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Abstract – The inclusion of distributed generation (DG) units in the distribution network (DN) effectively cuts down the power 
losses (PL) and strengthens the voltage profile (VP). This paper examines the effect of allocating different distributed generation (DG) 
in radial distribution networks (RDN) through an implementation of an optimization technique using a recently introduced bio-
inspired algorithm known as a jellyfish search optimizer (JSO). Unlike the other optimization algorithms, the JSO algorithm evades 
the local optimal trap and reaches the optimal solution in less time. The DG position(s) and size(s) are optimized for active power 
loss (APL) minimization with respect to several constraints. The effectiveness and robustness of the proposed optimization technique 
using JSO algorithm is investigated on a balanced IEEE RDNs with 33, 69 and 118-buses. The simulation outcomes are obtained for 
different types (type I, II and III) of DG placement. Additionally, a comprehensive comparative study has been performed for the JSO 
and other algorithms. The comparison exemplifies that the proposed JSO optimization approach produces a better optimal solution 
with steady convergence than other techniques reported in the literature. Also, the simulation findings show the potentiality of JSO 
optimization method for solving complex optimization problems. 

Keywords: Distributed Generation, Radial Distribution Network, Jellyfish Search Optimizer, Active Power Losses

1.  INTRODUCTION

The electrical power system generates electricity and 
transfers it to consumers through conductors via trans-
mission and distribution systems. The transmission 

system (TS) carries the electricity from the generating 
plant to the distribution system (DS) using high-ten-
sion conductors. Then, from ‘DS’ the power is delivered 
to consumers through low-tension conductors via dis-
tribution power networks (DPN). In the process of pow-
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er transfer, a portion of energy is lost as power losses 
in transmission and distribution systems. Literature re-
ports [1] that about 70% of power losses (PL) occur in 
DS and the remaining 30% in TS. The PL in DS is more 
than TS because of its radial structural design, a higher 
line R/X ratio and a greater number of load buses [2]. 
However, an efficient, secure and reliable DPN should 
account a less PL and voltage drop.        

In recent times, a unique power generation technolo-
gy known as distributed generation (DG) is introduced 
in DS to achieve numerous technical, economic and 
ecological benefits including PL minimization (both ac-
tive and reactive losses), voltage profile (VP) improve-
ment, stability enhancement, operating cost reduction 
and greenhouse gas emission minimization. DG injects 
electrical power at/near load points [3]. However, the 
utility gets benefit through DG placement only when 
its location and size are optimized in DPN. Numerous 
optimization techniques implemented by researchers 
over the years to assimilate DG unit(s) optimally into 
DPN.  A few of them are outlined below. 

An analytical methodology [4, 5] and iterative meth-
odology [6] proposed to minimize PL in DPN.  A modi-
fied aquila optimizer (MAO) technique introduced [7] 
to reduce the APL and to improve the VP of radial distri-
bution network (RDN) for different types of renewable 
DG placement. The proposed technique was tested on 
IEEE 33-bus RDN. The authors [8] implemented an opti-
mization approach using an improved wild horse opti-
mization (IWHO) algorithm to optimize DG units in IEEE 
RDNs 33, 69 and 119-buses for the APL minimization. A 
novel hybrid optimization approach proposed [9] com-
bining simulated annealing (SA) and particle swarm 
optimization (PSO) algorithms to optimize DG posi-
tion and size into RDN for the APL minimization. The 
simulation study was executed for IEEE 33-bus RDN. 
The authors [10] applied a rider optimization algorithm 
(ROA) for locating the optimal site and computing opti-
mal size for the different renewable energy sources (PV, 
WT and biomass) in RDN. The proposed ROA approach 
optimized the DG for minimizing total APL. A novel DG 
optimization technique proposed [11] using shark op-
timization algorithm (SOA) to minimize the PL, to en-
rich the voltage profile and voltage stability of RDN. A 
hybrid technique based on LSF and SA proposed [12] 
to optimize PV and WT in IEEE 33 and 69-bus RDNs for 
APL minimization and voltage enhancement. The au-
thors [13] have implemented an improved version of 
symbiotic organisms search (SOS) algorithm known 
as the quasi-oppositional chaotic SOS algorithm to 
optimally incorporate DGs with different power fac-
tor (p.f ) into IEEE 33, 69 and 118-buses for the benefit 
of PL reduction, VP improvement and voltage stability 
enhancement. An optimization approach using chaotic 
sine cosine algorithm (CSCA) proposed [14] to optimize 
multi-DG units into IEEE 33 and 69-bus RDN for solving 
a single and multiple objectives DG allocation problem. 
A harris hawks optimization (HHO) algorithm applied 

[15] to solve single and multi-DG placement problems 
in RDN. The DGs with different p.f optimized into 33 
and 69-buses RDN to reduce PL, enrich VP and improve 
stability. A new hybrid approach proposed [16] using 
improved GWO and PSO to optimize DG location and 
size in RDN to achieve PL reduction, VP enrichment 
and voltage stability enhancement. The proposed ap-
proach adopted a dimension learning hunting method 
to optimize the DG. Genetic algorithm (GA) and PSO 
algorithm were proposed [17] to optimally assimilate 
single and multiple (two) PV and WT DGs into 33-bus 
RDN. GWO algorithm based DG planning executed 
[18] for RDN to cut down the PL. The proposed ap-
proach optimized the different DGs into IEEE standard 
test systems with 16, 30, 57 and 118-buses. Water cy-
cle algorithm (WCA) based optimization technique 
implemented [19] to optimize multi-DGs (FC, PV and 
WT) into RDN for minimization of total APL, operating 
cost and greenhouse gas discharge. The authors [20] 
proposed an integrated technique using LSF and sine 
cosine algorithm (SCA) to optimize PV and WT for the 
objectives of PL reduction and VP improvement. The 
proposed method executed on unbalanced IEEE RDN 
with 33 and 69-buses.

Above-mentioned techniques have been imple-
mented for solving DG placement problems in RDN 
and provided reasonable solutions. However, litera-
ture [4-6] reported that the analytical techniques suffer 
from inadequate solutions and convergence problems. 
Likewise, most of the optimization algorithms offer a 
chance for premature convergence and produce local 
optimal solutions. In recent times, many novel algo-
rithms are introduced to solve various complex optimi-
zation problems. One such algorithm is known as Jel-
lyfish Search Optimizer (JSO) [21]. The JSO is a swarm-
based algorithm that simulates the food-searching 
manners of jellyfish to produce optimal solutions for 
a given problem. The JSO has the ability to converge 
faster than the other algorithms using its stronger 
searching technique. Also, the JSO requires only few 
parameter initializations and exhibits better balance 
between exploration and exploitation. Furthermore, 
the JSO performance has been tested with numerous 
benchmark functions and has provided a near optimal 
solution at rapid convergence [21]. The contribution of 
the proposed research work is summarized below.

•	 Propose a new optimization technique using JSO 
algorithm to optimize the different DG (type I, II 
and III) units in RDN for APL reduction.

•	 Apply the proposed JSO algorithm to identify the 
optimal site (s) and size(s) for different DG types to 
minimize total APL of RDN. 

•	 Investigate the robustness of the proposed meth-
odology for small (33-bus), medium (69-bus) and 
large (118-bus) RDN. And, validate the JSO opti-
mized research findings through a comprehensive 
comparison. 
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The remaining portion of the manuscript is struc-
tured with different sections as follows: Section 2 pres-
ents the objective function framework and necessary 
constraints. Section 3 details the concept and math-
ematical modelling of the JSO algorithm. Section 4 
presents the simulation findings for the IEEE 33-bus, 
69-bus and 118-bus RDN for different DG placement 
and Section 5 highlights the simulation outcome of the 
JSO technique as a conclusion.  

2. PROBLEM FORMATION 

The optimal site(s) and size(s) for the DG unit(s) are 
optimized for an objective of minimizing the total APL 
of RDN. The total active power loss (APLT) in a RDN rep-
resented in Fig. 1 is calculated using Eq. 1. 

Fig. 1. Radial distribution network

(1)

Where, R corresponds to distribution line resistance; 
PL & QL refer active and reactive power demand, respec-
tively, m and n are buses and V is a voltage of buses.

The fitness function or objective function for APL 
minimization is expressed as given in Eq. 2.

(2)

2.1. CONSTRAINTS

The DG sizes are optimized to minimize the APLT ac-
cording to several operating parameter constraints of 
RDN including voltage magnitude, feeder current and 
power flow.

Bus voltage constraint:

(3)

Thermal constraint:

(4)

DG active power (PDG) injection constraint:

(5)

DG reactive power (QDG) injection constraint:

(6)

Power balance constraint:

(7)

(8)

Where, ‘I’ is the magnitude of branch current; PDG, PDG-
min and PDG

max are the optimal, minimum and maximum 
real power capacity of DG unit, respectively; QDG, QDG

min 
and QDG

max are the optimal, minimum and maximum re-
active power capacity of DG unit, respectively; n and N 
refer to a total number of buses and branches in RDN, 
respectively.

The power flow (PF) analysis in DPN is important for 
assessing the various parameters including power losses 
and bus voltages. The power flow methods suitable for 
transmission power networks such as Gauss-Seidel and 
Newton Raphson algorithms have become inappropri-
ate for RDPN due to its unique radial structure and high-
er line R/X value. Hence, for an accurate and optimal 
power flow solution, RDPN implements PF study using 
the backward/forward sweep (BFS) algorithm [9]. In this 
study, BFS algorithm is executed for PF study.

3. SOLUTION METHODOLOGY: JELLYFISH 
SEARCH OPTIMIZER ALGORITHM

Jellyfish search optimizer (JSO) [21] is a recent algorithm 
inducted into the group of metaheuristic algorithms for 
solving an optimization problem. JSO is a swarm-based 
algorithm and it makes use of the food searching process 
of jellyfish. The jellyfish search food (fish eggs, larvae, etc.,) 
stochastically in the ocean. The jellyfish follow two types 
of search movement: (i) Ocean current (OC) and (ii) Jelly-
fish swarm [21]. The JSO incorporate two phases of search 
technique such as diversification and intensification. It 
also has a time control mechanism to switch between 
these two search phases. The mathematical modelling of 
different phases of the JSO algorithm is discussed in the 
subsequent subsections. 

3.1. POPULATION INITIALIZATION

The JSO adopt a unique approach called chaotic map 
[21] to initialize the population size rather than a typical 
random process. This effectively eliminates the probabili-
ty of local optima stagnation and premature convergence 
as in the case of random process initialization. Equation 10 
expressed the population initialization in JSO.

(10)

Where, X refers to the logistic chaotic value of jellyfish, 
X0∈("0,1") X0∈{"0,0.25,0.75,0.5,1.0" } and η is a constant.

3.2. FOLLOwING OCEAN CURRENT

The OC has rich quantities of nutrients and the jel-
lyfish follows OC to search food. The aggregation of 
all the vectors from populated jellyfish to best (cur-
rent) jellyfish is used to determine the direction of OC 
(trend). Equation 11 simulates the OC direction [21].  
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(11)

Where, X* points to the best position of jellyfish (cur-
rent best); β and μ refer to distribution coefficient con-
cerning to the length of (trend) and mean position of 
all jellyfish, respectively. Typically, β value is more than 
zero. Consequently, the position of each jellyfish is up-
dated using Eq. 12 and Eq. 13.

(12)

(13)

3.3. JELLYFISH SwARM

The jellyfish move around the swarm in two motions 
[21]: passive and active. The passive and active move-
ments of the jellyfish are termed as type A and type B 
motions, respectively. During the early stages of the 
swarm formation, the majority of jellyfish follow the 
type ‘A’ motion and after a period of time they tend to 
follow the type ‘B’ motion. The type ‘A’ motion refers 
to the movement of jellyfish around its own position. 
The updated position of jellyfish after type ‘A’ motion is 
given by Eq. (14). 

(14)

Where, Lb and Ub correspond to the lower and upper 
search space limit, respectively; γ is a motion coeffi-
cient and depends upon the length of motion around 
individual jellyfish.

The direction of jellyfish movement in type ‘B’ mo-
tion is determined by considering a jellyfish (j) beside 
the one selected in the random process and a vector 
from ith jellyfish to jth jellyfish. The jellyfish (i) will move 
towards the direction of jellyfish (j) when the quantity 
of food available in jellyfish (j) is more than the posi-
tion of jellyfish (i). However, the jellyfish (i) moves away 
from jellyfish (j) if food availability at the position of jel-
lyfish (j) is lower than jellyfish (i). Likewise, all jellyfish 
move around the swarm to locate a better position for 
finding food. The mathematical representation for jel-
lyfish motion and its position updation is given in Eq. 
15, Eq.16 and Eq.17. 

(15)

(16)

Hence

(17)

Where, f is an objective function of location X.

3.4. TIME CONTROL MECHANISM

The jellyfish forms a swarm and search food in the 
ocean current (OC). The OC changes, whenever the 
temperature or the wind direction changes. Under this 

circumstance, the jellyfish creates one more swarm 
and moves toward another OC. This motion of jellyfish 
within the swarms can be categorized into a type ‘A’ 
and type ‘B’ motion where a jellyfish typically moves or 
switches position. A jellyfish follows type ‘A’ motion es-
pecially at the beginning of the hunt and after a while, 
it gets favor from type ‘B’ motion. In order to simulate 
this switchover mechanism, a time control technique 
is introduced in the JSO algorithm. A time control func-
tion (TCF), c (t) and a constant, c0 are introduced to 
regulate the movement of a jellyfish between OC and 
swarm. The TCF is a random number between 0 and 1 
which fluctuates over time. The mathematical illustra-
tion of TCF is given in Eq.18. The jellyfish move towards 
C when the TCF value is more than c0. But, a jellyfish 
move within the swarm if TCF is less than c0. The value 
of c0 is unknown and it will vary randomly between 0 
and 1. However, the c0 value is taken as 0.5, taking the 
average values of 0 and 1.  

(18)

Where, t and Itermax correspond to iteration time and 
a maximum number of iterations, respectively. The ex-
pression (1- c (t)) represents the motion of jellyfish in-
side a swarm. The jellyfish follows type ‘A’ motion when 
rand (0, 1) exceeds (1- c (t)), if not then the jellyfish fol-
lows type ‘B’ motion. Initially, the probability of rand (0, 
1) > (1- c (t)) is higher than later. Hence, jellyfish prefer 
type ‘A’ motion at the beginning of the search and then 
switch over to type ‘B’ motion after a while. 

3.5. BOUNDARY CONDITIONS

The movement of jellyfish inside an ocean is a ran-
dom process and its position should be normalized 
whenever it violates the boundary condition for better 
performance. Equation 19 illustrates the random pro-
cess and boundary condition. 

(19)

Where, Xi,d and Xi,d' denote ith jellyfish's actual posi-
tion and updated position after boundary normaliza-
tion, respectively. Lb,d and Ub,d are the lower and upper 
boundary conditions of the search area, respectively. 
Fig. 2 illustrates the flowchart of the JSO algorithm. 

4. TEST RESULTS AND DISCUSSION

This section presents the simulation findings of JSO 
algorithm optimized DG units for IEEE standard 33-bus, 
69-bus and 119-bus RDNs. The necessary codes of pro-
gramming are executed in MATLAB software version 
2020b. The simulation study was executed 30 times for 
100 iterations. The control parameter and the neces-
sary constraints for the JSO algorithm is presented in 
Table 1. 
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Fig. 2. Flowchart of JSO algorithm

Table 1. Control parameter and constraints

Variable Values

No. of populations 30

No. of iterations 100

Base MVA 100

Bus voltage constraint 0.95 p.u<Vi<1.05 p.u

DG capacity limit

33-bus RDN - 400<PDG<3000 
250<QDG<1830

69-bus RDN - 400<PDG<3100 
300<QDG<2100

118-bus RDN - 2400<PDG<18000 
1750<QDG<13250

The simulation study is executed considering the fol-
lowing assumptions.

•	 The RDN power demand is constant and balanced.

•	 The environmental climate irregularity for DG mod-
elling is ignored.

•	 The PF results of RDN without DG accommodation 
are referred as base case results.

The proposed simulation study has been executed to 
optimize the location and size for type I (photovoltaic), 
II (capacitors) and III (synchronous generator) DG to 
minimize total APL of RDN.
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The following subsections present the simulation 
findings of different RDNs with and without DG accom-
modation.

4.3 SIMULATION OUTCOME wITH NO DG 
 PLACEMENT

The simulation outcome for different IEEE RDNs with 
no DG placement is presented in Table 2. The PF execu-
tion using BFS algorithm for 33-bus, 69-bus and 118-
bus RDNs without DG results in 210.98 kW, 225 kW and 
1296.3 kW total APL, respectively. Noticeably, 21 out 
of 33-bus, 9 out of 69-bus and 45 out of 118-bus RDNs 
violates the minimum bus voltage (Vmin) constraint and 
register Vmin 0.9038 p.u, 0.9092 p.u and 0.8688 p.u, re-
spectively.

Table 2. Simulation outcome: Without DG 
accommodation

Outcome IEEE 33-bus 
RDN

IEEE 69-bus 
RDN

IEEE 118-bus 
RDN

Active power 
demand in Mw 3.72 3.8 22.71 

Reactive power 
demand in MVAr 2.3 2.69 17.04

Total APL in kw 210.98 225 1296.3 

Vmin in p.u. 0.9038 0.9092 0.8688

4.3 SIMULATION OUTCOME wITH DG 
 PLACEMENT

The simulation findings for different RDNs with DG 
units are presented in Table 3. 

Outcome
IEEE 33-bus RDN IEEE 69-bus RDN IEEE 118-bus RDN

DG Type DG Type DG Type
I (kw) II (kVAr) III (kVA) I (kw) II (kVAr) III (kVA) I (kw) II (kVAr) III (kVA)

Location 30 30 30 61 61 61 61,17,65,12,13 61,17,65,12,13 61,17,65,12,13

Size 2133.67 1647.12 2689.43 1798.65 1328.25 1957.54
2660.1,1796.5, 
2353.2,1636.7, 

1786.9

1850.1,1923.5, 
2003.2,1696.7, 

2326.9

2650.1,1995.5, 
2103.2,1896.7, 

2006.9

Total APL in 
kw 101.8 146.1 60.46 71.24 133.24 20.38 456.78 678.23 187.46

Vmin in p.u. 0.9522 0.9512 0.965 0.9776 0.9855 0.9845 0.9785 0.9932 0.9894

Table 3. Simulation outcome: With DG accommodation

4.3.1. IEEE 33-bus RDN:

Graphical illustrations for APL and VP of IEEE 33-bus 
RDN before and after DG deployment are presented in 
Fig. 3 and Fig.4, respectively. The optimal allocation of 
DGs results in significant power loss reduction. The to-
tal APL of the test network has reduced to 101.8 kW, 
146.1 kW and 60.46 kW respectively for type I, II and III 
optimized DG allocation. Also, the Vmin of the 33-bus 
RDN enhanced to 0.9522p.u, 0.9512p.u and 0.965p.u 
after the addition of type I, II and III DG, respectively 
and no buses of the power network fall below 0.95p.u. 

Fig. 3. APL of IEEE 33-bus RDS prior and after DG 
allocation

Moreover, JSO optimized DG placement converges 
to optimal result taking 7, 9 and 12 iterations and con-
suming 12, 14 and 17 seconds of CPU time for type I, II 
and III DG respectively. Fig. 5 shows the convergence 
characteristic of JSO algorithm for 33-bus RDN.  

Fig. 4. VP of IEEE 33-bus RDS prior and after DG 
allocation

Fig. 5. Convergence curve of JSO algorithm for 33 
bus RDS
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4.3.2. IEEE 69-bus RDN:

PF execution for the 69-bus RDN with optimal type 
I, II and III DG placement results in a total APL of 71.24 
kW, 133.24 kW and 20.38 kW, respectively. Furthermore, 
the Vmin of the test network increased to 0.9776p.u, 
0.9855p.u and 0.9845p.u for type I, II and III DG respec-
tively. Figs. 6 and 7 illustrate the APL and VP of 69-bus 
RDN prior and after DG allocation, respectively. 

Fig. 6. APL of IEEE 69-bus RDS prior and after DG 
allocation

Fig. 7. VP of IEEE 69-bus RDS prior and after DG 
allocation

Fig. 8. Convergence curve of JSO algorithm for 69-
bus RDS

The JSO converges to optimal result taking 11, 17 
and 20 iterations and consumes 15, 25 and 31 seconds 
of CPU time respectively for type I, II and III optimized 
DG placement. The convergence characteristic of the 
JSO algorithm for 69-bus RDN is shown in Fig. 8.

4.3.3. IEEE 118-bus RDN:

The robustness of the JSO algorithm is examined by ex-
tending the simulation study to a large and complex 118-
bus RDN. The number DGs for optimization are increased 
to five considering a large RDN. Table 3 presents optimal 
locations and the corresponding sizes of multi-DG for IEEE 
118-bus RDN. The PF execution of a test network after mul-
tiple type I, II and III DG allocation minimized the total APL 
to 456.78 kW, 678.23 kW and 187.46 kW, respectively. The 
DG allocation also enriched the Vmin of the test network 
significantly to 0.9785p.u for type I, 0.9932p.u for type II 
and 0.9894p.u for type III. The VP of 118-bus RDN prior and 
after the allocation of multiple DGs is presented in Fig. 9. 

Fig. 9. VP of IEEE 118-bus RDS prior and after DG 
allocation

The proposed optimization technique converges to opti-
mal solution taking 37, 36 and 41 iterations and consumes 
52, 49 and 63 seconds of CPU time respectively for mul-
tiples of type I, II and III DG placement. Fig. 10 shows the 
convergence curve of the JSO algorithm for 118-bus RDN.

Fig. 10. Convergence curve of JSO algorithm for 
118-bus RDS



222 International Journal of Electrical and Computer Engineering Systems

The simulation findings presented in Table 3 also 
highlight that Type III DG deployment results more 
power loss reduction than type I and II DGs by injecting 
both active (P) and reactive (Q) powers into RDN.

4.4. COMPARATIVE ANALYSIS 

In order to showcase the supremacy of the JSO al-
gorithm, the simulation findings of the JSO algorithm 
are compared with the other algorithms cited in the 

literature. Table 4 presents the comparative results for 
type I and type III DG placement in 33-bus RDN. A com-
parison has revealed that the proposed JSO algorithm 
outclassed other optimization algorithms (SOA [11], 
ROA [10], SCA [20], HHO [15], LSF-SA [12] and WHO [8]) 
delivering a higher percentage of APL reduction at re-
duced DG capacity. Furthermore, JSO algorithm seam-
lessly converges to the best solution without trapping 
in local optima solution and tool less no. of iteration for 
convergence. 

Table 4. Comparison result: IEEE 33-bus RDN with type I and III DG

Parameter
Type I DG Type III DG

SOA [11] ROA [10] SCA [20] Proposed SOA [11] ROA [10] HHO [15] LSF-SA [12] wHO [8] Proposed
Location 6 6 6 30 6 6 26 6 6 30

Size 2600 2590.2 2590.1 2133.67 2550 3144.6 2952.95 3098.2 3081.7 2689.43

Total APL in kW 102.8 111.02 111.02 101.8 65.1426 67.83 69.443 67.8118 61.3147 60.46

No. of iterations NR NR NR 7 NR 17 28 28 15 12

CPU time (sec) NR NR NR 12 NR NR NR NR NR 17

5. CONCLUSION

In this work, a novel optimization technique has been 
introduced using a jellyfish search optimizer (JSO) al-
gorithm to optimize DG into RDN to minimize total 
APL. The optimal site and size for different DG (type I, 
II and III) were optimized using the JSO algorithm.  The 
simulation study has been implemented on IEEE 33, 
69 and 118-bus RDNs for different DG allocation. JSO 
optimized type I, II and III DG allocation in IEEE 33-bus 
RDN result 51.74%, 30.75% and 71.34% of total APL, 
respectively. For IEEE 69-bus RDN, type I, II and III DG 
placement reduced the total APL by 68.33%, 40.78% 
and 90.94%, respectively. Likewise, for multiple alloca-
tion of type I, II and III DGs in 118-bus RDN cut down 
the APL by 64.76%, 47.67% and 85.53%, respectively. 
In addition, the optimized solution enhanced the volt-
age profile of the RDNs significantly above the speci-
fied level (0.95p.u). The simulation finding of JSO for 
optimized DG allocation emphasizes its ability to find 
better solutions for complex optimization problems.

6. REFERENCES

[1]  M. Ali, M. Mohammed, O. Mohammed, “Optimal 
Network Reconfiguration Incorporating with Re-
newable Energy Sources in Radial Distribution 
Networks”, International Journal of Advanced Sci-
ence and Technology, Vol. 29, No. 12, 2020, pp. 
3114-3133.

[2] P. Chiradeja, R. Ramkumar, “An Approach to Quan-
tify the Technical Benefits of Distribute Genera-
tion” IEEE Transactions on Energy Conversion, Vol. 
19, No. 4, 2004, pp. 1686-1693.

[3] A. Naresh, M. Pukar, N. Mithulananthan, “An Ana-
lytical Approach for DG Allocation in Primary Dis-

tribution Network”, International Journal of Elec-

trical Power and Energy Systems, Vol. 28, No. 10, 

2006, pp. 669-678.

[4] S. Ghosh, S. P. Ghoshal, S. Ghosh, “Optimal Sizing 

and Placement of Distributed Generation in a 

Network System”, International Journal of Electri-

cal Power and Energy Systems, Vol. 32, No. 8, 2010, 

pp. 849-54.

[5] S. G. Naik, D. Khatod, M. Sharma, “Optimal Alloca-

tion of Combined DG and Capacitor for Real Pow-

er Loss Minimization in Distribution Networks”, In-

ternational Journal of Electrical Power and Energy 

Systems, Vol. 53, 2013, pp. 967-973.

[6] A. Bayat, A. Bagheri, “Optimal Active and Reactive 

Power Allocation in Distribution Networks using 

a Novel Heuristic Approach”, Applied Energy, Vol. 

233, 2019, pp. 71-85.

[7] M. H. Ali, A. T. Salawudeen, S. Kamel, H. B. Salau, 

M. Habil, M. Shouran, “Single- and Multi-Objective 

Modified Aquila Optimizer for Optimal Multiple 

Renewable Energy Resources in Distribution Net-

work”, Mathematics, Vol. 10, 2022, p. 2129.

[8] M. H. Ali, S. Kamel, M. H. Hassan, M. Tostado-Véliz, 

H. M. Zawbaa “An Improved Wild Horse Optimiza-

tion Algorithm for Reliability Based Optimal DG 

Planning of Radial Distribution Networks”, Energy 

Reports, Vol. 8, 2022, pp. 582-604.

[9]  M. H. Ali, M. Mehanna, E. Othman “Optimal Plan-

ning of RDGs in Electrical Distribution Networks 



223Volume 15, Number 3, 2024

using Hybrid SAPSO Algorithm", International 
Journal of Electrical and Computer Engineering, 
Vol. 10, No. 6, 2020, pp. 6153-6163.

[10] M. Khasanov, S. Kamel, C. Rahmann, H. M. Hasan-
ien, A. Al-Durra, “Optimal Distributed Generation 
and Battery Energy Storage Units Integration in 
Distribution Systems Considering Power Genera-
tion Uncertainty”, IET Generation. Transmission 
and Distribution, Vol. 15, 2021, pp. 3400-3422.

[11] E. S. Ali, S. M. Abd Elazim, S. H. Hakmi, M. I. Mo-
saad, “Optimal Allocation and Size of Renewable 
Energy Sources as Distributed Generations Using 
Shark Optimization Algorithm in Radial Distribu-
tion Systems”, Energies, Vol. 16, 2023, p. 3983.

[12] S. A. Nowdeh, I. F. Davoudkhani, M. J. H. Moghad-
dam, E. S. Najmi, A. Y. Abdelaziz, A. Ahmadi, “Fuzzy 
Multi-Objective Placement of Renewable Energy 
Sources in Distribution System with Objective of 
Loss Reduction and Reliability Improvement Us-
ing a Novel Hybrid Method”, Applied Soft Com-
puting Journal, Vol. 77, 2019, pp. 761-779.

[13] K. H. Truong, P. Nallagownden, I. Elamvazuthi, “A 
Quasi-Oppositional-Chaotic Symbiotic Organisms 
Search Algorithm for Optimal Allocation of DG in 
Radial Distribution Networks”, Applied Soft Com-
puting Journal, Vol. 88, 2020, p. 106067.

[14] A. Selim, S. Kamel, F. Jurado, “Efficient Optimi-
zation Technique for Multiple DG Allocation in 
Distribution Networks”, Applied Soft Computing 
Journal,Vol. 86, 2020, p. 105938.

[15] A. Selim, S. Kamel, A. S. Alghamdi, F. Jurado, “Op-
timal Placement of DGs in Distribution System 
Using an Improved Harris Hawks Optimizer Based 

on Single and Multi-Objective Approaches”, IEEE 

Access, Vol. 8, 2020, pp. 52815-52829.

[16] M. I. Akbar, S. A. A. Kazmi, O. Alrumayh, Z. A. Khan, 

A. Altamimi, M. M. Malik, “A Novel Hybrid Optimi-

zation-based Algorithm for the Single and Multi-

Objective Achievement with Optimal DG Alloca-

tions in Distribution Networks”, IEEE Access, Vol. 

10, 2022, pp. 25669-25687.

[17] M. Purlu, B. E. Turka, “Optimal Allocation of Re-

newable Distributed Generations using Heuristic 

Methods to Minimize Annual Energy Losses and 

Voltage Deviation Index”, IEEE Power Energy Soci-

ety Sector, Vol. 10, 2022, pp. 21455-21474.

[18] M. M. Ansari, C. Guo, M. S. Shaikh, N. Chopra, I. 

Haq, L. Shen. “Planning for Distribution System 

with Grey Wolf Optimization Method”, Journal of 

Electrical Engineering Technology, Vol. 15, 2020, 

pp. 1485-1499.

[19] A. Mohamed, S. Ali, S. Alkhalaf, T. Senjyu, A. M. He-

meida, “Optimal Allocation of Hybrid Renewable 

Energy System by Multi-Objective Water Cycle Al-

gorithm. Sustainability”, Vol. 11, 2019, p. 6550.

[20] M. Khasanov, S. Kamel, M. Tostado-Véliz, F. Jurado, 

“Allocation of Photovoltaic and Wind Turbine Based 

DG units Using Artificial Ecosystem-based Optimi-

zation”, Proceedings of the IEEE International Con-

ference on Environment and Electrical Engineer-

ing, Madrid, Spain, 9-12 June 2020, pp. 1-5.

[21] J. S. Chou, D. N. Truong, “A Novel Metaheuristic Op-

timizer Inspired by Behavior of Jellyfish in Ocean”, 

Applied Mathematics and Computation, Vol. 389, 

2021, p. 125535.


