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Abstract – With The advent of the Internet of Things (IoT) and its use cases there is a necessity for improved latency which has led 
to edgecomputing technologies. IoT applications need a cloud environment and appropriate scheduling based on the underlying 
requirements of a given workload. Due to the mobility nature of IoT devices and resource constraints and resource heterogeneity, 
IoT application tasks need more efficient scheduling which is a challenging problem. The existing conventional and deep 
learning scheduling techniques have limitations such as lack of adaptability, issues with synchronous nature and inability to deal 
with temporal patterns in the workloads. To address these issues, we proposed a learning-based framework known as the Deep 
Reinforcement Learning Framework (DRLF). This is designed in such a way that it exploits Deep Reinforcement Learning (DRL) with 
underlying mechanisms and enhanced deep network architecture based on Recurrent Neural Network (RNN). We also proposed an 
algorithm named Reinforcement Learning Dynamic Scheduling (RLbDS) which exploits different hyperparameters and DRL-based 
decision-making for efficient scheduling. Real-time traces of edge-cloud infrastructure are used for empirical study. We implemented 
our framework by defining new classes for CloudSim and iFogSim simulation frameworks. Our empirical study has revealed that 
RLbDS out performs many existing scheduling methods.
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1.  INTRODUCTION

Unprecedented growth of cloud-assisted use cases 
has led to compelling Cloud Service Providers (CSPs) to 
optimize resource usage in the presence of Service Level 
Agreements (SLAs). Ubiquitous adoption of technologi-
cal innovation such as the Internet of Things (IoT) has 
led to the emergence of fog and edge computing phe-
nomena which leverage latency.  In the presence of IoT 
applications, the scheduling of tasks is challenging for 
many reasons such as network hierarchy, heterogeneity 
of resources, mobility of devices, resource-constrained 
devices and stochastic behaviour of nodes [1]. Tradition-

al cloud scheduling algorithms are not sufficient to har-
ness the power of the dynamic computing environment 
made up of cloud, fog and edge resources. To overcome 
this problem, different scheduling algorithms came into 
existence. Reinforcement learning is one such technique 
used with the machine learning approach [2]. Many 
learning-based task scheduling approaches came into 
existence. Their merits and demerits are summarized in 
Table 1 and Table 2 in Section 2. The advantages of the 
research in [1] include consideration of dynamic envi-
ronments and heterogeneous cores. However, it does 
not consider adaptive QoS, edge cloud, decentralized 
environment and presence of stochastic workloads. 
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The work in [3] considered edge cloud and also het-
erogeneous cores for their task scheduling research. 

However, it does not support adaptive QoS, dynamic 
and decentralized environments, edge cloud and sto-
chastic workloads. The merits of [4] include the consid-
eration of dynamic environment, stochastic workloads 
and heterogeneous cores. But it lacks adaptive QoS, 
support for edge cloud and decentralized environ-
ments. The research in [5] and [6] has similar findings. 
Their method has provision for considering dynamic 
environments, heterogeneous cores, adaptive QoS 
and stochastic workloads. But is not designed for edge 
cloud and decentralized environments. In [7], there 
is consideration of dynamic environment, stochastic 
workloads, adaptive QoS and heterogeneous cores but 
does not support decentralized and edge-cloud envi-
ronments. The work in [8] supports dynamic environ-
ments and stochastic workloads. However, it has limita-
tions to deal with heterogeneous cores, adaptive QoS, 
edge cloud and decentralized environments. There is a 
similarity in the task scheduling methods proposed in 
[9] and [10]. 

Their methods are dynamic supporting adaptive QoS 
and stochastic workloads besides dealing with hetero-
geneous cores. However, they do not support decen-
tralized and edge cloud environments. The scheduling 
research in [11] supports dynamic environments along 
with stochastic workloads. They also deal with hetero-
geneous cores and adaptive QoS. However, the draw-
back is that those methods do not consider decentral-
ized and edge-cloud environments.

Concerning optimization parameters, Table 2 pro-
vides research gaps in existing solutions. Research in 
[1] is based on a heuristics approach and considers en-
ergy and SLA violation parameters. Their research lacks 
in the study of response time and cost of scheduling 
which are crucial for task scheduling. The work in [3] 
is also based on the heuristics method but considers 
cost and energy parameters. It does not throw light on 
response time and SLA violations. In [4], their method 
is based on Gaussian process regression and considers 
two parameters such as energy and SLAs. It has no sup-
port for optimization of cost and response time. 

The task scheduling research in [5] and [6] is based 
on the Deep Queue Learning Network (DQN) method 
and supports cost and energy parameters for optimiza-
tion. However, they have no optimization of SLAs and 
response time. In [7] Q-learning-based phenomenon is 
used considering energy and cost dynamics for optimi-
zation. However, it lacks optimization of response time 
and SLAs. Deep Neural Network (DNN) is the scheduling 
method used in [8] and it has support for optimization 
of cost and SLA parameters. It lacks support for energy 
and response time optimizations. The work in [9] and 
[10] is based on the Double DQN (DDQN) method and 
it supports only energy parameters for optimization. It 
lacks support for response time, cost and SLA optimiza-
tions. In [11] DRL method is used for task scheduling by 

considering response time for optimization. However, 
it does not support the optimization of SLAs, cost and 
energy. From the literature, it is observed that there is a 
need for a more comprehensive methodology in edge-
cloud environments for task scheduling. Our contribu-
tions to this paper are as follows.

1. We proposed a learning-based framework known 
as the Deep Reinforcement Learning Framework 
(DRLF). This is designed in such a way that it ex-
ploits Deep Reinforcement Learning (DRL) with un-
derlying mechanisms and enhanced deep network 
architecture based on Recurrent Neural Network 
(RNN).

2. We proposed an algorithm named Reinforcement 
Learning Dynamic Scheduling (RLbDS) which ex-
ploits different hyperparameters and DRL-based 
decision-making for efficient scheduling. 

3. Our simulation study has revealed that the pro-
posed RLbDS outperforms many existing schedul-
ing methods. 

The remainder of the paper is structured as follows. 
Section 2 reviews prior works on existing task schedul-
ing methods for cloud and edge-cloud environments. 
Section 3 presents details of the proposed system in-
cluding the system model, DRL mechanisms and the un-
derlying algorithm. Section 4 presents the results of the 
empirical study while Section 5 concludes our work and 
provides directions for the future scope of the research.

2. RELATED WORK 

This section reviews prior works on existing task 
scheduling methods for cloud and edge-cloud environ-
ments. VM plays a vital role in cloud infrastructure for 
resource provisioning. Beloglazov and Bu proposed a 
method for improving resource utilization in the cloud 
through VM migration and consolidation. They found 
that VM live migration has the potential to exploit idle 
nodes in cloud data centres to optimize resource utili-
zation and reduce energy consumption. They consid-
ered the dynamic environment and presence of het-
erogeneous cores for their task scheduling study. Their 
method is based on a heuristics approach. It considers 
SLA negotiations and algorithms designed to support 
optimizations such as energy efficiency and SLAs. Their 
algorithm monitors VMs and their resource usage. By 
considering VM consolidation and VM live migration, 
their method is aimed at reducing energy consump-
tion and adherence to SLAs. This method lacks adap-
tive QoS and support for dynamic workloads. Pham 
and Huh [3] proposed a task scheduling method based 
on a heuristics approach for such an environment.

It is designed to work for heterogeneous cores in fog-
cloud. They considered optimizations such as energy 
efficiency and cost reduction by scheduling tasks in an 
edge-cloud environment. Their algorithm is based on 
heuristics towards reducing cost and energy consump-
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tion. It is based on graph representation. Towards this, 
their method exploits the task graph and processor 
graph. Given the two graphs representing tasks and re-
sources, their method finds appropriate resource allo-
cation for given tasks. It has a provision for determining 
task priority and then choosing the most suitable node 
for the execution of the task. 

Bui et al. [4] proposed an optimization framework for 
the cloud with a predictive approach. They could pre-
dict the dynamics of resource utilization for schedul-
ing by employing a method named Gaussian process 
regression. The prediction result helped them to mini-
mize the number of servers to be used to process the 
requests leading to a reduction of energy usage. Their 
method is, however, based on heuristics and is not suit-
able for dynamic workloads and edge-cloud environ-
ments. Cheng et al. [2] explored DRL based approach 
towards task scheduling and resource provisioning 
in the cloud. They further optimized the Q-learning 
method to reduce the task rejection rate and improve 
energy efficiency. Huang et al. [5] and Mao et al. [6] fol-
lowed the DRL approach for improving task scheduling 
performance in a cloud computing environment.

In [5] DRL based online offloading method is pro-
posed based on deep neural networks. It is a scalable 
solution since it is a learning-based approach. In [6] 
DeepRM is the framework proposed for task schedul-
ing considering efficient resource management. Both 

methods are based on the DQN approach rather than 
heuristics. Both methods considered optimization pa-
rameters such as energy and cost. In other words, they 
are designed to reduce energy consumption and also 
the cost incurred for task execution in cloud environ-
ments. They support stochastic workloads and adap-
tive QoS. However, they do not support edge-cloud 
environments and do not optimize SLA and response 
time parameters.

Basu et al. [7] focused on the problem of live migra-
tion of VMs based on the RL-based Q-learning process. 
Their methodology improves live migration and heu-
ristics-based existing approaches. Towards this end, 
their method exploits the Megh and RL-based model 
to have continuous adaptation to the runtime situa-
tions towards leveraging energy efficiency. Xu et al. 
[8] defined a DNN approach named LASER to support 
deadline-critical jobs with replication and speculative 
execution. Their implementation of the framework is 
designed for the Hadoop framework. Zhang et al. [9] 
defined a DDQN method towards energy efficiency in 
edge computing. It is based on the Q-learning process 
and also the dynamic voltage frequency scaling (DVFS) 
method that has the potential to reduce energy usage. 
As Q-learning is not able to recognize continuous sys-
tem states, they extended it to have double-deep Q-
learning. Table 1 shows provides a summary of findings 
among existing scheduling methods.

Table 1. Merits and demerits of existing scheduling methods compared with the proposed method

Reference Dynamic Stochastic Workload Decentralized Edge Cloud Adaptive QoS Heterogeneous
[1] Yes No No No No Yes

[3] No No No Yes No Yes

[4] Yes Yes No No No Yes

[5], [6] Yes Yes No No Yes Yes

[7] Yes Yes No No Yes Yes

[8] Yes Yes No No No No

[9], [10] Yes Yes No No Yes Yes

[11] Yes Yes No No Yes Yes

[18] Yes No No No Yes Yes

[19] Yes No No Yes Yes No

[20] Yes No No No Yes Yes

[21] Yes No No No Yes Yes

[22] Yes No No No Yes Yes

[23] Yes Yes No No Yes Yes

[25] Yes No No No No No

[26] Yes No No No Yes Yes

[27] Yes No Yes No Yes Yes

Proposed (RLbDS) Yes Yes Yes Yes Yes Yes 

Similar to the work of [2], Mao et al. [6] employed DDQN 
for efficient resource management. This kind of work is 
also found in Li et al. [10]. Both have employed the DRL 
technique towards job scheduling over diversified re-
sources. However, these learning-based methods are not 
able to withstand stochastic environments. Mao et al. [6] 
and Rjoubet al. [11] investigated DRL based approach for 
task scheduling in edge-cloud. However, they considered 
only response time in their research. Its drawback is that 

they could not exploit asynchronous methods for optimi-
zation of their methods towards robustness and adapt-
ability. There is a need to improve it by considering the dy-
namic optimization of parameters in the presence of sto-
chastic workloads. Skarlat et al. [12] explored IoT service 
placement dynamics in fog computing resources while 
Pham et al. [13] focused on cost and performance towards 
proposing a novel method for task scheduling. Brogi and 
Forti [14] investigated on deployment of QoS-aware IoT 



840 International Journal of Electrical and Computer Engineering Systems

tasks in fog infrastructure. Task prioritization [15], DRL for 
resource provisioning [4, 7], energy-efficient scheduling 
using Q-learning [16] and DRL usage in 5G networks [17] 
are other important contributions.

As presented in Table 1, we summarize our findings 
leading to important research gaps. The summary is 
made in terms of different parameters such as dynamic 
environment, presence of stochastic workload, decen-
tralized environment, usage of edge cloud, consider-
ation for adaptive QoS and presence of heterogeneous 
cores for task scheduling. Table 1 also provides the pro-
posed method and its merits over existing methods. 

Almutairi and Aldossary [18] proposed a novel meth-
od for IoT tasks to offload in the edge-cloud ecosystem. 
It is designed to serve latency-sensitive applications in 
a better way. It has a fuzzy logic-based approach for 
inferring knowledge towards decision-making in the 
presence of resource utilization and dynamic resource 
utilization. Ding et al. [19] considered an edge-cloud 
environment to investigate stateful data stream appli-
cations. They proposed a method to judge state migra-
tion overhead and make partitioning decisions based 
on the dynamically changing network bandwidth 
availability. Murad et al. 

[20] proposed an improved version of the min-min 
task scheduling method to deal with scientific work-
flows in cloud computing. It could reduce the mini-
mum completion time besides optimizing resource 
utilization. Bulej et al. [21] did their research on the 
management of latency in the edge-cloud ecosystem 
towards better performance in task scheduling in the 
presence of dynamic workloads. It is designed to ex-
plore the upper bound of response time and optimize 
the performance further. Almutairi and Aldossary [22] 
proposed an edge-cloud system architecture to in-
vestigate modelling methodology on task offloading. 
It has offloading latency models along with various 

offloading schemes. Their simulations are made using 
Edge CloudSim. They intend to improve it in future 
with fuzzy logic.   

Zhang and Shi [23] explored workflow scheduling in 
an edge-cloud environment. They analyzed different 
possibilities in workflow scheduling in such an eco-
system. They opined that workflow applications need 
novel approaches in the scheduling process. Zhao et al. 
[24] focused on task scheduling along with security to 
prevent intrusions in edge computing environments. 
They considered low-rate intrusions and focused on 
preventing them along with task scheduling. It is a Q-
learning-based approach designed to meet runtime 
requirements based on the learning process. Zhang 
et al. [25] proposed a time-sensitive algorithm that dy-
namically caters to the needs of deadline-aware tasks 
in edge-cloud environments. It considers job size and 
server capability in a given dynamic and hierarchical 
scenario. It is a multi-objective task considering execu-
tion time, cost and reduction of SLAs. Lakhan et al. [26] 
proposed a task scheduling approach for IoT tasks con-
sidering a hybrid mechanism consisting of task sched-
uling and task offloading. Singh and Bhushan [27] pro-
posed a method for task scheduling based on Cuckoo 
Search Optimization (CSO). It has an integrated local 
search strategy. From these recent works, it is found 
that they targeted IoT kind of workflows in edge-cloud 
environments. There is Q-Learning used in one of the 
papers. However, deep reinforcement learning is not 
found in the latest works. Service placement in edge 
resources using DRL [28], dynamic scheduling [29] and 
task offloading [30] are other important contributions. 
Table 2 provides a summary of findings among exist-
ing scheduling methods in terms of optimization pa-
rameters. Magotra [41] focused on energy-efficient ap-
proaches in cloud infrastructures by developing adap-
tive solutions that could help the system towards prop-
er VM consolidation, leading to better performance.

Reference Method Optimization Parameters

SLA Violations Cost Response Time Energy

[1] Heuristics Yes No No Yes

[3] Heuristics No Yes No Yes

[4] Gaussian Process Regression Yes No No Yes

[5], [6] DQN No Yes No Yes

[7] Q Learning No Yes No Yes

[8] DNN Yes Yes No No

[9], [10] DDQN No No No Yes

[11] DRL (REINFORCE) No No Yes No

[18] SJF No No Yes Yes

[19] Cloud Computing No No Yes No

[21] Cloud computing No Yes Yes Yes

[23] CSA No Yes No No

[24] Cloud computing No Yes Yes Yes

[25] Cloud computing No Yes No No

[27] CSP No Yes Yes No

Table 2. Optimization parameters considered by existing scheduling methods
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As presented in Table 2, we summarized the existing 
methods in terms of optimization parameters and the 
approach considered in the task scheduling research. 
The optimization parameters considered for the com-
parative study of existing methods are SLA violations, 
cost, response time and energy.

Table 2 also provides the proposed method and its 
merits over existing methods. Table 1 and Table 2 pro-
vide very useful insights reflecting gaps in the research. 
Our work in this paper is based on such research gaps as 
those tables reveal the merits of the proposed system.

3. PROPOSED SYSTEM

We proposed a DRL-based framework for dynamic 
task scheduling in an edge-cloud environment. This sec-
tion presents the framework and proposed algorithm 
besides DRL mechanisms. 

3.1. PROBLEM DEfINITION 

Considering an edge-cloud environment, let H be a 
collection of hosts denoted as {H1, H2, H3, …, Hn} where 
n indicates a maximum number of hosts. A task T can be 
assigned to host H. Scheduling is considered as the as-
signment of T to H. However, in terms of RL, the system 
state is mapped to an action. Here action does mean al-
location of T to H. T may be an active task that could be 
migrated to a new H or a newly arrived task. At the be-
ginning of an interval, denoted as SIi, The system state ini-
tially is denoted as statei which reflects the hosts and their 
parameters, tasks yet to be allocated in the prior interval, 
denoted as (ai-1\ li) beside newly arrived tasks denoted as 
ni. For each task, denoted as ai (=ai-1∪ni\ li), the scheduler 
needs to take an action, denoted as Actioni, for the system 
interval SIi in terms of either allocating it to a host or mi-
grating to a new host. A task is satisfying Let mi⊆ai-1\ li is 
considered a migratable task. A scheduler can be under-
stood as a model which reflects a decision-making func-
tion Statei→Actioni. Here loss function associated with the 
model for a given interval denoted as Lossi, is computed 
based on task allocations. Therefore, the problem of real-
izing an optimal model is expressed in Eq. 1. 

(1)

Different notations used in our work are presented 
in Table 3. 

3.2. OUR SYSTEM MODEL

We considered infrastructure or resources for sched-
uling in an edge-cloud environment. The resources are 
heterogeneous. Edge resources are nearby while cloud 
resources reside in a remote data centre. Therefore, each 
host in the infrastructure is different in response time 
and computational power. Edge resources are closer 
and exhibit low response times but they do have limited 
resources and computational power. Cloud resources 

take more response time but they do have high compu-
tational power. Our system model is presented in Fig. 1. 

The edge and cloud nodes are part of computing re-
sources. These resources are managed by the resource 
management module. This module has several compo-
nents or sub-modules to deal with resource manage-
ment either directly or indirectly. The scheduler module 
is responsible for either scheduling a task T to a host H or 
migrating a task from one host to another host based on 
runtime dynamics. The dynamic workload is generated 
by IoT devices being used by different users. The work-
load contains several tasks with varied requirements. 
Resource management module takes the workload and 
follows DRL based (learning-based) approach in task al-
location or task migration. These decisions are based on 
the ideal objective functions and the requirements asso-
ciated with tasks. The requirements may include dead-
line, bandwidth, RAM and CPU.

fig. 1. Our system model

The workload is generated automatically to evaluate 
the functionality of the proposed system. Our system 
has a DRL model which influences the scheduler mod-
ule in decision-making. There are multiple schedulers 
to be used at runtime to serve dynamically generated 
workloads. In the process, there is the distribution of 
workload among hosts leading to faster convergence. 
Each resource in edge-cloud accumulates local gradi-
ents associated with corresponding schedulers besides 
synchronizing them to update models. The DRL module 
follows asynchronous updates. The constraint satisfac-
tion module takes suggestions as input from DRL and 
finds whether it is valid. Here valid does mean a task is in 
migration or the host's capacity is optimally being used. 

3.3. WORKLOAD GENERATION

We generate workload programmatically to evaluate 
the proposed system. Since IoT devices and user's de-
mands are dynamic, there is a change in the bandwidth 
and computational requirements of tasks. The whole 
execution time in our system is divided into several 
scheduling intervals. Each interval is assumed to have 
the same duration. SIi denotes the ith scheduling inter-
val. This interval has a start time and end time denoted 
as ti and ti+1 respectively. Each interval has active tasks 
associated with it. They are the tasks being executed 
and denoted as ai. The tasks that have been completed 
at the beginning of the interval are denoted as li while 
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newly arrived tasks that are dynamically generated by 
the workload generator are denoted as ni.

3.4. OUR LEARNING-BASED APPROACH fOR 
 SCHEDULING 

We proposed a framework known as the Deep Re-
inforcement Learning Framework (DRLF), as shown in 
Fig. 2, which exploits a learning-based approach using 
the DRL model for dynamic task scheduling in an edge-
cloud environment. The framework supports several 
scheduling intervals. The framework has a workload 
generator which generates tasks (ni) and gives them 
to the scheduling and migration module. The tasks 
given to the scheduler are in turn given to the resource 
monitoring module which schedules new tasks and 
migrates existing tasks if required to ensure optimal 
resource utilization, load balancing and latency in task 
completion. The scheduler activity changes the state of 
the edge-cloud environment. 

fig. 2. Proposed Deep Reinforcement Learning 
Framework (DRLF) for task scheduling in edge-cloud 

environment

Every time Statei is updated by the resource monitor-
ing module it is given to the DRL model. The state infor-
mation consists of hosts' feature vectors, new tasks ni and 
the rest of the tasks associated with the previous interval 
and denoted by (ai-1\li). The resource monitoring module 
also gives Lossi data to the DRL model. The DRL model 
suggests an action, denoted as Actioni-1

PG, based on the 
state information to the constraint satisfaction module 
and updates parameters as expressed in Eq. 2. This mod-
ule then determines Penalityi to the DRL model.

(2)

This process continues iteratively. Once the con-
straint is satisfied, the constraint satisfaction module 
gives the suggested action (Action)by the DRL module 
to the resource management module. It then computes 
Penalityi+1 about SIi+1 the next scheduling interval.

Table 3. Notations used in our work

Notation Description

ai Indicates a set of active tasks linked to SIi

Hi Indicates ith host in a given set of hosts

li Indicates the initial set of  tasks of SIi

mi Indicates a decision for task migration

ni It indicates a task allocation decision

Actioni
PG Scheduling actions at the beginning of SIi

Lossi
PG Loss function at the beginning of SIi

SIi Denotes ith scheduling interval

Ti
S It indicates ith in a given set of tasks

{T} Indicates the host to which task T has been assigned

AEC Average Energy Consumption

AMT Average Migration Time

ART Average Response Time

Hosts Indicates a collection of hosts in the edge-cloud 
environment

N Indicates the maximum number of hosts

T Denotes a task to be executed

Based on the action received from the constraint sat-
isfaction module, the resource management module 
either allocates a new task to a specific host or migrates 
tasks, denoted as (ai-1\li), of the preceding interval. This 
will result in an update from ai-1 to ai. Then the tasks 
associated with ai are execute for SIi and the cycle con-
tinues for SIi+1. 

3.5. DEEP LEARNING ARCHITECTURE 

The DRL model is built based on an enhanced Re-
current Neural Network (RNN) architecture. It has the 
functionality to achieve reinforcement learning. In the 
process, it approximates Statei towards Actioni

PG which 
is an action bestowed from the DRL model to the con-
straint satisfaction module for a given scheduling in-
terval. The enhanced RNN can ascertain temporal rela-
tionships between input space and output space. This 
deep learning architecture is shown in Fig. 3. After each 
interval, cumulative loss and policy are predicted by a 
single network 

The network has two fully connected layers, denot-
ed as fc1 and fc2, configured. These are followed by 
three recurrent layers, denoted as r1, r2 and r3, with 
skip connections. The given 2D input is flattened and 
sent to dense layers. The output of r3 is given to two 
fully connected layers denoted as fc3 and fc4. The fc4 
outputs a 2D vector of 100x100. It does mean that the 
model can deal with 100 tasks allocated to 100 hosts 
in cloud infrastructure. Eventually, a softmax function 
is employed to the second dimension to have values 
[0,1] and the resultant value in a row becomes 1. For in-
terpretation Ojk, denoting a probability map, indicates 
that there is a probability of a task Tj

ai being assigned 
to Hk. At the fc4, a cumulative loss function Lossi+1

PG is 
computed. The layers in the network are made up of a 
Gated Recurrent Unit that have the capacity to model 
the temporal dimension of a given task and also the 
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characteristics of the host comprising of bandwidth, 
RAM and CPU. The Gated Recurrent Unit (GRU) layers 
tend to have increased network parameters leading to 
complexity. This problem is addressed by exploiting 
skip connections towards gradient propagation faster. 

fig. 3. Architecture of an RNN variant used to 
realize the DRL model

This model takes Statei as input which is represented 
in the form of a 2D vector. This vector contains a con-
tinuous element FVi

Hosta, and another continuous ele-
ment FVi

ni and FVi
ai-1 \li has categorical host indices. 

Therefore, pre-processing is required to transform host 
indices into one hot vector with a maximum size of n. 
Then there is a need for the concatenation of all feature 
vectors. Afterwards, each element in the resultant vec-
tor is subjected to normalization based on a range of 
values [0, 1]. Each element has a feature denoted as fe 
while minfe and maxfe denote their minimum and maxi-
mum values respectively. These values are computed 
relying on the dataset with the help of two heuristics 
namely local regression and maximum migration time. 
Afterwards, standardization is carried out feature-wise 
using the expression in Eq. 3.

(3)

Once pre-processing of the given input is carried out, 
it is fed to the network (Fig. 3) where it first flattens the 
pre-processed input before sending it through dense 
layers. The output of these layers is transformed into  
Actioni

PG. We employed a backpropagation algorithm 
to ascertain the biases and weights of the network. The 
learning rate is kept adaptive from 10 to 2 and later 
on, 1/10th value based on reward change associated 
with the preceding 10 iterations is not greater than 0.1. 
Automatic differentiation is exploited to modify the 
parameters of the network using Lossi

PG as a reward. 
Gradients of local networks are accumulated across the 
edge nodes periodically in an asynchronous fashion 
towards the update of global network parameters. To-
wards this end, a gradient accumulation rule expressed 
in Eq. 4 is followed.

(4)

Where local and global network parameters are 
denoted as θ' and θ respectively, it has a log term to 
indicate a change direction in parameters and the 
(Lossi

PG+CLossi+1
pred) term denotes cumulative loss 

predicted in a given episode that begins with State s. 
Mean Square Error (MSE) is a gradient associated with 
the cumulative loss predicted. Finally, there is the trans-
formation of output from Actioni

PG to Actioni by the 
constraint satisfaction module and the same is given to 
the resource management module. 

3.6. Algorithm Design

We proposed an algorithm to realize the optimal 
scheduling of given tasks in the edge-cloud ecosystem. 
It is presented in Algorithm 1.

Algorithm: Reinforcement Learning based Dynamic 
Scheduling (RLbDS) 

Inputs:
Size of batch B
Maximum intervals for scheduling N

1. Begin
2. For each interval n in N
3.  IF n%B==0 and n>1 Then
4.   Compute loss function 
5. Lossi

PG=Lossi+Penalityi 
6.   Use Lossi

PG in the network (Fig. 3) for 
  backpropagation 

7.  End If
8. Statei←PreProcess(Statei)
9.  Feed Statei to the network (Fig. 3)
10. pMap←Output of RL model (network as in Fig. 3)
11.  (Action, Penalityi+1)←ConSatMod(map)
12.  Resource monitoring module takes action
13.  DRL model takes Penalityi+1

14. ResourceMonitoring(Actioni) migrates active task 
15.  Execution of all tasks in interval n in edge-cloud
16.  End For
17. End

Algorithm 1. Reinforcement Learning based 
Dynamic Scheduling (RLbDS)

The algorithm takes the size of batch B and maxi-
mum intervals for scheduling N and performs optimal 
scheduling of given tasks of every interval in edge-
cloud resources. The algorithm exploits the enhanced 
RNN network (Fig. 3) to update the model from time to 
time towards making DRL-based decisions for schedul-
ing. At each interval of scheduling, there is an iterative 
process for taking care of pre-processing and feeding 
the state to the DRL model. Based on the action sug-
gested by DRL, the constraint satisfaction module 
specifies a penalty when there is an ideal scheduling 
decision, that is notified to resource monitoring which 
schedules new tasks and also performance migration 
of active tasks based on the decisions rendered. 
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(5)

Where the power function of host h is denoted by 
ph(t) linked to time and its maximum possible power is 
denoted as ph

max.

Average response time is another metric defined to 
be used for interval SIi. ART for all tasks is normalized by 
maximum response time. ART is computed as in Eq. 6.

(6)

The average migration time metric is defined for a 
given SIi. It reflects all tasks’ average migration time in 
the interval normalized by maximum migration time. 
AMT is computed as in Eq. 7.

(7)

Cost (C) is yet another metric defined for SIi. It indi-
cates the total incurred cost in the interval and is com-
puted as in Eq. 8.

(8)

Average SLA violation is another metric for SIi. It re-
flects SLA violation dynamics as expressed in Eq. 9.

(9)

To minimize the resultant value for all the aforemen-
tioned metrics, as used in [16] and [33], the Lossi metric 
is defined as expressed in Eq. 10.

(10)

such that α, β, γ, δ, ∈ ≥ 0 ∧ α + β + γ + δ + ∈ = 1. 

Different users can have varied QoS needs and hyper-
parameters (α, β, γ, δ, ∈) need to be set with different 
values. As discussed in [33], [34] and [35] it is important 
to optimize energy consumption in cloud infrastructure. 
Therefore, it is essential to optimize loss. Even when 
other metrics are compromised, it is possible to opti-
mize loss. In such a case, the loss can have α = 1 while 

(11)

As specified in the works such as [37] and [38], the 
penalty is to be included in neural network modes. 
With the penalty, the model can update parameters 
towards minimizing Lossi and ensure constrained sat-
isfaction. Therefore, for neural network loss function is 
defined as in Eq. 11. 

4. RESULTS AND DISCUSSION 

This section presents our simulation environment, 
the dataset used and the results of experiments. 

4.1. SIMULATION SETUP

We built a simulation application using Java lan-
guage. The IDE used for development is the IntelliJ Idea 
2022 version. CloudSim [39] and iFogSim [40] libraries 
are used to have a simulation environment. Scheduling 
intervals are considered equal to be compatible with 
other existing works [4, 7, 41]. Cloudlets or tasks are 
generated programmatically from the Bitbrain dataset 
collected from [42]. 

The two simulation tools such as iFogSim and Cloud-
Sim are extended with required classes to facilitate the 
usage of cost, response time and power parameters as-
sociated with edge nodes. New modules are created to 
incorporate simulation of IoT devices with mobility with 
delayed task execution, variations in bandwidth and 
communication with deep learning model. Additional 
classes are defined to have constraint satisfaction mod-
ules and also take care of input formats, output formats 
and pre-processing. Based on the provision in CloudSim, 
a loss function is implemented. The dataset collected 
from [43] has traces of real workload run on Bitbrain 
infrastructure. This dataset contains logs of workloads 
of more than 1000 VMs associated with host machines. 
The workload information contains time-stamp, RAM 
usage, CPU usage, CPU cores requested, disk, network 
and bandwidth details. This dataset is available at [44] 
to reproduce our experiments. The dataset is divided 
into 75% and 25% VM workloads for training and testing 
respectively. Training deep learning model is done with 
the former while the latter is used to test the network 
and analyse results. 

4.2. ANALYSIS Of RESULTS

We evaluated the performance of the proposed algo-
rithm named RLbDS by comparing it with state-of-the-art 
methods such as Local Regression and Minimum Migra-
tion Time (LR-MMT) [41], Median Absolute Deviation and 
Maximum Correlation Policy (MAD-MC) [41], DDQN [44] 
and REINFORCE [9]. LL-MMT works for dynamic workloads 

3.7. LOSS fUNCTION COMPUTATION 

In the proposed learning model we want to opti-
mize, in each interval, with minimal Lossi. The model 
is also designed to adapt to the state that dynamically 
changes while mapping Statei to Actioni. Towards 
this end, Lossi is a metric defined to update model 
parameters. Besides different metrics that result in 
normalized value 0 or 1 are defined. Average energy 
consumption is a metric defined as the edge cloud re-
sources have different sources of energy as discussed 
in [32]. The consumed energy by host h ∈ Hosts is mul-
tiplied by a factor αh∈ [0, 1] that is associated edge-
cloud deployment strategy. The normalized AEC is 
computed as in Eq. 5. 

the other metrics can have 0. As discussed in [36] traffic 
management and healthcare monitoring are sensitive to 
response time. In such cases, loss can have β = 1 while 
other measures can have 0. In the same fashion, setting 
hyper-parameters is application-specific.
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considering minimum migration time and local regres-
sion. It has heuristics to have task selection and overhead 
detection. MAD-MC is also a dynamic scheduler which 
is based on maximum correlation and median absolute 
deviation heuristics. DDQN is a deep learning-based ap-
proach that exploits RL to schedule tasks. DRL method is 
also based on RL which is based on policy gradient. The 
results reveal the sensitivity dynamics hyperparameters, 
such as (α, β, γ, δ, ε), of the proposed RLbDS about model 
learning and its impact on different performance metrics. 

Model training is given with 10 days of simulations while 
testing is carried out with 1-day simulation time. 

4.2.1. Impact of Hyperparameters on RLbDS

The performance of the proposed algorithm named 
RLbDS is analysed with loss function associated with 
many hyperparameters such as (α, β, γ, δ, ε). Experi-
ments are made with value 1 set to each of the hyper-
parameters. The rationale behind this is that when the 
value is set to 1, it could provide optimal performance. 

Table 4. Performance of RLbDS with different hyper parameters

Model Parameters Total Energy 
(Watts)

Time 
(milliseconds)

fraction of SLA 
Violations Total Cost (USD) Time (seconds) Number of 

completed tasks
α=1 1.37 8.5 0.17 6305.5 4.45 815

β=1 1.43 8.18 0.17 6306.5 4.3 830

γ=1 1.51 8.8 0.148 6307.5 3.65 845

δ=1 1.38 8.78 0.178 6304.5 4.15 810

ε=1 1.44 8.22 0.134 6307.8 3.75 850

As presented in Table 5, the performance of RLbDS is provided in terms of the number of performance metrics.

Table 5. Performance of RLbDS compared against existing algorithms

Models Total Energy 
(Watts) Time (milliseconds) fraction of SLA 

Violations
Total Cost (US 

Dollar) Time (seconds) Number of 
completed tasks

LR-MMT 0.959 8.58 0.06 6325 4.5 700

MAD-MC 0.95 8.4 0.13 6325 4.3 800

DDQN 0.85 8.8 0.07 6325 4 850

REINFORCE 0.82 8.35 0.06 6300 3.8 850

RLbDS 0.73 7.7 0.04 6000 3.3 1000

Loss function with different hyperparameters has its 
influence on the performance of the RLbDS algorithm 
as presented in Fig. 4. The network learning process 
differs with changes in hyperparameters. Energy con-
sumption differed when the loss function used differ-
ent hyperparameters. With α=1 RLbDS consumed 1.37 
watts, with β=1 it needed 1.43 watts, with γ=1 the algo-
rithm consumed 1.51 watts, with δ=1 it required 1.38 
watts and with ε=1 RLbDS consumed 1.44 watts. The 
least energy is consumed when α=1 (all energy con-
sumption values are given in 1*108 format). The aver-
age response time of the algorithm RLbDS is influenced 
by each hyperparameter. With α=1 RLbDS required 8.5 
milliseconds, with β=1 it needed 8.18 milliseconds, 
with γ=1 the algorithm needed 8.8 milliseconds, with 
δ=1 it required 8.78 milliseconds and with ε=1 RLbDS 
required 8.22 milliseconds. The least response time is 
recorded when β=1.

SLA violations are also studied with these hyperpa-
rameters. It is observed that they influence a fraction of 
SLA violations. With α=1 the fraction of SLA violations 
caused by RLbDS is 0.17, with β=1 also it is 0.17, with 
γ=1 the algorithm showing 0.148, with δ=1 it is 0.178, 
and with ε=1 RLbDS caused by 0.134. The last fraction 
of SLA violations is recorded when ε=1. The total cost is 

also analysed in terms of USD (as per the pricing calcu-
lator of Microsoft Azure [45]). 

It was observed earlier that hyperparameters have 
an impact on energy consumption. Since energy con-
sumption attracts the cost of execution in the cloud, 
obviously these parameters have an impact on the cost 
incurred. With α=1 the total cost exhibited by RLbDS is 
6305.5, with β=1 it is 6306.5, γ=1 the algorithm showed 
6307.5, with δ=1 it is 6304.5, and with ε=1 RLbDS 
caused 6307.8. The least cost is recorded when δ=1.

Average task completion time is also analysed with 
different hyperparameters. With α=1 the average task 
completion time exhibited by RLbDS is 4.45 seconds, 
with β=1 it is 4.3, with γ=1 the algorithm showed 3.65, 
with δ=1 it is 4.15, and with ε=1 RLbDS caused 3.75. The 
least average task completion time is recorded when 
γ=1 (all average task completion values are given in 
1*106 format). The total number of tasks completed 
with scheduling done by RLbDS is also influenced by 
hyperparameters. With α=1 the number of completed 
tasks achieved by RLbDS is 815, β=1 it is 830, γ=1 the 
algorithm showed 845, with δ=1 it is 810, and with ε=1 
RLbDS showed 850 tasks to be completed. The least 
number of completed tasks is recorded when δ=1.



fig. 4. Performance dynamics of proposed RLbDS algorithm with different model parameters associated 
with loss function

4.2.2. Performance Comparison 
 with State of the Art

Our algorithm RLbDS is compared against several 
existing algorithms as presented in Fig. 5. Total en-
ergy consumption values are provided in 1*108 watts 
format. LR-MMT algorithm consumed 0.959, MAD-MC 
0.95, DDQN 0.85, REINFORCE 0.82 and the proposed 
RLbDS consumed 0.73. The energy consumption of 
RLbDS is found to be the least among the scheduling 
algorithms. Average response time is another met-
ric used for comparison. LR-MMT algorithm exhibited 
an average response time of 8.58 milliseconds, MAD-
MC 8.4, DDQN 8.8, REINFORCE 8.35 and the proposed 
RLbDS required 7.7 milliseconds. The average response 
time of RLbDS is found to be the least among the sched-
uling algorithms. SLA violations are another important 
metric used for comparison. LR-MMT algorithm exhib-
ited a fraction of SLA violations as 0.06, MAD-MC 0.13, 

DDQN 0.07, REINFORCE 0.06 and the proposed RLbDS 
exhibited 0.04. The fraction of SLA violations of RLbDS 
is found least among the scheduling algorithms.

Algorithm compared with the state-of-the-art

Total cost in terms of USD is another metric used 
for comparison. This metric is influenced by energy 
consumption. LR-MMT algorithm needs 6325 USD, 
MAD-MC 6325, DDQN 6325, REINFORCE 6300 and the 
proposed RLbDS needed 6000 USD. The total cost of 
RLbDS is found least among the scheduling algorithms. 
Concerning average task completion time, the LR-MMT 
algorithm needs 4.5 seconds, MAD-MC 4.3, DDQN 4, 
REINFORCE 3.8 and the proposed RLbDS requires 3.3 
seconds. The average task completion time of RLbDS 
is found to be the least among the scheduling algo-
rithms (average task completion time is given in 1*106 
seconds format). The number of completed tasks is an-
other observation made in our empirical study.
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fig. 5. Performance of proposed RLbDS algorithm compared with the state of the art

LR-MMT completed 700 tasks, MAD-MC 800, DDQN 
850, REINFORCE 850 and the proposed completed 1000 
tasks. The average task completion time of RLbDS is 
found to be the least among the scheduling algorithms.

4.2.3.  Performance with Number of 
Recurrent Layers

Considering optimal values for hyperparameters sched-
uling overhead and loss dynamics against the number of 

recurrent layers are analysed. Overhead is computed as 
the ratio between the total duration of execution and the 
time taken for scheduling. Empirical study has revealed 
that the number of recurrent layers in the proposed archi-
tecture (Fig. 3) influences the loss and overhead. 

As presented in Table 6, loss value and scheduling over-
head against several recurrent layers are observed. Loss 
value and scheduling overhead are analysed against sev-
eral recurrent layers as presented in Fig. 6.

Table 6. Performance against the number of 
recurrent layers

Number of 
recurrent layers

Performance

Loss value Scheduling overhead (%)

0 3.69 0.009

1 3.4 0.010

2 2.9 0.010

3 2.6 0.010

4 2.5 0.019

5 2.4 0.029
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fig. 6. Performance analysis with the number of 
recurrent layers



Several layers influence the loss value. Loss value de-
creases (performance increases) as the number of lay-
ers is increased. However, the scheduling overhead is 
increased with the number of recurrent layers.

4.2.4. Scalability Analysis 

The scalability of the proposed algorithm is anal-
ysed in terms of speedup and efficiency. The analysis 
is made against the number of hosts. As presented in 
Table 7, the performance of the proposed algorithm in 
terms of its scalability is provided.

Table 7. Scalability analysis

Number of 
recurrent layers

Performance
Speed-up Efficiency

1 1 1

5 5 0.8

10 9 0.785

15 13 0.775

20 17 0.765

25 19 0.725

30 21 0.7

35 23 0.650

40 25 0.630

45 26 0.570

50 27 0.525

fig.7. Scalability analysis in terms of speedup and 
efficiency

There is a trade-off observed between scalability and 
efficiency as presented in Figure 7. When the number 
of hosts is increased, there is a gradual decrease in ef-
ficiency while there is a gradual increase in speedup. 
From the experimental results, it is observed that the 
proposed RLbDS is found to be dynamic and can adapt 
to runtime situations as it is a learning-based approach. 

Its asynchronous approach helps it in faster conver-
gence. In the presence of dynamic workloads and device 
characteristics, RLbDS adapts to changes with ease.

5. CONCLUSION AND fUTURE WORK

We proposed a learning-based framework known as 
the Deep Reinforcement Learning Framework (DRLF).
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This is designed in such a way that it exploits Deep 
Reinforcement Learning (DRL) with underlying mecha-
nisms and enhanced deep network architecture based 
on Recurrent Neural Network (RNN). We also proposed 
an algorithm named Reinforcement Learning Dynamic 
Scheduling (RLbDS) which exploits different hyperpa-
rameters and DRL-based decision-making for efficient 
scheduling. Real-time traces of edge-cloud infrastructure 
are used for empirical study. We implemented our frame-
work by defining new classes for CloudSim and iFogSim 
simulation frameworks. We evaluated the performance of 
the proposed algorithm named RLbDS by comparing it 
with state-of-the-art methods such as LR-MMT, MAD-MC, 
DDQN and REINFORCE. The results reveal the sensitivity 
dynamics hyperparameters, such as (α, β, γ, δ, ε), of the 
proposed RLbDS about model learning and its impact on 
different performance metrics. Our empirical study has re-
vealed that RLbDS outperforms many existing scheduling 
methods. In future, we intend to improve our framework 
for container scheduling and load balancing.
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