [14]: When there are no cohesive
interlinkages between the methods and the vari-
able, VMICM acquires 0 (i.e., the minimum value),
and when there are all cohesive interlinkages, it
reaches 1 (i.e., the maximum value). So, the value of
the VMICM metric falls between the range [0-Max].

•	 Cohesive modules [14, 15]: This property states
that if two unrelated components are combined,
the cohesiveness of the combined component will
not increase. VMICM metric satisfies this property.

•	 Monotonicity [14, 15]: Any cohesive interlinkages
added to the proposed framework means that ei-
ther |CRv|,|CMv|, |CRtv|, or |COv| increases by 1.
Consequently, the value of the VMICM metric
would be either increased or not affected at all.

•	 Null value [23]: The VMICM metric shall be 0 if there
is no cohesion among variables and methods of a
particular class used in the analysis, such as CRv,
CMv, CRtv, or Cov

All the properties suggested by Briand are met by the

proposed VMICM metric. Thus VMICM metric is prov-
en to be a valid cohesion metric.

4.2. EMPIRICAL VALIDATION Of PROPOSED
 METRIC VMICM

We have empirically tested the proposed metric
VMICM in this section to assess reusability for an Ob-
ject-Oriented (O-O) module. This study produces a
highly cohesive metric that contributes towards the
high reusability of Object-Oriented(O-O) software sys-
tems.

4.2.1. Experimental Set-up

The analysis in the above study was carried out using
JAVA-based classes from an online MAVEN Repository.
They were relatively different from each other in terms of
methods pairs used in particular classes, due to the dif-
ferences in size between the classes chosen for this study.

1101Volume 14, Number 10, 2023

fig. 1. Research Methodology Flowchart

Table 2 depicts the datasets used for this study.

Table 2. Datasets

Class Name MD CRV CMV CRtv COv Civ AVU

Loan 3 3 3 3 1 10 3.3333

BMI 2 1 3 3 1 8 4

Employee 2 4 4 2 2 11 5.5

Course 3 2 1 1 1 5 1.6667

Box 2 4 4 2 1 12 6

Stack 3 1 1 1 1 4 1.3333

1102 International Journal of Electrical and Computer Engineering Systems

Complex 2 3 1 1 1 6 3

Shopping Cart 3 4 4 4 2 14 4.6667

Account 2 1 1 3 1 6 3

Lottery 3 4 4 4 1 13 4.3333

Person 3 2 2 2 2 8 2.6667

Triangle 3 3 2 3 2 10 3.3333

Stack of Integers 4 2 2 1 1 6 1.5

Car 3 3 3 3 3 12 4

Rectangle 2 2 1 2 1 6 3

Queue 5 3 1 1 3 8 1.6

Tax 2 2 2 2 2 8 4

Compute Change 6 4 4 5 2 12 2

Circle 3 1 1 4 1 4 1.3333

Calendar 2 2 2 6 2 8 4

After collecting the dataset from open-source proj-
ects, the proposed VMICM metric value is computed
for the input classes. Earlier proposed cohesion metric
values are also computed for the same input classes.
Table 3 lists the calculated values of the VMICM metric
and other cohesion-based metrics for each input class.

Table 3. Values of Proposed VMICM metric and
other cohesion-based metrics of input classes used

for the study

CNO Class Name CC LAMCC VMICM

CN1 Loan 0.67 0.34 3.3333

CN2 BMI 1.45 0.62 4

CN3 Employee 0.74 0.75 5.5

CN4 Course 0.48 0.45 1.6667

CN5 Box 0.457 0.356 6

CN6 Stack 1.22 0.833 1.3333

CN7 Complex 0.75 0.93 3

CN8 Shopping Cart 0.345 0.225 4.6667

CN9 Account 0.98 0.73 3

CN10 Lottery 0.35 0.26 4.3333

CN11 Person 0.350 0.456 2.6667

CN12 Triangle 0.451 0.382 3.3333

CN13 Stack of Integers 0.777 0.775 1.5

CN14 Car 0.25 0.38 4

CN15 Rectangle 0.65 0.52 3

CN16 Queue 0.90 0.82 1.6

CN17 Tax 0.83 0.73 4

CN18 Compute Change 0.35 0.28 2

CN19 Circle 0.534 0.486 1.3333

CN20 Calendar 0.76 0.50 4

To assess how the proposed VMICM metric can be
adapted to the reusability of these classes, values for
the proposed VMICM metric and all cohesion metrics
are shown in the table above.

4.2.2. Data Selection

•	 Context Selection: This paper aims to demonstrate
the fact that the proposed metric can act as a mea-
sure for the reusability of Object-Oriented (O-O)
classes.

•	 Variable Selection: This work considers cohesion as
an independent attribute and reusability measure
as a dependent attribute.

4.2.3. Result Analysis

The univariate logistic regression technique [24, 25]
is used in this study. The effectiveness of the proposed
metric VMICM as well as currently utilized metrics from
earlier studies have been independently examined
using this method. It also demonstrates how the pro-
posed metric contributes significantly to the reusabil-
ity of Object-Oriented (O-O) software systems. Table
4 compares the proposed VMICM metric with existing
cohesion-based metrics.

Table 4. Descriptive Analysis Results

Metric Min. Max. Mean Median Standard
Deviation

LCOM1 0.0 7875 89.45 20.0 336.7

LCOM2 0.0 7875 69.61 9.0 314.3

LCOM3 0.0 11.0 1.32 1.0 0.90

LCOM4 0.0 11.0 1.31 1.0 0.89

LCOM5 0.0 2.0 0.76 0.82 0.26

TCC 0.0 1.0 0.42 0.37 0.35

DCD 0.0 1.0 0.45 0.42 0.31

CAMC 0.0 1.0 0.39 0.39 0.16

NHD 0.0 1.0 0.64 0.67 0.16

LAMCC 0.0 0.9 0.54 0.51 0.22

VMICM 0.0 0.6 0.27 0.25 0.15

1103Volume 14, Number 10, 2023

A graphical representation of a comparison of exist-
ing cohesion-based metrics and the proposed metric
VMICM is shown in Fig. 2.

fig. 2. Analysis of Proposed Metric VMICM and
other metrics

In comparison to the existing metrics, according to
the above analysis, the proposed VMICM metric has
low mean and median values.

This lower value suggests that this study did not take
into account an increased inheritance level. Increased
level of inheritance leads to less reusable Object-Ori-
ented (O-O) modules. Various statistics have been re-
ported in this study for the evaluation of the proposed
metric VMICM. These statistics are as follows:

•	 Precision [23-25]: This depicts the ratio between
the counts of classes that are least reusable to the
total count of reusable classes.

•	 Recall [23-25]: This depicts the ratio between the
counts of classes that are reusable to the total
count of actual classes [25] that are highly reusable.

•	 R2 [23-25]: This is one of the techniques of good-
ness-of-fit. It represents the percentage of the vari-
ance of the dependent attribute to the percentage
of the variance of the independent attribute.

•	 RSME [23-25]: It represents the average magnitude
of overall errors [24, 25]. This focus is on a relatively
large count of errors.

The results of the above statistics evaluated for the
study are shown below with the help of Table 5.

Metric Precision Recall R2 RMSE
LCOM1 0.645 0.545 0.514 0.181

LCOM2 0.827 0.750 0.100 0.211

LCOM3 0.729 0.659 0.210 0.208

LCOM4 0.577 0.721 0.012 0.208

LCOM5 0.567 0.785 0.010 0.198

TCC 0.562 0.800 0.007 0.200

DCD 0.691 0.800 0.101 0.194

CAMC 0.553 0.752 0.221 0.208

NHD 0.589 0.660 0.013 0.219

LAMCC 0.823 0.875 0.414 0.210

VMICM 1.00 1.00 0.977 0.172

The observations that can be analyzed from the table are:

•	 High values of precision, recall, and R2 for the pro-
posed metric VMICM demonstrate that it exhibits
high cohesion, which is the ultimate perspective of
a highly reusable Object-Oriented (O-O) module.

•	 The low RSME value of the proposed metric VMICM
shows that it is the most suitable cohesion met-
ric among those previously proposed and that it
causes fewer errors, which results in a highly reus-
able module.

From the above analysis, we can conclude that our
proposed metric VMICM is the best cohesion metric
that contributes to a highly reusable Object-Oriented
(O-O) system which is the main objective of this study.
Fig. 3 shows a graphical comparison of the proposed
metric VMICM and other cohesion metrics.

fig. 3. Comparison of Univariate Statistics Results of
Proposed Metric VMICM and other metrics

5. THREATS TO VALIDITY

Researchers suggest that there are various threats to
the validity of any experimental analysis. We attempted
to discuss the following threats in this section:

•	 Construct Validity [25]: This study deals with the
measurement of variables used for this purpose. If
these variables (dependent as well as independent)
are accurately measured, we can say that they are
valid constructively. This study even ensures the
construct validity of dependent attributes.

•	 Internal Validity [25]: This deals with the relation-
ship between cause and effect of both dependent
attribute and independent attribute. If a particular
study can establish effectively this relationship, we
can conclude that it is valid internally.

•	 External Validity [25]: JAVA is used to implement
the data set, i.e. all classes that are being consid-
ered. Applicability of the proposed cohesion met-
ric should not be confined to one platform only,
it should also apply to other Object-Oriented lan-
guages such as C++.

6. CONCLUSION AND fUTURE STUDY

This work has addressed the shortcomings of earlier
proposed cohesiveness measurements. The study pro-

International Journal of Electrical and Computer Engineering Systems1104

poses a new class-based cohesion metric VMICM that
accounts for four different types of cohesive interlink-
ages CRv, CMv, CRtv, and COv between variables and
methods. Using theoretical and empirical analysis, the
quality of the metric is also validated against several
modules. The results showed that the proposed metric
VMICM is the most appropriate cohesion-based metric
contributing towards the highly reusable Object-Ori-
ented (O-O) system. The theoretical validation of the
proposed metric VMICM conforms with all the proper-
ties suggested by Briand, proving it to be a valid cohe-
sion-based metric.

In the future, the proposed metric will be taken as an
input dataset and then a hybrid data mining algorithm
will be applied to uncover relationships between metrics
values and different levels of reusability of a given class.

7. REfERENCES:

[1] K. Zozas, A. Ampatzoglou, S. Bibi, A. Chatzigeorgiou,

P. Avgeriou, I. Stamelos, “REI: An integrated measure

for software reusability”, Journal of Software: Evolu-

tion and Process, Vol. 31, No. 8, 2019, pp. 1-18.

[2] Y. Zhou, Y. Mi, Y. Zhu, L. Chen, “Measurement and

refactoring for package structure based on the

complex network”, Applied Network Science, Vol.

5, No. 50, 2020, pp. 1-20.

[3] Q. Sun, J. Wu, K. Liu, “Toward understanding stu-

dents’ learning performance in an object-oriented

programming course: The perspective of program

quality”, IEEE Access, Vol. 8, No. 4, 2020, pp. 37505-

37517.

[4] A. Gosain, G. Sharma, “Dynamic Metrics for Ob-

ject-oriented Software Systems”, IEEE Access, Vol.

7, No. 5, pp. 244-249.

[5] B. Mehboob, Y. Chun, “A metadata-driven process

assessing for assessing stability and reusability

based on the risk of change of software systems”,

Journal of Software: Practice and Experience, Vol.

53, No. 5, 2023, pp. 1218-1248.

[6] D. Singh, H. J. S. Sidhu, “Optimizing the software

metrics for UML structural and behavioral dia-

grams using metrics tool”, Asian Journal of Com-

puter Science and Technology, Vol. 7, No. 2, 2018,

pp. 11-17.

[7] A. M. Altaie, “Designing and implementing a tool

for measuring cohesion and coupling of Object-

Oriented Systems”, Journal of Software: Practice

and Experience, Vol. 13, No. 2, 2022, pp. 368-375.

[8] G. Rasool, Z. Arshad, “A review of code smell min-

ing techniques”, Journal of Software: Practice and

Experience, Vol. 27, No. 11, 2015, pp. 867-895.

[9] J. Pantiuchina, M. Lanza, G. Bavota, “Improving

Code: The (Mis) Perception of Quality Metrics”,

Proceedings of IEEE International Conference on

Software Maintenance and Evolution, Madrid,

Spain, 23-29 September 2018, pp. 80-91.

[10] T. M. Meyers, D. Binkley, “An empirical study of

slice-based cohesion and coupling metrics”, ACM

Transactions on Software Engineering and Meth-

odology, Vol. 17, No. 1, 2007, pp. 1-27.

[11] B. Mehboob, C. Y. Chong, S. P. Lee, J.M.Y. Lim, “Re-

usability affecting factors and software metrics for

reusability: A systematic literature review”, Journal

of Software: Practice and Experience, Vol. 51, No.

6, 2021, pp. 1416-1458.

[12] S. Manhas, R. Vashisht, P. S. Sandhu, N. Neeru, “Re-

usability evaluation model for procedure-based

software systems”, International Journal of Com-

puter and Electrical Engineering, Vol. 2, No. 6,

2010, pp. 1107-1111.

[13] S. Mal, K. Rajnish, “New class cohesion metric: An

empirical view”, International Journal of Multi-

media and Ubiquitous Engineering. Vol. 9, No. 5,

2014, pp. 367-376.

[14] W. Schäfer, R. Prieto-Diaz, M. Matsumoto, “Software

Reusability”, 2nd Edition, Ellis Horwood, 1994.

[15] J. C. Esteva, R. G. Reynolds, “Identifying reusable

software components by induction”, Internation-

al Journal of Software Engineering, Vol. 1, No. 4,

1991, pp. 271-292.

[16] G. Maheswari, K. Chitra, “Enhancing reusability

and measuring performance merits of software

component”, International Journal of Innovative

Technology and Exploring Engineering, Vol. 8,

No.6, 2019, pp. 1577-1583.

[17] R. M. Andrianjaka, H. Razafimahatratra, T. Maha-

tody, M. Ilie, S. Ilie, R.N. Raft, “Automatic generation

of software components of the Praxeme meth-

odology from ReLEL”, Proceedings of 24th Inter-

national Conference on System Theory, Control,

and Computing, Lunago, Spain, 24-28 November

2020, pp. 843-849.

Volume 14, Number 10, 2023 1105

[18] S. Khajenoori, D. G. Linton, C. A. Morris, “Enhanc-
ing software reusability through effective use of
the essential modeling approach,” Information
and Software Technology, Vol. 36, No. 11, 1994,
pp. 495-501.

[19] D. Kansal, T. Aher, R. K. Joshi, “Sensitivity and
Monotonicity in Class Cohesion Metrics”, Proceed-
ings of the 12th Innovations on Software Engineer-
ing Conference, New York, USA, 10-15 February
2019, pp. 1-5.

[20] P. Kakkar, M. Sharma, P. Sandhu, “Modeling of Re-
usability of Procedure based Software Compo-
nents using Naive Bayes Classifier Approach”, In-
ternational Journal of Computer Applications, Vol.
55, No. 5, 2012, pp. 12-17.

[21] P. Gandhi, P. K. Bhatia, “Estimation of generic reus-
ability for object-oriented software an empirical
approach”, ACM SIGSOFT Software Engineering
Notes, Vol. 36, No. 3, 2011, pp. 1-4.

[22] A. Sharma, E. Al, “Maintainability Evaluation for
Object-Oriented Software Metrics Using Tool Co-
hesion Inheritance (COIN)”, International Journal
of Software Engineering, Vol. 12, No. 4, 2021, pp.
233-238.

[23] M. Alzahrani, S. Alqithami, A. Melton, “Using Cli-
ent-Based Class Cohesion Metrics to Predict Class
Maintainability”, Proceedings of IEEE 43rd Annual
Computer Software and Applications Conference,
New York, NY, USA, 15-20 June 2019, pp. 72-80.

[24] B. Bisht, P. Gandhi, “Software Reusability of Object-
Oriented Systems using Data Mining Techniques”,
International Journal of Recent Technology and
Engineering, Vol. 7, No. 4, 2020, pp. 48-53.

[25] R. G. Alsarraj, A. M. Altaie, A. A. Fadhil, “Design-
ing and implementing a tool to transform source
code to UML diagrams”, Periodicals of Engineering
and Natural Sciences, Vol. 9, No. 4, 2021, pp. 430-
440.

8. APPENDIX

