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Abstract – Sensors incorporated in devices are a source of temporal data that can be interpreted to learn the context of a user. The 
smartphone accelerometer sensor generates data streams that form distinct patterns in response to user activities. The human context 
can be predicted using deep learning models built from raw sensor data or features retrieved from raw data. This study analyzes data 
streams from the UCI-HAR public dataset for activity recognition to determine 31 handcrafted features in the temporal and frequency 
domain. Various stacked and combination RNN models, trained with attention mechanisms, are designed to work with computed 
features. Attention gave the models a good fit. When trained with all features, the two-stacked GRU model performed best with 99% 
accuracy. Selecting the most promising features helps reduce training time without compromising accuracy. The ranking supplied by 
the permutation feature importance measure and Shapley values are utilized to identify the best features from the highly correlated 
features. Models trained using optimal features, as determined by the importance measures, had a 96% accuracy rate. Misclassification 
in attention-based classifiers occurs in the prediction of dynamic activities, such as walking upstairs and walking downstairs, and in 
sedentary activities, such as sitting and standing, due to the similar range of each activity’s axis values. Our research emphasizes the 
design of streamlined neural network architectures, characterized by fewer layers and a reduced number of neurons when compared to 
existing models in the field, to design lightweight models to be implemented in resource-constraint gadgets.

Keywords: Attention mechanism, deep learning, Gated Recurrent Units

1.  INTRODUCTION

Human activity recognition (HAR) is a widely re-
searched area due to the availability of cutting-edge 
technologies and miniature devices incorporating vari-
ous sensors capable of transmitting time-series data 
forming patterns that help users monitor motion. Of 
the available sensors, tri-axial accelerometer and gy-
roscope sensors are commonly used in determining 
human context. Various activities ranging from simple 
motion to highly complex activities can be accurately 
determined from the sensor data. 

Studies carried out a decade ago utilized the poten-
tial of machine learning classifiers. With the advent 
of deep learning models, features are automatically 
extracted from raw sensor data for classifying the ac-
tivities. The more the number of layers and hidden neu-

rons, the more time for training. Another pitfall is that 
the data collected from sensors forms a spare matrix 
as the continuous signal flow is disturbed due to the 
subtle movement of the sensor, resulting in less well-la-
beled data and an imbalanced class [1]. Data augmen-
tation techniques help in the formation of synthetic 
data computed from the available annotated data 
blocks, which reduces overfitting in models with fewer 
well-labeled data. Of the experimented data augmen-
tation strategies, the moving average smoothing and 
exponential smoothing, the latter increased the accu-
racy of the RNN models considerably when applied to 
temporal data.

The recurrent neural network variants, Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU), 
exhibit high-performance accuracy for time-series clas-
sification problems [2]-[4]. When subtle movements 
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are to be considered, deep learning networks fail to 
capture the context information required for general-
ization from a domain with an unbalanced class dis-
tribution, in particular. Simplified and context-based 
attention is applied to hidden layers in a two-stacked 
GRU architecture concatenated and applied to fully 
connected layers to learn weights for features auto-
matically computed from attention. When the layers 
of these networks are enhanced with an attention 
mechanism, the accuracy improves with the benefit of 
reduced model parameters [5].

Later studies extracted temporal and frequency di-
mension features from time-series data and proved 
that the deep learning models trained with these fea-
tures give comparable accuracies.  A total of 202 tem-
poral and frequency domain features extracted from 
raw accelerometer and gyroscope data stream with 
selected base classifiers recognized human motion 
in a context-aware scenario employing an incremen-
tal learning model [6]. An ensemble model updated 
through weighted majority voting when run with user 
and position-independent streaming data generates 
personalized context recognition applications.

To understand the decision taken by a model in clas-
sification, the knowledge of features is required. To 
learn the impact of each feature on the performance 
of a supervised learning model, a technique called fea-
ture importance ranking is used in deep learning mod-
els. The existence of irrelevant features in the input may 
breach the generalization of a learning system. An op-
timal subset of features results in better model perfor-
mance with optimum resources. In this regard, binary 
and multi-class classification is conducted using fea-
tures selected based on their correlation diversity from 
different activities [7]. Pair-wise correlation between 
temporal features extracted from the raw accelerom-
eter and gyroscope sensors of each activity is deter-
mined and extended to compare binary subsets. Clas-
sification using top-ranked features gave comparable 
performance against all with much reduction in data 
space. The study in [8] correctly separates dynamic ac-
tivities using bidirectional LSTM architecture, deploy-
ing a grid search strategy for the selection of layers and 
their depth. 

This work uses LSTM and GRU models to classify hu-
man context using features computed from raw ac-
celerometer sensor data available in UCI-HAR, a public 
dataset with 6 activities. The contributions of the study 
include the following:

•	 The construction of single and two stacked recur-
rent neural network variants with attention added 
to the RNN layer before the fully connected layer. 
The input to the models is 31 temporal and fre-
quency domain statistical features extracted from 
raw accelerometer sensor data.

•	 The work delves into feature selection, a critical task 
to optimize model performance and efficiency. 

•	 The choice of optimal features from the handcrafted 
features computed from accelerometer sensor data, 
employing feature importance ranking measures.

•	 The comparison of the accuracy of models trained 
with all features and optimal features. The evalua-
tion shows that training the attention-based clas-
sifiers with significant features improved model 
performance.

•	 GRU models’ performance is better than LSTM 
models considering the accuracy metric. 

Following is the structure of the remaining paper: 
Section 2 describes the related literature in time-series 
classification using deep learning models. Section 3 
gives a detailed explanation of various architecture, 
attention mechanisms and feature importance mea-
sures. Section 4 gives an insight into the proposed 
method, while experiments and results are discussed 
in Section 5.

2. RELATED WORKS

An extensive study on various deep learning architec-
tures apropos speed, accuracy and memory is conduct-
ed in [9] using accelerometer and gyroscope sensor data 
to determine human context. The models employed 
hidden units in the range of 100 to 600 that span across 
three layers. The article concluded that CNN captures 
sensor correlations and temporal dependencies effi-
ciently. The model proposed in [10] used two stacked 
LSTM with 64 neurons connected to two convolution 
layers with 64 and 128 filters and a global average pool-
ing layer which reduced model parameters to a great ex-
tent without compromising recognition rates. The per-
formance effect of filter count, optimizers and batch size 
are investigated and the final model is trained utilizing 
the selected optimal hyper-parameters. 

According to a multi-input CNN-GRU model intro-
duced in [11], the same input is fed into three heads 
with convolution layers having various filter sizes, al-
lowing the model to collect feature vectors with local 
correlations at various scales. Two GRU layers that au-
tomatically extract features from the input dataset and 
categorize activity data are applied after the convolu-
tion layers. To distinguish between everyday activities 
and accidents involving falls, this study [4] used inde-
pendent GRU models with forward and backward cells 
that each had 200 hidden units of data gathered from a 
mobile phone accelerometer sensor.

A hierarchical framework constructed with an SVM 
classifier on 12 statistical features from time and fre-
quency domain differentiated coarse-level activities as 
a GRU network input with RSSI data discriminated fine-
level similar activities [12]. The RSSI data was acquired 
from sensors mounted at different locations in two 
different environments utilizing the sniffer technique, 
thereby creating a low-cost, device-free HAR system. 
Accelerometer and angular velocity signal values from 
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the Shimmer platform are gathered to build low-en-
ergy wearable devices for fall and activity recognition 
[13]. These values are then subjected to a compressed 
sensing method. Machine learning classifiers are used 
to extract and analyze 44 temporal characteristics. Ac-
cording to the study, the use of compressed sensing al-
gorithms led to an increase in battery life of 2.55 times 
the higher duration without sacrificing precision.

Fall and non-fall events are categorized using four 
recurrent networks, and their performance is analyzed 
using an embedded device [14]. The advantage of these 
wearable fall detectors apropos energy consumption is 
provided in the paper. The findings demonstrate that 
when implemented in a real-time microcontroller that 
runs on small batteries, a single RNN is capable of dif-
ferentiating multi-class falls.  

The model proposed in [15] compared a linear and 
a nonlinear dimension reduction and feature selection 
technique using LSTM in binary and multiclass classi-
fication for monitoring malicious activity in a network. 
The calculation of the mutual information score helped 
select those features from among the 53 available fea-
tures that had the most significant impact in training the 
model. A novel dimensionality reduction technique that 
randomly organizes a small number of feature vectors 
from each class is proposed in [16]. The selection of fea-
tures is determined based on the Euclidean distance of 
feature vectors that fall in a specific range. The proposed 
method chose 11% of features, and the classification 
techniques resulted in good accuracy and low response 
time, paving the way to low computational cost.

The LSTM architecture's inception is covered in detail 
[17], along with a potential fix for the vanishing gradi-
ent issue that involves maintaining a constant error flow 
by controlling internal cell states. The potential of LSTM 
in overcoming the vanishing gradient problem sub-
stantiated by its performance in a handful of domains 
is portrayed [18]. The review covers in detail the main 
components of the network, their interaction and the 
determination of the weight matrix using a gradient-
based method.  When the input is sparse dataset, a data-
driven model like LSTM is utilized to simulate flood flow 
by analyzing sequential data streams and identifying 
long-term dependencies [19]. The study in [20] exam-
ined whether memristor-based LSTM might be used as 
a solution to the low speed of these models caused by 
their parallel structure and sequential behavior.

GRU networks with weighted averaging, which give 
more weights to the middle range, determine repre-
sentations using handcrafted features extracted from 
raw input vectors, thereby minimizing the need for ex-
pert-level knowledge in feature design [21]. A real-time 
model that recognizes complex activities is designed 
[2] by concatenating multiple convolution kernels with 
different scaling and max-pooling layers. Four such 
Inception-like network is connected with two GRU 
layers, enabling the model to extract sequential tem-
poral dependencies. The classification performance of 

gated recurrent units in emotion recognition is exam-
ined [22] using clean speech data overlay with various 
environmental noises. According to the research, GRU 
produced results similar to LSTM while taking 18.6% 
less time to run.  Network intrusions can be effective-
ly identified using a single or bi-directional GRU with 
128 hidden units followed by three layers of multilayer 
perceptron with 48 hidden nodes and softmax regres-
sion. According to the study [3] BGRU can do better 
in related domains. The work in [5] suggests that aug-
menting convolution models with LSTM moderately 
improves the performance of time-series datasets. The 
refinement phase that iterates with change in learning 
rate and batch size improved model accuracy although 
with increased computational complexity. 

This study applies different RNN variants with attention 
to time and frequency domain features that are extracted 
from raw accelerometer sensor data to identify human 
activity. These features are ranked according to relevance, 
and the best features are used to train the model.

3.  BACKGROUND

Recurrent neural networks (RNN) set themselves 
apart from other types of neural networks by having a 
memory structure that uses earlier input data to influ-
ence current input and output and finds use in ordinal 
or temporal problems involving sequential data. The 
units in each layer share the same weight parameters 
and leverage the backpropagation algorithm to deter-
mine the gradients that appropriately fit the model pa-
rameters. This process may result in smaller gradients, 
which ceases the network’s ability to learn by generat-
ing insignificant weight parameters through constant 
updates. Long short-term memory (LSTM) and Gated 
recurrent units (GRU) mitigate the short-term memory 
problem of RNN models. Internal gating mechanisms 
in these variants control information flow, eliminate 
unnecessary input, and retain what is necessary for ac-
curate prediction. 

3.1. LONG ShORT-TERm mEmORy (LSTm)

Long short-term memory (LSTM) networks are well 
suited for more general sequence learning tasks like activ-
ity identification because they can learn from sequences 
of data through recurrent processing, where the input 
at the present step influences the output at subsequent 
time steps. The gates in LSTM regulate the control flow by 
learning throughout the training procedure what is sig-
nificant and what can be allowed on the cell state [23]. To 
learn which data should be retained and which ought to 
be removed based on relevance, gates integrate sigmoid 
activations that push values between 0 and 1 rendering 
them suited for backpropagation [24]. 

The output of the LSTM is decided by the current 
long-term memory of the network, the cell state, the 
prior hidden state, and the input data at the current 
time step. The forget gate, ft, determines which part of 
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the long-term memory should be deleted or retained 
at this time, given the prior hidden state and the cur-
rent data point in the sequence. 

(1)

Given the previous hidden state and the new input 
data, the new memory network and input gate, it, de-
cide what new information should be added to the net-
work’s long-term memory. The tanh-activated neural 
network, which squishes values between -1 and 1, cre-
ates a vector that indicates how much to update each 
component of the cell state given the new data.

(2)

(3)

The output from the input gate is used to update 
the cell state, ct, to new values that the neural network 
deems appropriate.

(4)

The output gate, ot, which is applied to the newly up-
dated cell state, is a filter that accepts the same input as 
the forget gate along with a sigmoid activation to en-
sure that only necessary information is output. Hence, 
the output gate determines the next hidden state, 
which aids in prediction.

(5)

(6)

where Wx, gate(x) neuron weights, ht-1, the output of pri-
or block, xt, input at current time step, bx, gate(x) biases, 
ct, cell state at time step(t) and č, candidate for cell state 
at time step (t). The following time step is subsequently 
updated with the new hidden state and cell states.

3.2. GATED RECURRENT UNITS (GRU)

A gated recurrent unit (GRU) is designed similarly to 
LSTM and, for the most part, yields results that are just as 
good. Two vectors - update and reset gates – decide in-
formation transfer and the model trains relatively quick-
ly with fewer parameters.

The update gate, zt, assists the model in determining 
how much of the past information should be transmit-
ted into the future, thereby eliminating the possibility of 
the vanishing gradient problem.

The model uses the reset gate, rt, to decide how 
much of the past information to forget.

(7)

(8)

The candidate activation, ĥt, which uses the reset 
gate to store the apposite information from the past is 
computed.

(9)

Finally, the activation at time t, which contains the in-
formation for the current unit is determined and trans-
mitted to the network.

(10)

where ht-1, the output of the prior vector, xt, the input 
vector, ht, the output vector, W and U, weight matrices 
and ʘ, the Hadamard product.

3.3. ATTENTION mEChANISm fOR ACTIvITy 
 RECOGNITION

The attention mechanism enhances the accuracy of 
time series classification models by emphasizing the 
more pertinent temporal features produced by recur-
rent neural networks through a weighted combination 
of all hidden state vectors to focus the models's atten-
tion on the most significant part of the input sequence. 
The hierarchical context-based attention mechanism 
employs an adaptive focusing technique to produce a 
context vector capable of utilizing a hierarchy of time-
dependent features in the sensor data.

Alignment scores, weights, and the context vector are 
computed iteratively as part of the attention process. The 
alignment score, eij, computed using hidden state, hj, and 
previous output, si-1, indicates how closely the parts of the 
input sequence match with the current output.

(11)

where a(.) represents the alignment model of a feedfor-
ward neural network.

A softmax function is applied to the previously com-
puted alignment scores to determine the weights. 

(12)

The weighted sum of the hidden states then decides 
the context vector, c. 

(13)

Incorporating attention to the layer before the dense 
layer in a single RNN and on layers of a stacked network 
improves accuracy, reduces the computational cost 
and helps to learn the decision process.

3.4. fEATURE ImpORTANCE

3.4.1. CORRELATION AmONG fEATURES:

Algorithms for predictive modeling need data ad-
equately representational of the target domain. Identi-
fying and extracting discriminating features helps con-
struct a model that not only performs effectively but 
also lessen the likelihood that decisions will be based 
on outliers. The selection of appropriate features can 
be determined statistically using correlation analysis 
techniques like Pearson product-moment correlation 
and Spearman rank-order correlation.
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Pearson’s correlation coefficient concisely summaris-
es the relationship between two data points. It is calcu-
lated by dividing the covariance of the two points by 
the product of their respective standard deviation. For 
a given feature variable, x, and target variable, y, the 
Pearson coefficient, ρxy, is defined as:

(14)

Spearman’s correlation coefficient is a good measure 
when the nature of the distribution and relationship 
between the data points remain unclear. For the given 
variables, the Spearman correlation, σxy, is calculated as:

(15)

where di is the difference between the ranks of the 
data points. Fast Fourier Transform's first and third 
components are most correlated from among the 31 
features calculated on the UCI-HAR dataset, with cor-
relation values of -0.803 and 0.622 respectively, Fig. 1.

(a)

(b)

fig. 1. Correlation between feature and target data 
points in UCI-HAR dataset (a) Pearson Correlation 

(b) Spearman’s rank

3.4.2. permutation feature Importance:

Permutation feature importance inspects the estima-
tor by randomly shuffling one feature and the feature's 
importance is determined by calculating the model’s 
prediction error.  Suppose the model error increased af-
ter permuting the feature, in that case, it indicates that 
the feature contributed to prediction and if the error did 
not increase, it implies that the feature is not significant. 

Compute the score, s n,j, of a fitted predictive model, 
m, on a feature matrix, F, using a scoring argument that 
accepts multiple scores (like RMSE) for each iteration n 
from 1 to N and for each feature, fj, permuted randomly.

The computation of importance, ij, for a given fea-
ture, fj, is defined as:

Feature importance gives a reasonable interpreta-
tion of how the model will behave, provided the origi-
nal prediction is accurate. It requires that features be 
uncorrelated since highly correlated features reduce 
the importance of the feature in question by spreading 
the importance between both features.

3.4.3 Shapley values

The contribution of a feature in a prediction is given 
by the Shapley value, which evaluates the relevance of 
a feature by including and excluding it in the predic-
tion. More precisely, understanding how the model 
behaves for every potential combination of features 
is necessary to calculate Shapley values. The Shapley 
value, ∅i (v), for a given feature is calculated as:

(17)

where R, is the permutation order of features, v(P∪{i}), 
is the contribution of features to the outcome including 
the ith feature and v(P), is the contribution of features 
on the outcome excluding the ith feature. This calculates 
each feature’s average contribution by adding the mar-
ginal contribution of an individual feature to the result 
of all possible permutations of the order of the features.

4. pROpOSED mEThOD

The study predicts human context using data ac-
quired from smartphone accelerometer sensors. The 
raw signals are analyzed to extract several temporal 
and frequency domain features, which are then ap-
plied to deep learning models with an attention mech-
anism added to the layers before the dense layer. The 
model interpretability is studied using the permutation 
feature importance and shapely values. 

4.1 DATASET DESCRIpTION

The public dataset, Smartphone-based Recognition of 
Human Activities and Postural Transitions Data Set (UCI-
HAR https://archive.ics.uci.edu/dataset/240) [25], is used 
to evaluate the recurrent neural network variants. 

(16)
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Tri-axial accelerometer and gyroscope data from 30 
users between the ages of 19 and 48 were collected at a 
constant rate of 50 Hz for the samples in a semi-controlled 
environment. The signal data is available for 6 activities, 
three sedentary activities (Sitting, Standing, and Lying), 

three dynamic activities (Walking, Walk Upstairs and 
Walk Downstairs) and postural transitions. 

The dataset contains an equal proportion of represen-
tative samples from all activities.

(a) (b) (c)

fig. 2. Accelerometer Signal Transformation (a) Raw signal (b) ex of axis values (c) Fibonacci (ex) for n=4

4.2.  DATA pREpROCESSING

The accelerometer sensor data is considered a three-
dimensional vector, Ai=(axi

, ayi
, azi

) ∈ R3, where Ai repre-
sents the ith signal data. The raw signal data is smooth-
ened using a simple exponential window function.

Ak= α Ak+(1-α) Ak-1 where α=0.001

The continuous stream data is divided into blocks of 
128 sample points, called an example. The raw values are 
transformed to a larger range by first computing the ex-
ponent of each axis value, y=ex, and then by generating 
the Fibonacci series with the initial value obtained from 
the earlier step for n = 4. The transformations are applied 
in succession to separate linearly inseparable values; see 
Fig. 2. 31 temporal and frequency domain features are 
computed from a 50% overlapped window. The com-
plete feature list is given in Table 1. The standard devia-
tion indicates how far the signal deviates from its mean 
value. Skewness quantifies the dispersion of a signal 
around the mean value and is computed as the ratio 
of average deviation from the mean cubed by the stan-
dard deviation cubed. The availability of peaks in a nor-
mal distribution is measured by kurtosis. It is the fourth 
central moment divided by the square of the variance. 

Table.1. Temporal and frequency domain feature list

No feature
1 – 3 Mean along each axes

4 – 6 Standard Deviation along each axes

7 – 9 Skewness of the component signal

10 – 12 Kurtosis of the component signal

13 – 15 Root Mean Square of ith acceleration vector

16 - 18 Mean Absolute Deviation

19 – 21 Range of each axes

22 – 25 Fast Fourier Transformation components of block

26 Mean of magnitude vector

27 Standard deviation of magnitude vector

28 RMS of Standard Deviation along each axes

29 Standard Deviation magnitude in the horizontal plane

30 RMS of axes data in the horizontal plane

31 Maximum peak-to-peak acceleration amplitude

Root Mean Square (RMS) determines the signal am-
plitude and energy in the time domain.

(18)

The mean absolute deviation is the average distance 
between each data point, aki

, and the mean, μ.

(19)

The range is calculated as the difference between 
maximum and minimum axes value. Fast Fourier Trans-
form is applied to blocks to determine the amplitude 
spectrum. The standard deviation of the magnitude 
vector is determined as

(20)

The standard deviation of the horizontal plane and 
RMS of axes data in the horizontal plane is computed 
with data points in the x, akx

 , and z, akz
, axes.

(21)

(22)

Maximum peak-to-peak acceleration amplitude gives 
the maximum positive or negative signal deviation 
from its reference level.

(23)

4.3. LSTm AND GRU NETWORKS:

The study uses single and two-layer stacked LSTM and 
GRU architectures as well as LSTM-GRU combination 
networks with attention applied to the hidden state out-
put of the layer immediately preceding the dense layer. 
The proposed model is depicted in Fig. 3. 

Single-stacked models used 64 hidden neurons in 
the LSTM or GRU layer and a fully connected dense lay-
er with 32 neurons. A dropout of 50% is applied after 
the first layer to aid with the de-correlation of weights 
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by selectively eliminating neurons, thus forming a bet-
ter representation of input data. 

The rectified linear activation unit (ReLU) that works 
on a simple calculation that drops the value to 0 for 
non-positive inputs is employed as the activation func-

tion in layers. The final fully connected output layer is 
applied with a softmax activation to classify human 
activities. The two stacked variants and the combina-
tion models used 64 neurons each in their architecture 
layers, followed by a dense layer with 32 neurons. The 
stacked variant model is given in Fig. 4.

fig. 3. Proposed Architecture

(a) (b)

fig. 4. Two stacked layers model architecture (a) without attention (b) with attention

For LSTM and GRU stacked models, a dropout of 50% 
is introduced after the stacked layers. However, for the 
combination model, a dropout of 50% is added to the 
first layer and 20% to the second layer. All layers except 
the final fully connected layer used the ReLU activation 
function. The architecture diagram of the LSTM-GRU 
combination model is given in Fig. 5.

fig. 5. LSTM-GRU Combination model architecture

In every architecture, an attention mechanism is added 
to the layer just preceding the dense layer. When comput-
ing the weights for single stacked models, the attention 
mechanism uses the only RNN layer available. For stacked 
and combination models, weights are computed with the 
second RNN layer preceding the fully connected layer. All 
models gave better fit when trained with Adam optimizer 
and a batch size of 32. The models converged at epochs 
in the range of 25 to 40 when the early stopping regu-
larization technique was implemented. Validation loss is 
the monitoring metric to terminate the training based on 
validation performance. The learning rate is the hyperpa-
rameter that determines how much of the model should 
be changed each time the weights are updated with the 
estimated error. Single-stacked models performed better 
by setting the learning rate to 0.0025, while stacked mod-
els worked with a value of 0.001.

fig. 6. Network architecture diagram of the two 
stacked GRU model

The input sequence to the network in Fig. 6 is the 
features vector computed from each example of the 
transformed accelerometer signal. The GRU layers 
process the sequential data and capture temporal de-
pendencies. The attention mechanism added to the 
second GRU layer focuses on specific elements of the 
sequence. The dense layers process the output from 
the GRU layers and classify the activities. 
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5. EXpERImENTS AND RESULTS

The proposed models in the activity recognition do-
main are evaluated using the UCI-HAR public dataset. 
The metrics used in evaluating the model classification 
performance are accuracy, the ratio of correct predic-
tions to total predictions; precision, a measure of the 
accuracy of positive predictions; recall, a measure of 
the completeness of positive predictions and F1-score, 
the harmonic mean of precision and recall. 

(26)

(25)

(27)

(24)

5.1. EvALUATION Of mODELS USING ALL 
 COmpUTED fEATURES

The two stacked GRU architectures exhibited the 
highest accuracy of 99% when the model is trained 
with attention, compared to 98% when the attention 
mechanism is not used. Table 2 compares the recogni-
tion rate for models with and without attention when 
trained with all 31 features extracted from the raw ac-
celerometer signal.

Table. 2. Recognition rate of classifiers in the UCI-
HAR dataset

model Architecture
performance (Accuracy)

model without 
Attention

model with 
attention

Single Layer LSTM 0.85 0.89

Single Layer GRU 0.89 0.87

Two Stacked LSTM 0.94 0.93

Two Stacked GRU 0.98 0.99

LSTM - GRU 0.96 0.95

GRU - LSTM 0.93 0.93

The performance of stacked GRU architecture, when 
trained with attention, is given in Table 3. The dynam-
ic activity, walking, and all the sedentary activities 
achieved the highest scores.

Table. 3. Performance of stacked GRU with 
attention

Activity precision Recall f1-Score

Walking 1.00 1.00 1.00

Walk Up 0.94 0.98 0.96

Walk Down 0.98 0.94 0.96

Sitting 1.00 0.99 0.99

Standing 0.99 1.00 1.00

Lying 1.00 1.00 1.00

The confusion matrix for the two stacked GRU mod-
els with and without attention are given in Fig. 7. The 
misclassification of walking upstairs and downstairs is 
due to the similarity in signal patterns gathered from 
the accelerometer sensor.

(a)

(b)

fig. 7. Confusion Matrix for the two stacked GRU 
architecture (a) Model with attention (b) Model 

without attention

The raw signal pattern of these activities is given in Fig. 
8. The models are trained with fewer parameters as com-
pared to the baseline architectures. The total trainable 
parameters used in two stacked GRUs with attention is 
51519, whereas the model trained without attention 
used 51454 parameters. There is only a < 1% increase 
in parameters when trained with attention. Fig. 8 shows 
that both activities’ axis values fall within a similar range, 
which can cause misclassification when trained with 
handcrafted features. The factor that makes the pro-
posed model distinct is fewer neurons in the hidden lay-
ers and a single dense layer before the output layer. The 
training time is considerably reduced in training using 
features extracted rather than the automatically learned 
features from the accelerometer vector. 
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To comprehend how and why a complex model 
reached a particular conclusion, it helps to analyze the im-
portance of various features in the model. The permuta-

tion feature importance values are calculated to learn the 
model’s interpretability. Feature importance arranged in 
increasing order of significance is given in Fig. 9.

(a) (b)

fig. 8. Raw accelerometer signal patterns (a) Walking Upstairs (b) Walking Downstairs

fig. 9. Permutation feature importance scores in the UCI-HAR dataset

The magnitude vector computed for the x-axes com-
ponent of the acceleration vector gave the highest 
score of 0.09565 when feature ranking is performed us-
ing the Random Forest Classifier. Permutation feature 
importance may often lead to misleading interpreta-
tions in the presence of strongly correlated features. 
Figure 1 shows that the features used in the study are 

correlated. Hence, to determine how a feature contrib-
utes to making a prediction, Shapley values, shown in 
Fig. 10, are a better choice, but their implementation 
is more expensive. The area of the force plot to the 
left side from the mean position are the features that 
helped in prediction, whereas those on the right side 
would have decreased the likelihood of prediction.

fig. 10. SHAP explanation force plot for single layer GRU model

The four features with the highest score, namely, 
magnitude vector along the x-axis, signal mean along 
the y-axis, root mean square of standard deviation 
along each axis and fast Fourier transform component, 
plotted against the activity classes, are shown in Fig. 11. 

It is observed that lying (activity 6) in Fig. 11 (a) does 
not overlap with any other activities for the magnitude 
vector along the x_axis. This is the most separable ac-

tivity for all models. The dynamic activities of Walking 
(activity 1), Walking Upstairs (activity 2) and Walking 
Downstairs (activity 3), which overlap significantly for 
all features, make prediction hard. Similar to this, the 
root mean square of the standard deviation along each 
axis, Fig. 11 (c), and the fast Fourier transform compo-
nent, Fig. 11 (d), entirely overlap the sedentary behav-
iors of Sitting (activity 4) and Standing (activity 5), mak-
ing classification difficult. 
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(a)

(b)

(c)

(d)

fig. 11. Most important feature values against 
activity classes (a) Magnitude vector along the x-axis 
(b) Signal mean along the y-axis (c) RMS of standard 
deviation along each axis (d) Fast Fourier Transform 

component (Activity: 1 – Walking, 2 – Walking 
Upstairs, 3 – Walking Downstairs, 4 – Sitting, 5 - 

Standing, 6 – Lying)

5.2. EvALUATION Of ThE mODELS USING 
 OpTImAL fEATURES

Among the 31 features computed from raw accel-
erometer sensor data, 23 features representing three-
fourths of the total features, arranged according to 
relevance using permutation feature importance mea-
sure, are used to train the models. 

Table 4 shows the comparison between recognition 
rates of classifiers with and without attention mecha-
nism using three-fourths of the highly relevant features. 
The introduction of the attention mechanism has im-
proved the recognition rates of all models. The accuracy 
of models trained with GRU shows high performance 
compared to LSTM architectures. Figure 12 depicts the 
training and validation accuracy and loss curves for the 
GRU model having an attention-based stacked layer.

Table. 4. Recognition rate of classifiers using 75% 
features selected based on feature importance

model 
Architecture

performance (Accuracy)
model without 

Attention
model with 

attention
Single Layer LSTM 0.85 0.88

Single Layer GRU 0.87 0.88

Two Stacked LSTM 0.93 0.93

Two Stacked GRU 0.95 0.97

LSTM - GRU 0.92 0.93

GRU - LSTM 0.92 0.97

fig. 12. Train and validation curve for stacked 
attention-based GRU model (a) Accuracy curve (b) 

Loss curve

(a)

(b)

International Journal of Electrical and Computer Engineering Systems
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The training and validation loss decreases with in-
creased epochs and stabilizes at a value without much 
gap, indicating that the model is a good fit. It is also to 
be noted that the decrease in the number of features 
has not affected the performance of the model.

5.3.  EvALUATION Of ThE mODELS USING 
 fEATURES GIvEN By ShApLEy vALUES

The highly ranked features selected by Shapley val-
ues, Figure 9, and fast Fourier transform components, 
making a total of 16 features, are used to train the 
model. Table 5 shows the recognition rate of classifiers 
trained with and without attention using half of the to-
tal features originally used in the study, selected based 
on their ranking. 

Table. 5. Recognition rate of classifiers using 50% 
features selected by Shapley values

model 
Architecture

performance (Accuracy)
model without 

Attention
model with 

attention
Single Layer LSTM 0.85 0.96

Single Layer GRU 0.93 0.95

Two Stacked LSTM 0.93 0.96

Two Stacked GRU 0.96 0.96

LSTM - GRU 0.96 0.95

GRU - LSTM 0.96 0.96

Comparing the results obtained from various study 
using the lists of all significant features reveals that 
correlated features minimally impact the performance 
of the classifiers. When trained using 16 features and 
attention mechanisms, all models performed compa-
rably. The time overhead of the attention mechanism 
in single-layer models is less than 2 seconds, and in 
stacked models is less than 10 seconds.

Table. 6. Statistical analysis of classifiers

model Classifiers
Independent t-test

T-statistic p-value

All features 0.06 0.95

75% features 0.88 0.39

50% features 1.43 0.18

An independent t-test is carried out with a signifi-
cance threshold set at 0.05 to ascertain whether the 
observed performance difference between the atten-
tion-based approach and the non-attention-based 
strategy is statistically significant. The T-statistic and 
p-value obtained in the statistical analysis of the classi-
fiers are given in Table 6.

The Receiver Operating Characteristic (ROC) curve is 
shown for all models trained with optimal features in Fig. 
13, illustrates the classification performance. This measure 
depicts the model's ability to accurately predict the posi-
tive class when the result is positive. The Area Under the 
Curve (AUC) measure in Fig. 12 indicates that all models 
are good at discriminating various activities.  

(a)

(b)

fig. 13. ROC analysis (a) models trained with 
optimal features (b) ROC curve zoomed in at top left

The LSTM-GRU combination model has the highest 
AUC, followed by the two-stacked GRU model. Less false 
positives are indicated by smaller values on the plot's 
x-axis, and greater values on the y-axis show more true 
positives. Table 7 gives the proposed two stacked GRU 
models compared with other baseline architectures in 
the literature on the UCI-HAR dataset. The proposed 
model used a compact architecture with minimum lay-
ers and fewer neurons, thereby reducing the number of 
parameters, to design a lightweight RNN model.

6. CONCLUSION

In conclusion, we have conducted a comprehensive 
investigation into the classification of human activi-
ties using single and stacked recurrent neural network 
variants with an attention mechanism built into the 
layer preceding the fully connected dense layer. The 
attention mechanism enhanced the classification per-
formance of all models, particularly those trained with 
GRU. Our approach relies on analyzing temporal and 
frequency domain features calculated from raw accel-
erometer signal data, offering a robust foundation for 
human activity classification. The classifier uses fewer 
neurons and a single dense layer, distinguishing our 
studies from others in the field that often employ more 
complex architectures. 

Volume 14, Number 10, 2023
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The results obtained in the study are given below.

i. GRU performed better than LSTM with the selected 
handcrafted features to determine human context.

ii. The attention mechanism, when used with stacked 
variants, improved the overall accuracy of all mod-
els.

iii. The significance of features in prediction is deter-
mined using permutation feature ranking mea-
sures and shapely values. The model is retrained 

with optimal features that contributed the most, 
still attaining comparable accuracies. 

iv. The accuracy of the GRU stacked models, which 
reached 99% when trained with all features, 
dropped by less than 2% when trained with three-
fourths of the optimal features and by 3% when 
only half of the features were used. 

In future work, more feature importance measures 
to attain the interpretability of models having features 
with high correlation will be attempted.

Table. 7. Comparison of proposed model with baseline architectures

paper year model Layer Neurons/ layer Train example Test Example Accuracy

[7] 2020 LSTM-CNN 4 (32,32,64,128) 7319 3069 95.8

[26] 2019 GRU with 
Attention 2 - 7352 2947 94.16

[27] 2023 GRU-INC 2 (144, 128) - - 96.4

[28] 2023 CNN-GRU with 
Attention 4 (128,128) - - 94.19

Proposed Model Stacked GRU 
with Attention 2 (64,64) 2092 813 99

- The paper does not report these parameters
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