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Abstract – The battery's SoC is a crucial variable since it reflects its performance. An accurate estimation of SoC protects the battery, 
prevents overcharging or discharge, and extends its life time. Since most of the traditional methods use complex equations, ANN has 
been implemented to reduce the complications and provide better accuracy. In this research, Li-NMC with capacity rating of 2000mAh is 
used for the estimation of SoC. In this paper, Feedforward Neural Network (FNN) algorithm and Nonlinear Auto-Regressive network with 
exogenous inputs (NARX) have been used for designing a neural network model. Here, the performance matrixes of both neural network 
models have been compared and analyzed with the same dataset.
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1.		 INTRODUCTION

According to European Green Deal, Commission has 
boosted its rules by setting forth essential policies [1] to 
attain net-zero global warming emission by 2050. Due 
to the development of industries, there is a considerable 
increase of greenhouse effects and emission of carbon 
[2]. The transportation is biggest source of greenhouse 
gas emissions globally [3]. As a result, Electric Vehicles 
(EVs) must be introduced into the transportation indus-
try [4, 5]. In Electric Vehicles (EVs), Lithium-ion battery is 
mainly used due to its longevity [6]. The life time, safety 
and charging capability need to be enhanced inorder to 
improve the performance of the Li-ion battery [7].

The SoC of the battery denotes the available capacity 
as the function of rated capacity. The value of the SoC 
varies from 0%-100% [8]. SoC is indirectly assessed us-
ing proxies like temperature, potential difference, and 
capacity [9]. Accurate prediction of SoC is a vital fea-
ture in a cell pack utilized in EV’s [10]. Electric vehicles 

require accurate cell SoC prediction for safe and effec-
tive operation thereby extending battery life [11]. Es-
timating battery SoC poses challenges like non-linear 
battery behavior, model complexity, calibration needs, 
and limited observability. The research paper covers a 
literature survey in Section 2, data preparation and col-
lection in Section 3, ANN architecture in Section 4, FNN 
model in Section 5, NARX model in Section 6, and con-
cludes with results and discussion in Section 7. Section 
8 provides the work's conclusion.

2.	 LITERATURE SURVEY

There is no clear and concise method for calculating 
the SoC accurately. A Li-ion cell at 100% SoC has all cy-
clable lithium ions in the negative electrode, while at 
0% SoC, they are all in the positive electrode [12]. 

In [13] the SoC prediction techniques are classified 
into four groups such as model-based, ampere-hour, 
open circuit voltage (OCV) and data-driven prediction 
methods. According to the author [14], the Open Cir-
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cuit Voltage (OCV) of Li-ion is a critical measure for ana-
lyzing changes and estimating the SoC. The charging 
state slope, measured offline at different temperatures 
and aging stages, is prone to errors in the OCV-SoC re-
lationship due to operational condition variations [15].

The Ampere-hour is a simple and convenient method 
used to evaluate the SoC [16]. In [17] the author pro-
posed improved coulomb counting approach with com-
pensation coefficient in order to reduce the error.  The 
author [18] suggested a novel capacity prediction tech-
nique on enhanced coulomb counting process and the 
error is about 1.7%. In [19], the drawback of this SoC cal-
culation method is that a considerable estimation inac-
curacy can result from an incorrect initial battery current. 

According to the model-based estimation principle, 
the estimating process cannot manage the inaccura-
cies from the system model [20]. In [21], the author 
proposed SoC prediction using HIF and Extended Kal-
man Filter (EKF). SoC prediction can approximate to the 
precise value in 30 seconds while maintaining 0.5% ef-
ficiency. According to author [22], using Kalman filter 
incorrect parameters decrease the battery model's ac-
curacy which results in an increase in SoC estimation 
error. In [23], the author proposed a sliding observer 
approach that relies on a variable adaptable system 

model, which had a precision of less than 2%. To pro-
vide a rapid prediction model for cell charging state 
and impedance, a multi-level PI observer is used [24]. 
In [25] the author suggested a GRU-RNN is used for an 
accurate SoC estimation. In [26], the author develops 
a neural network-based BMS (NN-BMS) for a through-
the-road hybrid electric vehicle (TtR HEV), with an em-
phasis on the TtR HEV's recharging capacity. The ma-
chine learning approach, which includes Artificial Neural 
Networks (ANN), is also known as the data-driven ap-
proach [27]. An ANN is a mathematical framework made 
up of a series of independent processing units called 
neurons that are connected by weights [28]. 

In this paper, data driven approach (also known as black 
box model) is used for an accurate SoC prediction. Since 
this method requires minimum knowledge and time for 
modeling a system comparing with other methods. The 
nntool (Neural Network Toolbox) in MATLAB offers a com-
bination of user-friendly interface, extensive functionality, 
flexibility, integration with other MATLAB tools, and a sup-
portive community, making it advantageous for design-
ing and implementing neural network models. The prob-
lem statement includes an accurate estimation of SoC 
since it is very important factor that should be measured 
accurately to protect the battery life. Comparison analysis 
of various SoC measurements is shown in Table 1.

Table 1. Comparison analysis of various SoC measurements

Slno SoC measurement Merits Demerits

1 Circuit based model Accurately representing physical systems, enabling 
simulations and versatility.

Accurate parameters are needed, potential simplifications, 
and limitation to specific types of systems.

2 Neural network model Parallel processing leads to faster training, 
adaptability, flexibility, automatic feature learning.

Large data requirements, takes significan-t time for 
training and lack of transpare-ncy.

3 Pseudo-two-
Dimensional(P2D) Model

Computa-tional accuracy, easier 
parameteridentification.

Assumption and approximtion, simplified geometry, 
applicatio-n, specific.

4 Single Particle model Computa-tional efficient, quick sensitivity analysis, 
conceput-al clarity.

Lack of spatial information, limited applicability to fuel cell, 
sensitivity to particle size.

3.	 DATA COLLECTION AND PREPARATION

The input dataset has been gathered from the Battery 
Research Group of the Center for Advanced Life Cycle 
Engineering (CALCE) [29]. The feature extraction used in 
this paper consist of voltage, current, charge capacity, 
discharge capacity, test time, step time, change in volt-
age with respect to time (dv/dt), charge energy, discharge 
energy and internal resistance. Table2 denotes number of 
sample Data used in Training, Validation and Testing.

Table 2. Data used for training, Validation and Testing

Data No of Samples
training 11814

validation 3938

testing 3938

4.	 FEEDFORWARD NEURAL NETWORK (FNN)

A FNN is made up of layers, each of which is made 
up of neurons. The input layer takes the data to be ana-
lyzed and feeds it to one or more hidden layers, that 

perform the categorization function, before sending it 
to the output layer [30]. Many neurons make up a FNN, 
which is also the fundamental unit of information pro-
cessing [31]. Weights connect each neuron, resulting in 
probability-weighted correlations among source and 
result [32]. Fig. 1 shows the architecture of FNN.

Fig. 1. FNN architecture
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Each neuron has activation layer and pre-activation 
layer. Where, activation layer is denoted as ‘h’ and spre-
activation layer is represented as ‘a’. Equation (2) and (3) 
represents the matrix of the weight ‘W1’and Activation 
function ’h1’ for first layer respectively. Pre-activation 
function is ‘a1n’for first layer for n neurons.

(1)

(2)

(3)

At the output layer 'L,' the activation function is pro-
vided by,

(4)

Where, o = output activation function.

In this paper, 4-layer FNN has been designed inor-
der to obtain less MSE. Levenberg-Marquardt learning 

function and GD transfer function has been used. The 
reason for choosing GD and Levenberg-Marquardt is 
fast convergence, adaptive learning rate, simplicity, 
parallelization and requires less memory compared to 
more complex optimization algorithms so it is used for 
large dataset. The computational time is 1000 epochs. 
The MSE at 1000 Epochs obtained is 1.231e-06. This is 
the better performance obtained using the proposed 
FNN model. At 681 epochs, 0.00069379 MSEREG is ob-
tained as better performance using the proposed FNN 
model. In this, 0.0074991 is obtained as SSE using 1000 
Epochs. Comparing with MSE and MSEREG, this SSD er-
ror is high.

5.	 NARX MODEL

The NARX technique improves learning performance 
and computing efficiency in addressing battery non-
linearity. Its predicted output is consistently validated 
against the true value, enhancing accuracy in time se-
ries forecasts by storing both input and previous out-
put values as feedback [33]. Fig. 2 depicts the NARX 
model architecture.

Fig. 2. NARX architecture

The mathematical formula for NARX model provided 
by the equation 5,

(5)

Where, f= non-linear function, nu= maximal lags in-
put, ny= output to the model respectively. 

In proposed model, 7 inputs and 1 output are de-
signed. In this model, the result of output layer is given 
as the feedback to the hidden layer. This feedback makes 
the difference between FNN model and NARX model. 
This is done to compare and analyze both model results. 
The best validation performance of MSE is 9.3021e-06. The 
best validation performance using MSEREG is 8.2739e-05. 
The SSE obtained is 0.01233 at 1000 Epochs. Comparing 
with MSE and MSEREG, SSE error is high. Table 3 shows 
the best validation performance of FNN and NARX Algo-
rithm for MSE, MSEREG and SSE.

Table 3. Best validation performance of FNN and 
NARX Algorithm

Performance Matrices FNN Algorithm NARX Algorithm
MSE 1.231e-06 9.3021e-06

MSEREG 0.00069379 8.2739e-05

SSE 0.0074991 0.01233

6.	 RESULTS AND DISCUSSION

To verify the trained models, MSE, MSEREG and SSE 
have been selected as model’s performance indicator. 
In the fig. 3(a), predicted SoC value of FNN and NARX 
and actual SoC is plotted with the voltage(V). At initial 
voltage 3.44V, both the actual and predicted FNN SoC 
value is 100% while the predicted NARX SoC value is 
99%. From 3.44V to 4.19V, the actual and predicted 
FNN value is 100%. The SoC value of both actual and 
predicted FNN is reduced from voltage 4.12V to 2.57V 
and SoC of 32.38% is reached for both actual value and 
FNN predicted value. The SoC value of NARX gets re-
duced from the voltage 4.19V to 2.57V and a SoC value 
of 32.39% is obtained.

In the fig. 3(b), actual, MSEREG predicted FNN and 
NARX SoC value is plotted with voltage. Initially, both 
actual and predicted FNN values are 100%, while the 
NARX prediction stands at 99.99% for an initial voltage 
of 3.44V. In the voltage range of 3.44V to 4.19V, FNN 
maintains a 100% SoC. Subsequently, the SoC decreases 
from 4.12V to 2.57V, reaching 32.38% for both actual and 
predicted FNN values. For the NARX model, the SoC pre-
diction remains at 99% from 3.44V to 3.52V and reaches 
100% from 3.52V to 4.19V. The NARX prediction decreas-
es from 4.12V to 2.57V, resulting in a SoC of 32.40%.
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Fig. 3(a). MSE value of FNN, NARX, Actual value Vs 
Voltage

Fig. 3(b). MSEREG value of FNN, NARX, Actual value 
Vs Voltage

Fig. 3(c). SSE value of FNN, NARX and Actual value 
Vs Voltage

In the above fig. 3(c), SSE predicted value for FNN & 
NARX and actual value is plotted with the voltage. At 
initial voltage 3.44V, both the actual and predicted FNN 
SoC value is 100% whereas the predicted NARX SoC 
value is 99%. From the voltage range 3.44V to 4.19V, 

the actual SoC value is 100%. Whereas from 344V to 
4.11V, the predicted FNN value is 100%. NARX SoC of 
99% is obtained from the voltage 3.44V to 3.44V. Dur-
ing this period, the current and charge capacity is in-
creased. Finally, SoC of 32.38% is obtained. From 3.44V 
to 4.19V, the actual SoC value is 100%.

In Fig. 4(a), the actual value, predicted FNN and NARX 
SoC value is plotted with respect to test time. At ini-
tial test time 1.12 seconds, the voltage is 3.44V. From 
1.002seconds to 1.25seconds, the actual SoC and FNN 
value is 100%. However, from time period 1.002 sec-
onds to 64.03 seconds, the NARX value is 99%. At 65.04 
seconds, the NARX value is 100%and it is continued till 
time period 1.22 seconds. The NARX SoC value begin 
to reduce from 12293.32 seconds to 1.98 seconds and 
SoC value of 32.39% is obtained. From 1.12 seconds to 
1.25 seconds, the actual & FNN value is of 100% while 
from 1.25 seconds to 1.98 seconds, the actual & FNN 
value is reduced and 32.38% of SoC is obtained.

Fig. 4(a). MSE value of FNN, NARX and Actual SoC 
value Vs Test time

Fig. 4(b). MSEREG value of FNN, NARX and Actual 
SoC value Vs Test time

In Fig. 4(b), the actual, predicted FNN and NARX SoC 
value is plotted with respect to test time. At initial test 
time 1.002 seconds, the actual & predicted FNN SoC is 
100% and NARX value is 99%. From 1.002 seconds to 
1.25 seconds, the actual & FNN value is 100%. In NARX, 
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the SoC value is 99% from 1.002 seconds to 60.00 sec-
onds. From 61.0017seconds to 1.25.15seconds, the 
NARX SoC value is 100%. During this time period, the 
current is 0A. From 1.25seconds to 1.98seconds, the ac-
tual & FNN SoC value is reduced and 32.38% is obtained. 
From the time period 1.25seconds to 1.98seconds, the 
NARX value is reduced and SoC of 32.40% is obtained. 
From 1.07seconds to 1.25seconds, the current reaches 
0A whereas the current value gets reversed from the 
time period 1.25seconds to 1.98seconds.

Fig. 4(c). SSE value of FNN, NARX and Actual SoC 
value Vs Test time

In the above Fig. 4(c), the actual value, predicted FNN 
and NARX SoC value is plotted with the test time. At 
initial time period 1.002 sec, both actual and predict-
ed FNN SoC value is 100%. Whereas, NARX SoC value 
is 99.9%. From the time period 1.002166seconds to 
12593.15seconds, the actual SoC value is 100%. This 
actual value decreases from 1.25 to 1.98seconds and 
SoC of 32.38% is obtained. From 1.002166seconds to 
1.26seconds, the predicted FNN value is 100%. This 
value starts decreasing from the time period 1.26sec-
onds to 1.98seconds and SoC of 32.38% is obtained. 
Similarly, from the time period 1.002 seconds to 64.03 
seconds, the NARX value is 99%. From 65.04 seconds to 
1.25seconds, the SoC value is 100%. This SoC value of 
NARX begins to reduce from 1.25seconds to 1.98sec-
onds and 32.38% is obtained.

Table 4 shows comparison table based on different 
neural network algorithm with the existing model. In 
this table, most of the algorithms are compared with 
respect to performance matrices and input param-
eters. Considering MSE value, FNN model has better 
performance accuracy while NARX is less comparing 
with FNN model. In MSEREG and SSE, NARX model has 
better accuracy than FNN model. Even though nntool 
provide accurate estimation it has some limitations 
such as dependency on MATLAB (i.e it works on MAT-
LAB platform alone), slow code execution, limited scal-
ability, lack of advanced deep learning features.

Algorithm Training function/learning 
Function/Transfer function Input parameter Error Rate

Multilayer 
Perceptron [34]

Levenberg Marquardt/
Gradient Descent/Hyperbolic 

Tangent Sigmoid
Time, Current, Voltage 3.11x10-6

Feed forward [35] Gradient Descent/ sigmoid 
activation function. Current, voltage >1%

Feed forward [36] Gradient Descent Current, voltage, time >2%

feed-forward [37] Levenberg–Marquardt, Current, voltage 0.025

LSTM [38] Levenberg–Marquardt Current, voltage, temperature >2%

LSTM-RNN [39] - Voltage, current 2.088%MSE 
2.44% RMSE

FNN and NARX Levenberg–Marquardt/GD
Current, voltage, charge capacity, 
discharge capacity, dv/dt, DOD, 

test time

FNN=1.231e-06 MSE, 0.00069379 MSEREG, 0.0074991 SSE 
NARX=9.3021e-06 MSE, 8.2739 e-05 MSEREG, 0.01233 SSE

Table 4. Error comparison of different Neural Network Algorithms.

7.	 CONCLUSION 

In this paper, a 4-layer FNN and recurrent NARX neu-
ral network have been designed and sigmoid is used 
as activation function. The performance matrix MSE 
of FNN is found to be 1.231e-06 and NARX is 9.3021e-06. 
Similarly, MSEREG and SSE of NARX model has better 
accuracy than FNN model. Finally, an accurate perfor-
mance indicator for SOC prediction of Li-NMC battery 
has been found employing nntool MATLAB2021b. The 
future work is to design a neural network with many 
numbers of neurons and hidden layers. Different type 
of batteries can be trained and a comparative study can 
be done with respect to performance matrices.
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