
Gray Level Co-occurrence Matrix based Fully 
Convolutional Neural Network Model for 
Pneumonia Detection

369

Original Scientific Paper

Abstract – This study presents a new method to improve the detection ability of a convolutional neural network (CNN) in pneumonia 
detection using chest X-ray images. Using Gray-Level Co-occurrence Matrix (GLCM) analysis, additional channels are added to the 
original image data provided by Guangzhou Children's Hospital in Guangzhou, China. The main goal is to design a lightweight, fully 
convolution network and increase its available information using GLCM. Performance analysis is performed on the new CNN model 
and GLCM-enhanced CNN model, and results are compared with Transfer Learning approaches. Various evaluation metrics, including 
accuracy, precision, recall, F1 score, and AUC-ROC, are used to evaluate the improved analysis performance of CNN. The results showed 
a significant increase in the ability of the model to detect pneumonia, with an accuracy of 99.57%. In addition, the study evaluates the 
descriptive properties of the CNN model by analyzing its decision process using Grad-CAM.
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1.  INTRODUCTION

Pneumonia is a leading cause of infant death glob-
ally. Hence, a precise diagnosis is essential for success-
ful treatment. The current standard of care for diagnos-
ing pneumonia consists of imaging techniques and 
physical examination, with chest X-rays and computed 
tomography (CT) scans being the most common imag-
ing procedures. Radiologists are tasked with interpret-
ing these images, using their training to spot signs of 
pneumonia and inform further decisions about patient 
care. However, radiologists' views of this procedure 
vary, making it subjective. Furthermore, there are dis-
advantages to relying solely on human interpretation, 
and the healthcare system faces difficulties due to the 
growing need for diagnostic imaging. More objective, 
scalable, and practical techniques for pneumonia de-
tection are required because of the limitations associ-
ated with subjectivity, human factors, and technologi-
cal limits [1]. 

Convolutional Neural Networks (CNNs) are a power-
ful method of deep learning techniques that can iden-
tify complex patterns in images [2-4]. A typical CNN 
has many layers of artificial neurons, frequently with 
different kinds of layers for various purposes. They are 
extensively used in the medical imaging diagnosis and 
classification of a wide range of diseases, from brain tu-
mors to skin lesions and, more recently, respiratory ill-
nesses, including pneumonia. Even with their efficacy, 
there are still many obstacles to overcome. One major 
obstacle is the large amount of computational power 
required to train reliable CNN models. Large-scale da-
tasets or complex models may require complex and 
time-consuming training methods, which call for so-
phisticated systems that aren't always readily available.

Models for transfer learning, like VGGNet, AlexNet, 
MobileNet, and ResNet, have been widely used for 
various applications, including the classification of 
medical images. Although these models have shown 
to be successful, their original architectures were in-
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tended for multiclass classification on datasets such 
as Imagenet, which has more than 100 classes. These 
models are considered excessive for applications such 
as pneumonia detection, where input images are fre-
quently grayscale with a single channel, and there are 
just two classification classes. Their larger number of 
channels and intricate network architecture also lead 
to bulkier model sizes, which require significant pro-
cessing power. As a result, there is an increasing need 
for low-complexity, lightweight models, especially for 
resource-constrained setups. This paper explores a 
novel strategy for creating a lightweight X-ray image 
classification model that uses point-wise convolution 
and max-pooling to achieve progressive dimension 
reduction and channel count reduction. This research 
also examines the combination of the Gray-Level Co-
occurrence Matrix (GLCM) to improve the detection 
power of CNN models. By incorporating additional data 
channels from the GLCM into the original image. 

The main idea of this work is to show that a small and 
robust CNN model may produce predictions that are 
comparable to or better than those produced by cur-
rent techniques, even though it is much smaller in size. 
Additionally, adding texture feature information from 
images can further improve this performance.

The key contributions of this manuscript include:

•	 Creation of a lightweight fully convolutional CNN 
model for pneumonia classification

•	 Performing necessary preprocessing on the Xray 
images

•	 Extracting GLCM-based channels from the given 
images and appending them to original images for 
the classification task

•	 Experimentation with channel dimensions and 
counts while keeping crucial spatial information 
for precise predictions

•	 Comparison of the proposed model's classification 
performance to transfer learning models (trained 
on the same dataset), such as VGG and ResNet

The sections that follow are arranged as follows: The 
findings of the literature review are shown in Section 
2. In Section 3, the dataset used and methods are de-
scribed in detail. The results are shown and discussed in 
Section 4. The manuscript is concluded in Section 6, af-
ter Section 5 examines potential future developments.

2. LITERATURE REVIEW

Souid et al. [5] used a modified MobileNet V2 model 
to make predictions from radiographic images. They 
applied transfer learning and metadata integration, 
extracting data from the NIH Chest-Xray-14 database. 
The performance of their method is evaluated using 
the AUC statistic, giving an average AUC of 0.558 and 
achieving an accuracy of more than 90%. 

In their study, Oh et al. [6] introduced a deep neural 
network model based on patch-based analysis. They 
trained the model on a small data set and based their 
decisions on broad observations from random lung 
patches. In addition, they introduced the Grad-CAM sa-
liency map for detailed information. 

Khan et al. [7] developed a CoroNet model using the 
Xception architecture to train it on a dataset containing 
X-ray images of COVID-19 and pneumonia. Their model 
achieved an accuracy of 89.6% and a precision and re-
call rate of 90% and 89.9%, respectively, for COVID-19.

Ozturk et al. [7] proposed a new model in their study 
to improve the diagnosis of COVID-19. This model 
achieved a good accuracy of 87% in two variable clas-
sifications.

Wijaya et al. [8] used K-Nearest Neighbor and Gray 
Level Co-Occurrence methods, achieving the highest 
accuracy of 66.20% for K=5.

Polsinelli et al. [9] designed a lightweight CNN  based 
on SqueezeNet, which correctly detected COVID-19 in 
CT chest scans with 85.03% accuracy, 

Joshi et al. [10] conducted a study where a CNN mod-
el called LiMS-Net was proposed to solve the problem 
of overfitting in training samples and the detection of 
COVID-19 by CT scans. With 2.53 million parameters, 
the model outperformed the transfer learning ap-
proaches and achieved 92.11% accuracy and 92.59% 
F1 score, demonstrating its effectiveness even with 
small CT data.

Several other studies [11-13] were also performed to 
identify pneumonia using machine learning and X-ray 
images of the chest, thus reinforcing the critical role of 
machine learning and deep learning in automatic de-
tection.

3.  MATERIALS AND METHODS

This study uses X-ray images showing different pneu-
monia patterns as the dataset to build and validate our 
model. We designed a simple CNN model to handle the 
complexity of pneumonia diagnosis, carefully consid-
ering the balance between model complexity and di-
agnosis accuracy within the limits of a real clinical set-
ting. Our dataset is divided into training, validation, and 
testing sections to evaluate the model's performance. 
In addition to creating and evaluating the model, we 
use Grad-CAM visualization to see the areas in the im-
age that contribute more to pneumonia classification.

The proposed framework and workflow are shown 
in Fig. 1. The first step in the process is loading the im-
ages, which are then resized to 224 by 224 pixels and 
normalized. These images are then processed using 
a feature extractor to extract different texture-based 
GLCM feature channels. After that, the extracted chan-
nels are added back to the original image. Now that 
this enhanced image has 1+9 channels, we train our 
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lightweight CNN model. A loss computation is done, 
and the network weights are modified following the 
resultant computed loss.

3.1. DATASET

The dataset used for this study consisted of chest X-ray 
images of two kinds: one representing pneumonia and 
the other showing normal conditions. These radiograph-
ic images were provided by Guangzhou Children's Hos-
pital, China [14]. The dataset is publically available and 
can be accessed using this link: https://data.mendeley.
com/datasets/rscbjbr9sj/3. A pneumonia case includes 
images that show different levels and degrees of the 
disease, while a normal case includes images without 
any signs of pneumonia. This diverse dataset serves as a 
reliable basis for developing and evaluating our simple 
CNN model for diagnosing pneumonia. The image has 
different dimensions in the study, although the majority 
is 255 x 255 pixels with a depth of 24 bits, and the images 
are in PNG format.

Table 1. Train and test split for dataset

Class label Training Testing
Normal 1340 3874

Pneumonia 224 241

3.2. PREPROCESSING

In the study, all images were processed by resizing 
them to a size of 224 x 224 pixels. The main goals of re-
sizing were to enhance model performance and com-
putational efficiency. First, resizing ensures consistency 
in the data provided to the network by helping to stan-
dardize input dimensions throughout the dataset. This 
uniformity is essential for the CNN to efficiently learn 
and generalize patterns. Additionally, resizing lessens 
the computational effort. This is particularly useful 
when training big models on hardware that is con-
strained. Apart from this, resizing also allows effective 
comparison of results. 

Next, we normalize the pixel values in the image; 
Normalizing improves the training stability and con-
vergence of the model. Normalizing guarantees that 
features in various channels are on a similar scale and 
helps reduce pixel intensity variances. By avoiding prob-
lems like vanishing or exploding gradients. Additionally, 
it strengthens the network's resistance to variations in 
lighting and enhances its capacity to recognize patterns 
in various images. The calculation of normalized pixel 
values is performed using the formula [15]:

normalized_value(z) = (pixel_value(x) - 
average_value(µ)) / standard_deviation(σ)

(1)

3.2.1. Gray-Level Co-occurrence Matrix (GLCM)

Apart from resizing the images, we also apply the 
GLCM method to extract and create nine additional 
channels, including Mean, Standard Deviation, Con-
trast, Dissimilarity, Homogeneity, Angular Second Mo-

ment, Energy, Maximum, and Entropy values. These 
additional channels are appended back to the original 
image (refer to Fig. 2), and the image is then converted 
into a tensor object for model training. 

Gray-Level-Co-occurrence Matrix is an image texture 
analysis technique commonly used in image process-
ing and computer vision. It defines the spatial relation-
ship between pixel intensity values in a digital image. 
A GLCM is constructed by counting the occurrences of 
two pixels with strong values at different distances and 
directions in the image. 

3.3. DEEP NEURAL NETWORk CLASSIFIER

The proposed CNN model is suitable for pneumo-
nia classification, distinguishing between normal and 
pneumonia conditions. Its purpose is to diagnose 
pneumonia in patients by analyzing chest x-ray im-
ages. The following sections will provide a detailed de-
scription of this CNN model and go into the details of 
its development and analysis of its results.

3.3.1. Components of Model

The proposed CNN model is designed to classify 
pneumonia, with the primary goal of distinguishing 
between normal and pneumonia-related conditions 
from chest X-ray images. This model uses layers with 
filters of different sizes (kernels), such as 3x3 or 5x5, to 
extract essential features from the input image. These 
filters combine, creating feature maps representing 
different parts of the original image [16]. Batch Nor-
malization is used after every layer. It involves normal-
izing the intermediate feature maps within a batch of 
training samples to have zero mean and unit variance. 
By applying BatchNorm, the network becomes less 
sensitive to variations in the distribution of inputs, 
leading to improved training stability and faster con-
vergence [17].

We can define the normalization formula of Batch 
Norm as:

(2)

where mz and sz represent the mean and standard 
deviation

Non-linearity is introduced by using an activation 
function, namely ELU, which is given by the following 
formula [18]:

f(x) = { x,if x > 0 and -α * (exp(-x) - 1), if x < 0} (3)

In addition, the model uses a reduction method, 
namely Max pooling, to reduce space dimensions 
while maintaining essential features. It divides the fea-
ture map into non-overlapping areas and selects the 
maximum value in each area, preserving the essential 
features and removing the less important details. Glob-
al Average Pooling (GAP) is used at the end to reduce 
an entire channel to one value. 
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Finally, during training, the model uses Softmax acti-
vation and negative log loss as a function to transform 
the existing values into a probability distribution with 
a wrong prediction penalty, thus making predictions 
more accurate [19].

3.3.2. Architecture of the Proposed Model

The proposed CNN model comprises convolutional 
layers, pooling layers, and GAP layers. The PyTorch li-
brary is used to design the model in Python. This model 
follows the process of compression and expansion to 
add channels and consists of two types of blocks: con-
volutional and transition blocks. 

In convolutional block, the input or feature maps 
are convolved over by a 3x3 filter with a stride of 1 and 
padding of 0, the number of channels in the filter pro-
gressively increases twice (e.g., 16,32,64), and then the 
transition block is applied to bring the channels back 
to the starting value (e.g., 16). In the study, we have 
trained the same CNN model twice, once with the origi-
nal image of 3 channels and again with GLCM images 
of 3+9 channels. Thus, the number of input channels 
varies for both cases.

In a convolutional block, we have used a 3x3 kernel 
to create feature maps of channel sizes 16, 32, and 64; 
after every convolution, a batch normalization and ELU 
are added. Once the model reaches 64 channels, the 
dimension of the feature map is reduced by using max-
pooling. Additionally, the size of the channels is also 
reduced using point-wise convolution. 

This transition block can be understood with the 
help of Fig. 3. Suppose we have an input of Channels (C) 
x Width (W) x Height (H). On this input, we apply max-
pooling, which reduces the dimension of the image by 
a factor of r (generally 2). Thus, the resulting output will 
become C x W/r x H/r. Note that the number of chan-
nels are still the same, just the dimensions of the image 
are reduced. Next, we use point-wise convolution to 
reduce the number of channels. 

This is done by using a filter of C x 1 x 1. Now, this fil-
ter can be used multiple times depending on the chan-
nels we need as output. Thus, the output after every 
transition block will become C/p x W/r x H/r where r is 
the reduction factor for dimension and p is the reduc-
tion factor for a number of channels.

This transition prepares the model for another cycle 
of increasing channels using a convolutional block. This 
cycle is repeated four times until the image size is down 
to 11x11 with 16 channels. After this, we convolve us-
ing 3x3 filters twice with channel size increasing to 32 
and 64, and then Global Average Pooling is applied, 
which gives an output of 64x1x1. We apply point-wise 
convolution to reduce this to 2x1x1, our final output 
before softmax.

The step-by-step operation is shown in the model 
summary table below.

Layer kernel Size Input Shape Output Shape
Input - - [3, 224, 224]

Conv2d 3x3 [3, 224, 224] [16, 222, 222]

Conv2d 3x3 [16, 222, 222] [32, 220, 220]

Conv2d 3x3 [32, 220, 220] [64, 218, 218]

MaxPool2d 2x2 [64, 218, 218] [64, 109, 109]

Conv2d 1x1 [64, 109, 109] [16, 109, 109]

Conv2d 3x3 [16, 109, 109] [32, 107, 107]

Conv2d 3x3 [32, 107, 107] [64, 105, 105]

MaxPool2d 2x2 [64, 105, 105] [64, 52, 52]

Conv2d 1x1 [64, 52, 52] [16, 52, 52]

Conv2d 3x3 [16, 52, 52] [32, 50, 50]

Conv2d 3x3 [32, 50, 50] [64, 48, 48]

MaxPool2d 2x2 [64, 48, 48] [64, 24, 24]

Conv2d 1x1 [64, 24, 24] [16, 24, 24]

Conv2d (with 
Padding) 3x3 [16, 24, 24] [32, 24, 24]

Conv2d 3x3 [32, 24, 24] [64, 22, 22]

MaxPool2d 2x2 [64, 22, 22] [64, 11, 11]

Conv2d 1x1 [64, 11, 11] [16, 11, 11]

Conv2d 3x3 [16, 11, 11] [32, 7, 7]

Conv2d 3x3 [32, 7, 7] [64, 5, 5]

AvgPool2d 5x5 [64, 5, 5] [64, 1, 1]

Conv2d 1x1 [64, 1, 1] [2, 1, 1]

Table 2. Model Summary

3.4. MODEL TRAINING AND TESTING

For training and testing, the dataset is divided into 
two parts: training and testing data. During the train-
ing phase, the CNN model is trained using the training 
data. Stochastic Gradient Descent has been used as an 
optimizer which updates the model parameters to min-
imize the loss function. The learning rate is set to 0.01, 
allowing the optimizer to control the step size during 
parameter updates. In addition, a momentum value of 
0.9 is specified, which helps speed up the convergence 
during training. The epochs and batch size are set to 25 
and 32, respectively. The model is trained by feeding 
batches through the network, calculating losses, and 
fitting gradients to improve model parameters. This 
process continues until all the epochs are over. Finally, 
the trained model is evaluated using test data.

Table 3. Training Hyperparameters

Hyperparameter Value
Optimizer SGD

Learning Rate 0.01

Momentum 0.9

Epochs 20

Batch Size 32

3.5. ExPERIMENTAL SETUP

In this study we have performed all the experiments 
on a machine with an NVIDIA GeForce GTX 1050 Ti GPU, 
24 GB of RAM, and an Intel Core i5 8th Gen processor. 
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All the scripts were written and executed using Python 
3.9.16 and the major libraries include PyTorch 2.0.0 
with CUDA 11.8, and torchvision 0.15.1.  

It is important to emphasize that a model's training time 
depends on the system specification hence for compari-

son, we have chosen to use the total number of trainable 
parameters in the model. Smaller parameter counts lead 
to faster training, especially when using transfer learning 
on a range of machines, as the number of parameters is 
directly proportional to the training time.

Fig. 1. Proposed framework and workflow

Fig. 2. GLCM-based channel concatenation

(a)

Fig. 3. Model Architecture (a) Transition Block (b) Blocks Arrangement

(a)

(b)
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4. RESULTS AND DISCUSSIONS

Results from the proposed models are reported and 
discussed in this section and a comparative analysis is 
presented, highlighting the differences between our 
proposed models and existing models. Shown next 
in Table 3 and Table 4 we can see the training and test 
evaluation for both the CNN model.

Table 3. Training evaluation for CNN and GLCM 
CNN models

Model Accuracy Precision Recall F1
GLCM CNN 0.999 0.999 0.999 0.999

Base CNN 0.999 0.999 0.999 0.99

Table 4. Test evaluation for CNN and GLCM CNN 
models

Model Accuracy Precision Recall F1
GLCM CNN 0.9784 0.9785 0.9784 0.978

Base CNN 0.974 0.974 0.974 0.974

Based on the tables presented above, the GLCM-
based CNN model performs slightly better than the 
base CNN model. Throughout the training process for 
both models, we consistently monitored accuracy for 
each epoch to ensure no over fitting. The results for the 
same can be seen below in Fig. 4 and Fig. 5.

Fig. 4. Train and test accuracy for GLCM-based CNN 
model

Fig. 5. Train and test accuracy  
for base CNN model

It can be seen in the above image that fluctuations in 
test accuracy is lot lesser in GLCM CNN model in com-
parison.

Below is the comparison of test results of both the 
models with transfer learning approaches. The size of 
the models is also shown (K denotes 1000, and M de-
notes 100000).

Table 5. Comparison with transfer learning 
approaches

Model Accuracy Precision Recall F1 Size
GLCM CNN 0.9784 0.9785 0.9784 0.978 129 K

Base CNN 0.974 0.974 0.974 0.974 129 K

MobileNet V2 0.96 0.96 0.96 0.96 22.26 M

Resnet34 0.95 0.95 0.95 0.95 21.28 M

AlexNet 0.97 0.97 0.97 0.97 57.01 M

VGG-16 0.97 0.97 0.97 0.97 134.26 M

It can be seen from the table above that the pro-
posed models perform better than transfer learning 
approaches, although there is a huge difference in 
model size. Hence, it can be concluded that the pro-
posed models are more compact and comparable in 
diagnostic capabilities.

Fig. 6. Comparison with transfer learning 
approaches

Fig. 7. Size comparison of different models

Fig. 8 shows a heat map generated using the Gra-
dient-weighted Class Activation Mapping (GradCAM) 
technique, which is applied to predict pneumonia in a 
given input image. These heat maps serve as a critical 
medium, providing vital information about some re-
gions of the input image that are critical to influencing 
the predictions of our Deep-learning model. By iden-
tifying these essential areas of the input image, Grad-
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CAM allows decision-makers to better understand how 
the model approaches its predictions.

Fig. 8. GradCAM output

In Table 4, we assess the performance of our pro-
posed model using the test dataset and compare it to 
previous studies. We have only shown the studies that 
have used the same dataset. It can be seen from the 
table below that the GLCM CNN model performs bet-
ter in terms of all the evaluation metrics compared to 
work done by Moujahid et al. [20] and Zhang et al. [21]. 
Study conducted by Singh et al. [22] and Srivastav et al. 
[23] did not report all the metric however our model 
still shows better Accuracy and F1 Score.

Table 4. Model comparison

Accuracy Precision Recall F1Score
GLCM CNN Model 0.9784 0.9785 0.9784 0.978

Moujahid et al. [20] 0.9681 0.91 0.97 0.94

Zhang et al. [21] 0.9607 0.9441 0.9082 0.9258

Singh et al. [22] 0.9375 0.9405

Srivastav et al. [23] 0.945

In summary, better model performance scores and 
less test accuracy fluctuations show that the GLCM-
based CNN model performs marginally better in pneu-
monia identification than the base CNN model. Fur-
thermore, the proposed models perform better than 
transfer learning strategies, demonstrating their ef-
fectiveness and diagnostic potential.  Notably, even if 
the GLCM-based CNN produces better results, the base 
CNN might make sense when resources are limited be-
cause of its comparable performance.

5. LIMITATIONS AND FUTURE SCOPE

Although the current GLCM-based CNN model gives 
better accuracy than the base CNN model. The prepro-
cessing and Model training time for the GLCM-based 
CNN model is huge. Further work is required to reduce 
time and make the process more efficient. It is suggest-
ed to adapt our base CNN model if the decision time re-
quired is less. Additionally, while the current approach 
only uses the GLCM method, further improvement of 
performance is possible by incorporating different tex-
ture-based features.

6. CONCLUSION

Our research has led to the creation of a novel model 
for pneumonia detection. We have developed a simple, 
Fully Convolutional Neural Network (CNN) algorithm 
that handles the difficult task of detecting pneumonia. 
The CNN model showed exceptional performance in 
pneumonia detection. The evaluation metrics dem-
onstrated the model's ability to distinguish between 
pneumonia and non-pneumonia. The CNN model 
based on the Gray-Level Co-occurrence Matrix (GLCM) 
performed the best, achieving training and testing ac-
curacy of 99.99% and 97%, respectively. Although the 
base CNN model achieved less accuracy, it significantly 
takes less time to train and predict. From a broader 
point of view, this study not only shows an advanced 
approach but also a bright future for AI-based health-
care. Although we focused on pneumonia, the models 
and principles applied in this research have great po-
tential to address similar challenges in healthcare.
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