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Abstract – In recent years, systems that collect location information and publish statistics, such as those that publish congestion 
information, have been extensively employed. Because it is possible to infer an individual’s identity even if the information is not directly 
disclosed, it is essential to disclose data with privacy protection. Therefore, privacy protection methods based on differential privacy 
are attracting attention. Geo-indistinguishability is the most famous extension theorem of differential privacy for location information. 
Geo-indistinguishability can be achieved by adding noise to a target value that must be protected. However, noise addition reduces 
the usefulness of the data. Thus, it is desirable to add minimal noise to your privacy budget. Therefore, we focus on the fact that the 
values obtained using measurement devices contain errors. We introduced a novel concept of differential privacy tailored for location 
information, termed true-value-based geo-indistinguishability (T-Geo-I), which accounts for equipment noise. We also proposed a 
location information privacy protection method that considers T-Geo-I and reduces the amount of added noise. The object of privacy 
protection should be the “true value” not the “measured value” that includes measurement errors.
According to the experimental results, in the case wherein the measurement error is the normal distribution, our method reduced the noise 
average and mean square error (MSE) by up to 41% and 63%, respectively, compared with conventional methods while maintaining a 
prespecified level of privacy in 108 samples of numerical data. In the case wherein the measurement error is the lognormal distribution, 
the proposed method based on T-Geo-I succeeded in reducing the noise average and MSE by up to 60% and 67%, respectively, compared 
with methods based on Geo-I, while maintaining a prespecified level of privacy. These findings indicate that the proposed method can 
improve the usefulness of data while maintaining a prespecified degree of privacy protection.
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1.  INTRODUCTION

In recent years, systems that collect location informa-
tion and publish statistics, such as those that publish 
congestion information, have been extensively em-
ployed. The Internet of Things (IoT) technology has rev-
olutionized innovation in people’s lives by collecting 
and storing information received from physical objects 
or sensors [1–2]. Although these systems are conve-
nient, they carry the risk of leaking personal informa-
tion such as location information [3]. Even if personal 
information is not directly disclosed, it may be inferred 

from statistical data. Storing and using information on 
the cloud is also becoming more prevalent [4–5]. Lo-
cation privacy preservation is essential, and there are 
many research challenges [6–7].

When disclosing statistical data to the public, it is es-
sential to take privacy into account and perform pro-
cessing to ensure that individuals cannot be identified 
from the data before releasing the data. Recently, pri-
vacy protection methods based on differential privacy 
have attracted attention. Representative examples 
of privacy protection for location information based 
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on differential privacy include NTT Docomo’s mobile 
spatial statistics and Google Maps processing of con-
gested areas. Differential privacy is used in statistics in 
the real world and is widely recognized as a security in-
dicator that can suppress the disclosure of data privacy, 
regardless of the attacker’s background knowledge or 
attack method algorithm.

Geo-indistinguishability (Geo-I) is attracting atten-
tion as a standard that applies differential privacy 
to protect location information data [8]. It shows the 
guaranteed criteria when noise is added to the position 
information using the perturbation method on the Eu-
clidean plane. One perturbation method that satisfies 
the Geo-I criteria and protects the true value by add-
ing random noise to a person’s location information is 
the planar Laplace mechanism. This method protects 
privacy by adding noise that satisfies the criterion of 
differential privacy to the true data using the Laplace 
distribution. In general, the stronger the degree of pri-
vacy protection, the higher the amount of noise added, 
which reduces the usefulness of the data. There is a 
trade-off between the usefulness of data and the de-
gree of privacy protection.

Because the degree of privacy protection is speci-
fied numerically, there is a need for a noise addition 
method that satisfies this degree of protection in terms 
of differential privacy. To enhance the usefulness of 
the data, the amount of noise added to the true value 
should be reduced. The more noise added, the less use-
ful the data becomes. Therefore, we focus on the fact 
that the measured values already contain errors and 
attempt to suppress the total amount of added noise. 
Because conventional methods do not consider errors 
during measurement, they may contain extra noise 
for the privacy protection parameter budget. In gen-
eral, technologies for obtaining location information 
include GPS, Wi-Fi, beacons, and communication base 
stations. Because it is measured using IoT equipment, it 
already contains errors. To maintain a prespecified de-
gree of privacy protection and enhance the usefulness 
of the data, we propose a method for reducing the total 
amount of added noise by considering errors already 
included in the measured values.

The principal contributions of this study are three-
fold. First, we introduce a novel concept of differential 
privacy tailored for location information, termed true-
value-based Geo-I (T-Geo-I), which accounts for equip-
ment noise. Second, we devise an anonymization algo-
rithm that adheres to the T-Geo-I standard. Third, we 
demonstrate that the proposed T-Geo-I framework not 
only upholds the predefined privacy threshold but also 
reduces noise addition compared with existing meth-
odologies.

The remainder of the paper is organized as follows: 
Section 2 reviews existing research related to differen-
tial privacy. Section 3 defines a new privacy metric and 
proposes a privacy protection algorithm that ensures 
compliance with this metric. Sections 4 and 5 detail 

the experimental method and the results, respectively. 
Section 6 discusses the experimental results of our pro-
posed method. Finally, Section 7 concludes the study.

2. RELATED WORK

2.1. OvERvIEW Of LOCATION PRIvACY 
 RESEARCh

A significant amount of research has been conduct-
ed on location information privacy [9–10]. One famous 
research field is differential privacy. Geo-I is famous for 
the differential privacy of location information [8]. 

According to recent research, Geo-I in indoor en-
vironments has been proposed [11]. The proposed 
framework introduces two distance calculation and re-
ceived signal strength (RSS) generation methods based 
solely on RSS values as novel methods, which have 
been proven to perform. 

Geo-I for task allocation in spatial crowdsourcing has 
been investigated [12]. An optimized global grouping 
with the adaptive local adjustment method OGAL with 
a convergence guarantee was proposed and proven 
that it works. 

These methods do not consider measurement errors; 
therefore, our method can be applied to make them 
more efficient to enhance the usefulness of data.

Research on federated learning has been actively 
conducted recently [13]. Our method can also be incor-
porated into this. Details are explained in Section 2.10.

2.2. ϵ-DIffERENTIAL PRIvACY

Differential privacy is extensively used as a strong 
mathematical definition to protect datasets without 
relying on attackers’ prior information [14–16]. Rather 
than relying on encryption, differential privacy offers 
protection by adding noise to the data, and the results 
are calculated from the data. Because encryption is not 
involved, the computational cost of differential privacy 
is low, and it tends to be easy to introduce into many 
systems.

When mechanism K is a privacy protection function, 
S ⊆ Range(K), ϵ∈R+, and databases D and D’ are adja-
cent, ϵ-differential privacy is satisfied when the follow-
ing equation is satisfied. ϵ is a privacy level parameter 
and a positive number. When the privacy level param-
eter ϵ is large, the privacy level is low; when ϵ is small, 
i.e., close to 0, the degree of privacy protection is high. 
Adjacent means that the records are different in one 
place. For example, D represents a database with one 
record removed from D’, otherwise D represents a data-
base with one record of D’ replaced by another record. 
This means that D and D′ are adjacent.

(1)

This equation indicates that privacy is protected be-
cause different parts of the records cannot be identified 
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if the results from adjacent databases are indistinguish-
able. For example, if an attacker knows all information 
except for a certain record A, it is possible to infer the 
data about A by back-calculating from the database re-
sult. Consequently, we can protect privacy by applying 
for protection according to this guarantee.

2.3. (ϵ,δ)-DIffERENTIAL PRIvACY

Differential privacy is mathematically rigorous. It has 
been mathematically proven that a noise generation 
method based on the Laplace mechanism using the 
Laplace distribution has a probability density function 
ratio of less than the privacy level parameter ϵ in all 
ranges [17].

For example, for a noise generation method using a nor-
mal distribution noise, the ratio of probabilities becomes 
infinite at the tails of the distribution. Therefore, differen-
tial privacy is not guaranteed over the entire region.

However, it is too strict a definition to consider 
extreme points that seldom occur in reality. (ϵ,δ)-
differential privacy allows cases wherein differential 
privacy is not satisfied if the probability is below a cer-
tain level [18].

When mechanism K is a privacy protection function, ϵ 
is a privacy level parameter, S ⊆ Range(K), ϵ∈R+, and da-
tabases D and D’ are adjacent, if differential privacy based 
on the privacy level parameter is not satisfied with a prob-
ability less than or equal to δ, Equation 2 is satisfied.

(2)

2.4. LOCAL DIffERENTIAL PRIvACY

The definition of ϵ-differential privacy refers to the 
protection of the database. Although this is guaran-
teed for databases that store data, it is not assumed 
that each data is sent to the server one by one each 
time. Therefore, the concept of local differential privacy 
has been proposed [19-20].

When x and x’ represent databases of size 1 and pro-
tection is performed by mechanism A, for any output 
y, ϵ∈R+, if Equation 3 is satisfied; for the privacy level 
parameter ϵ, it satisfies ϵ-local differential privacy.

(3)

This standard also allows you to protect your device 
before sending data to an untrusted server. Therefore, 
it is possible to collect and use data while protecting 
the data regardless of the trustworthiness of the server.

2.5. PLANAR LAPLACE MEChANISM

The planar Laplace mechanism is a typical privacy 
protection method based on differential privacy [17]. 
It uses the Laplace distribution to generate noise and 
adds it to the true value to protect privacy. When pro-
tecting individual data before sending it to the server, 
noise is added to each piece of data each time accord-

ing to local differential privacy before sending it to the 
server. Because this method differs from encryption, it 
can protect user privacy with low computational costs. 
Therefore, it can be easily introduced into many sys-
tems. It can be executed on each user’s IoT device or 
smartphone without a significant burden.

However, this method reduces the usefulness of the 
data. There is a trade-off between the usefulness of 
data and the degree of privacy protection. Many stud-
ies have been conducted to address this disadvantage, 
and our research is one of them to improve the useful-
ness of data.

2.6. ϵdx-PRIvACY

Chatzikokolakis et al. [21] extended differential priva-
cy, which is defined only in databases. P(Z) denotes the 
probability distribution on Z. K:X→P(Z) denotes a mech-
anism in some domain X that provides a probability 
distribution in some domain Z. Dx(x, x’) is the hamming 
distance between x and x’ on X. ϵ denotes a privacy level 
parameter, ϵ∈R+, x, x’∈ X, and Z⊆Z. If the mechanism K is 
expressed by Equation 4, ϵdx-privacy is guaranteed.

(4)

This definition indicates that the more similar two 
databases are, the more similar the generated distribu-
tions should be.

2.7. GEO-INDISTINGUIShAbILITY

Geo-I is a privacy guarantee standard for location 
information data. It has received particular attention 
among perturbation methods [22]. Geo-I applies ϵdx-
privacy to location information data. It also uses the 
concept of local differential privacy.

In Equation 5, X represents a set of points of inter-
est, x,x’∈X, d(x,x’) denotes the distance between x and 
x’ on the Euclidean plane, ϵ denotes a privacy level 
parameter, ϵ∈R+, Z contains spatial points, and Z⊆Z. 
If the mechanism K is expressed by Equation 5, ϵ-Geo-I 
is guaranteed.

(5)

2.8. PLANAR LAPLACE MEChANISM fOR 
 Geo-I

The planar Laplace mechanism is used as a data pro-
tection method to satisfy Geo-I [22]. This is a method 
for position information wherein noise is generated 
from the privacy level parameter ϵ using the Laplace 
distribution and added to the true position.

For the noise radius value r, we substitute the noise 
calculated using Equation 6.

Volume 15, Number 3, 2024
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For the direction of noise value θ, we randomly calcu-
late a value from the probability of a uniform distribu-
tion with [0, 2π). For p, we randomly calculate a value 
from the probability of a uniform distribution on [0,1), 
assign it to the true value x, and use <rcosθ, rsinθ> as 
noise. We select the closest possible coordinate system 
to the coordinates with added noise and use that as 
the value after applying the mechanism. Function W-1 
denotes Lambert’s W function (the −1 branch). This 
operation guarantees ϵ-Geo-I. ϵ denotes a privacy level 
parameter, and ϵ ∈R+.

The probability of obscuring the true position x to 
x’ is calculated using Equation 7. This planar Laplace 
mechanism rounds the decimal point of the position 
data. Equation 7 also considers the effect of rounding. 
d(x, x’) denotes the distance between x and x’ on the 
Euclidean plane. ϵ denotes a privacy level parameter.

(7)

2.9. TRUE-vALUE-bASED DIffERENTIAL 
 PRIvACY

Sei et al. [23] proposed the concept of true-value-
based differential privacy (TDP). This is a privacy guar-
antee standard that considers the fact that the values 
measured using IoT devices contain errors.

The conventional method satisfies the specified de-
gree of privacy protection for the measured value, i.e., 
“true value + measurement error.” However, to meet 
these criteria, the privacy of the “true value” should be 
protected with a specified degree of privacy protec-
tion. Because noise in the form of measurement er-
rors is already present, the amount of additional noise 
required to protect privacy is small for the necessary 
privacy parameter budget compared with the conven-
tional method. Focusing on measurement errors, we 
attempt to reduce the total amount of noise added ac-
cording to differential privacy.

For a database of size 1 for x and x’, mechanism M 
is a function that adds error during measurement, and 
protection is provided by mechanism A. For any output 
y and ϵ ∈R+, when Equation 8 is satisfied, ϵ-differential 
privacy is satisfied. In addition, TDP assumes that the 
measurement error is based on a normal distribution.

(8)

Considering this concept, even if noise below an ap-
propriate threshold is not added to the measured val-
ue, the prespecified degree of privacy protection can 
be maintained, and the total amount of added noise 
can be reduced.

TDP concentrates on one-dimensional data [23]. TDP 
aims to find the optimal maximum w that fulfills Equa-
tion 9.

(9)

where

and

Here, ϵ denotes a privacy level parameter, ∆ means 
the range of possible values for numerical attitude, σ 
means the standard deviation of normal distribution, 
and b means the scale parameter of Laplace distribu-
tion (equal to ∆/ϵ).

The larger the threshold w, the more pronounced the 
reduction effects. TDP assumes that the measurement 
error adheres to a one-dimensional normal distribution 
N(t;σ2 ). If the measurement error diverges from a one-
dimensional normal distribution, a fundamentally dif-
ferent mathematical discussion is required. Even with 
a one-dimensional normal distribution, as intricate as 
described by Equation 9, extending Equation 9 to two 
dimensions is not straightforward.

2.10. COMPOSITION ThEOREM fOR 
 hETEROGENEOUS MEChANISMS

Kairouz et al. [24] focused on privacy guarantees 
under k-fold composition. According to theorem 
3.3 in [24], any k-fold adaptive composition of (ε, δ)-
differentially private mechanisms satisfies the privacy 
guarantee. This means that the total privacy budget is 
obtained during composition.

2.11. fEDERATED LEARNING

Federated learning is a method that protects pri-
vacy by training machine learning models on each 
device [13, 25]. Each local device uses its data to train 
the model from the central server. Subsequently, only 
the extracted parameters are aggregated in the central 
server to improve the accuracy of the common model 
in the central server.

Federated learning of location information is also be-
ing researched [26–27]. For example, population mod-
eling and population density can be estimated without 
the user having to send the true original data using the 
proposed method [27]. With federated learning, each 
device uses data to perform calculations and incorpo-
rates them into a machine learning model before send-
ing the data to the server. It is highly compatible with 
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local differential privacy. Our method is based on local 
differential privacy. There is a high possibility that our 
proposed method will be incorporated into federated 
learning to enhance the usefulness of data while main-
taining a prespecified privacy protection level.

3.  PROPOSED METhOD

3.1. TRUE-vALUE-bASED GEO-I (T-Geo-I)

We propose true-value-based geo-indistinguishabil-
ity (T-Geo-I), a privacy protection standard for location 
information that considers measurement errors. This 
is a combination of Geo-I, which is a privacy protec-
tion standard related to location information, and TDP, 
which is a privacy protection standard that considers 
measurement errors.

TDP is focused on one-dimensional data. This leads to 
the meaningful proposition of amalgamating TDP with 
the privacy protection property of geo-indistinguish-
ability for two-dimensional location information. The 
challenge in the theoretical analysis of the cumulative 
effect of measurement errors and differential privacy 
noise on two-dimensional location data is significant, 
rendering the direct application of the methodologies 
proposed in [23] unfeasible. In addition, the research 
on TDP, as discussed in [23], is confined to scenarios as-
suming a normal distribution of measurement errors. 
The uniqueness of the algorithm proposed in Section 
3.2 of our study stems from its consideration of cases 
in which the measurement error does not conform to 
a normal distribution. This innovative approach signifi-
cantly extends the applicability and relevance of TDP, 
particularly in contexts in which data distributions are 
non-normal. Obtained through simulation, our pro-
posed algorithm is adaptable to any probability distri-
bution. Typically, technologies for acquiring location 
data encompass GPS, Wi-Fi, beacons, and cellular base 
stations. Given the variety of devices and the indeter-
minate nature of measurement error distributions, the 
versatility of the proposed method in accommodating 
various error distributions is of substantial significance.

Let mechanism M be a function that adds error dur-
ing measurement, X is a set of points of interest, x, x’∈X, 
d(x, x’) denotes the distance between x and x’ on the 
Euclidean plane, ϵ denotes a privacy level parameter, 
ϵ∈R+, Z contains spatial points, and Z⊆Z. ϵ-T-Geo-I is 
guaranteed when mechanism K satisfies Equation 10.

(10)

3.2. PRIvACY PROTECTION METhOD bASED 
 ON T-Geo-I

Privacy protection method based on T-Geo-I is based 
on the planar Laplace mechanism. As mentioned in 
Section 2.4., because the planar Laplace mechanism 
has a low computational cost to protect privacy and 

is easy to use in various systems, our method incorpo-
rates this mechanism. 

We propose a method wherein no noise is added to 
the data when the noise generated using the planar 
Laplace mechanism of Geo-I is below the threshold w; 
the noise is added to the data when the noise is the 
threshold w or above. Noise generation follows Sec-
tion 2.7. The value generated using Equation 6 is the 
radius of the noise added to the measurement noise 
value, and the threshold w determines whether noise 
is added. 

The problem with the proposed method is that it is 
difficult to solve the threshold value w analytically. In 
previous research [23], w was determined by calculation 
using mathematical formulas. We solve this problem by 
finding the threshold value w through simulation.

The pseudocode for the privacy protection method is 
shown in Algorithm 1. In the proposed method for analyt-
ically adding privacy noise, the noise radius r is calculated 
using Equation 11. For θ, we randomly calculate a value 
from the probability of a uniform distribution with [0,2π). 
For p, we randomly calculate a value from the probabil-
ity of a uniform distribution on [0,1). ϵ can be any positive 
value determined as a privacy level parameter.

Because of the proposed method, it is necessary to 
find an appropriate threshold value w for the noise ra-
dius r. The optimal threshold w value is the minimum 
value within the range that satisfies Equation 10.

Algorithm 2 illustrates the algorithm for determining 
the optimal threshold w. To confirm that Equation 10 
is satisfied, a total noise probability density function 
is derived by combining the measurement error and 
privacy noise. Because the probability density function 
cannot be derived through calculation, it is derived by 
randomly generating ns samples as an experiment. A 
probability density function shifted by ∆ is also derived. 
Differential privacy is satisfied when the ratio of the 
two probability density functions satisfies Equation 10. 
Because the accuracy of the probability density func-
tion is low in areas with few samples, only the areas 
with (1-δ) samples are checked. If differential privacy is 
satisfied, even with a sufficiently large threshold w, let 
w be infinite.

MeasurementNoise(), in the 8th line in Algorithm 
2., returns the value obtained from the distribution 
of measurement errors. The distribution of measure-
ment error is not limited to a normal distribution. The 
noise distribution may be any distribution and can be 
changed depending on the measuring equipment.

PrivacyNoise() in the 10th line in Algorithm 2. is the 
algorithm shown in Algorithm 1.

(11)

(12)
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Algorithm 1. Privacy protection mechanism for loca-
tion information considering measurement errors.

Input: ϵ (Privacy level parameter), vX, vy (Measured lo-
cation values), 𝑤 (Threshold value)

Output: TDP value
1: Generate a random value p from a uniform distri-

bution [0,1)
2: r ← rϵ(p)
3: Generate a random value θ from a uniform distri-

bution [0, 2π)
4: if r < w then
5: return (vX, vy).
6: else
7: return (vX + rcosθ, vy + rsinθ).
8: end if

Algorithm 2. Algorithm for determining threshold w.

Input: 𝜖 (Privacy level parameter), 𝑐 (Width of a histo-
gram), Δ (Distance of x and x’), 𝛿 (Scope of verifying dif-
ferential privacy), α (Multiple of w to verify), 𝑛𝑠 (Num-
ber of samples)

Output: Threshold 𝑤 used in the proposed method

1: for w = α, 2α,... do
2: isDF ← true

3: {Prepare two array variables as Histogram}

4:  𝐵 ← 𝑏1 , 𝑏2 , . . .

5: 𝐵 ’ ← 𝑏1 ’ , 𝑏2’ , …
6: for i = 1,. . .,𝑛𝑠 do
7: {Add measurement error}

8: 𝑣 ←MeasurementNoise()

9: {Add Laplace noise considering threshold 𝑤}

10: 𝑣 ← 𝑣 + 𝑃𝑟𝑖𝑣 𝑎𝑐𝑦𝑁𝑜𝑖𝑠𝑒(𝜖 , 𝑤)
11: {Calculate the corresponding bin of the histo-

gram of value 𝑣 .}

12: 𝑖𝑛𝑑𝑒𝑥 ←⌈|𝑣 |/𝑐 ⌉
13: 𝑏index ← 𝑏index + 1 
14: {Calculate the corresponding bin of the histo-

gram of value |𝑣 | + Δ.}

15: 𝑖𝑛𝑑𝑒𝑥 ’ ←⌈(|𝑣 | + Δ)/c⌉
16: 𝑏index ← bindex + 1 
17: end for
18: {Determine the scope to verify differential privacy}

19: 𝑠𝑢𝑚 ← 0
20: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 0
21: for i = 1,. . . B’.length do
22:  𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑏I’ 
23:  if 𝑠𝑢𝑚 /𝑛𝑠 > 1 − 𝛿 then
24:   𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑖
25:         break

26:   end if

27: end for
{Verify whether differential privacy is satisfied}
28: for i = 1,. . . ,threshold do
29:  if bi /bi’> exp(𝜖Δ) or bi’/bi > exp(𝜖Δ) then
30:   𝑖𝑠𝐷𝐹 ← 𝑓𝑎𝑙𝑠𝑒
31:   break
32:  end if
33: end for
{Return value if differential privacy is not satisfied}
34: if not isDF then
35:  return w − α
36: end if
37: end for

4. EXPERIMENT METhOD

4.1. SIMULATION METhOD

We simulated the proposed method. We compared the 
proposed method T-Geo-I with the planar Laplace mech-
anism for methods based on Geo-I [22] and TDP [23]. 

The simulation was performed in two scenarios. One 
involved performing experiments by setting a person’s 
position to (0, 0) and adding noise as a numerical simu-
lation. The other involved dividing people into grids 
and conducting a simulation experiment to count the 
number of people on each grid.

In the grid experiment, we used data generated us-
ing the Siafu simulation tool [28]. The Siafu tool is open-
source software for obtaining data on human behav-
ior using a typical human behavior model on a map. 
The setup includes 10,000 users interacting in a space 
measuring 8.4 km x 8.4 km, which includes businesses, 
restaurants, and parks. We used the data for this simula-
tion based on previous research by Sei et al. [29].

In this experiment, the measurement error assumes 2 
types, a normal distribution and a lognormal distribution. 
MeasurementNoise(), in the 8th line in Algorithm 2., returns 
noise based on a normal distribution or a lognormal dis-
tribution. Many studies on location information are based 
on the fact that GPS location measurement errors follow 
a normal distribution [30-33]. This study [34] showed the 
distributions that describe navigation positioning system 
errors more accurately include lognormal distributions. 
Therefore, the experiments were conducted by assuming 
that the measurement errors were based on a normal dis-
tribution and a lognormal distribution. 

In the case wherein the measurement error is the log-
normal distribution, experiments are only compared to 
Geo-I. As TDP is based on the case where the measure-
ment error is the normal distribution, evaluations using 
TDP cannot be performed for the lognormal distribution.

As mentioned in the proposed method, the final 
noise is a combination of measurement errors and 
noise due to the Laplace mechanism. In the simulation, 
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as shown in Fig. 1, the noise vector of measurement er-
ror due to the normal distribution and the noise vec-
tor due to the Laplace mechanism to satisfy differential 
privacy were added and used as the total noise.

The noise average and mean square error (MSE) are 
summarized in the results. Errors include both noise 
from the Laplace distribution for differential privacy 
and noise from the normal distribution as measure-
ment errors.

fig. 1. Composition of angles

4.2. SIMULATION PARAMETERS

To find threshold w, the distance between x and x’ 
∆ as d(x, x’), we conducted experiments with 1.0. The 
width of a histogram 𝑐 is 0.5. Multiple of w to verify α is 
0.5. The scope of verifying differential privacy δ is 10−3. 
This means that we guarantee (ε, 10−3)-differential pri-
vacy. The number of samples ns is 108.

The measurement error was calculated from 2 types. 
One is a two-dimensional normal distribution with a stan-
dard deviation of 1.0. The other is the error by the radius 
from a lognormal distribution with a standard deviation 
of 1.0 and the angle is from a uniform distribution [0, 2π). 
It is also used by MeasurementNoise() in Algorithm 2. For 
the noise generated from the Laplace distribution, we 
conducted experiments with ϵ = 1, 2, 5, and 10.

In the numerical simulation, the number of samples 
is 108. In the Siafu simulation, the number of samples 
is 104. The space was divided into 500 × 500 squares, 
totaling 2,500 squares, and the noise average and noise 
MSE were calculated.

4.3. SIMULATION METhOD fOR TDP

TDP is focused on one-dimensional data basically 
[23]. In the method based on TDP, we consider x and y 
to be two independent variables.

According to Section 2.9., we generated noise with 
half the value ϵ and added it to x and y. For example, by 
adding noise generated from the Laplace distribution 
with ε = 0.5 for x and ε = 0.5 for y, we achieved total 
privacy protection of ε = 1.0.

5.  EXPERIMENT RESULTS

In the case wherein the measurement error is the 
normal distribution, the total noise average and MSE 
of the numerical simulation are summarized in Tables 
1 and 2, respectively. In the case wherein the measure-
ment error is the normal distribution, the total noise av-
erage and MSE of the Siafu simulation are summarized 
in Tables 3 and 4, respectively. In the case wherein the 
measurement error is the normal distribution, the total 
noise average and MSE of the numerical simulation are 
summarized in Tables 5 and 6, respectively.

The total noise contains both Laplace noise for dif-
ferential privacy and noise from the normal distribu-
tion as measurement errors. The results of the average 
amount of noise added to achieve differential privacy 
are summarized in Figs. 2, 3, and 4. When ε is close to 0, 
the noise is large. 

According to all results, the proposed method has 
the smallest noise average and MSE compared with the 
other methods. 

In the case wherein the measurement error is the 
normal distribution, the proposed method based on 
T-Geo-I reduced the noise average by up to 18% and 
41% compared with methods based on Geo-I and TDP 
with numerical simulation, respectively. The proposed 
method based on T-Geo-I reduced the noise average 
by up to 15% and 36% compared with methods based 
on Geo-I and TDP with the Siafu simulation, respective-
ly. The proposed method based on T-Geo-I reduced the 
noise MSE by up to 31% and 63% compared with Geo-I 
and TDP with numerical simulation, respectively. The 
proposed method based on T-Geo-I reduced the noise 
MSE by up to 17% and 38% compared with methods 
based on Geo-I and TDP with the Siafu simulation, re-
spectively. The maximum reduction rate was achieved 
when ε = 1, 2.

In the case wherein the measurement error distribu-
tion is the lognormal distribution, the proposed T-Geo-I 
reduced the noise average and MSE by up to 60% and 
67%, respectively, compared with Geo-I with numerical 
simulation. The maximum reduction rate was achieved 
when ε = 1.

In the case of ϵ = 5 and 10, the result indicates that dif-
ferential privacy is satisfied with only the measurement 
error without any noise addition because of the Laplace 
distribution. When ϵ = 10, the noise averages of methods 
based on T-Geo-I and TDP are almost the same. This indi-
cates that both methods do not add nearly any Laplace 
noise because differential privacy is almost satisfied with 
only the standard deviation when ϵ = 10.

The proposed method can reduce the average 
amount of noise and is expected to enhance the use-
fulness of the data.

We tested them on a MacBook Air (M1, 2020), an Ap-
ple M1 CPU, and 16 GB of memory using Python. It takes 
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5 h to generate 108 Laplace noises. It takes 5 min to read 
the data of 108 Laplace noises already generated. 

After the data are read, it takes 5 min for each value of 
w to create a histogram and verify whether differential 
privacy is satisfied. 

We also experimented to see how much time it takes 
to protect privacy in a real environment. We measured 
the calculation time for acquiring location information 
and adding noise to the location information using an 
iPhone 13 mini. The average time value was calculated 
by measuring 100 times. The result is Fig. 5. The com-
putation time for all methods was almost the same. 
Privacy protection can be achieved in a short time of 
270-290 ms. This means that the proposed method is 
not algorithmically inefficient.

Table 1. Comparison of total noise average with 
numerical simulation (measurement error of normal 

distribution)

ϵ w for  
T-Geo-I

T-Geo-I  
(noise average)

Geo-I  
(noise average)

TDP 
(noise average)

1 2.5 2.02 2.41 3.46

2 2.5 1.33 1.64 1.92

5 inf 1.25 1.33 1.27

10 inf 1.25 1.27 1.25

Table 2. Comparison of total noise MSE with 
numerical simulation (measurement error of normal 

distribution)

ϵ w for  
T-Geo-I

T-Geo-I  
(noise MSE)

Geo-I  
(noise MSE)

TDP 
(noise MSE)

1 2.5 6.54 7.99 17.72

2 2.5 2.39 3.50 5.31

5 inf 1.99 2.23 2.07

10 inf 1.99 2.05 2.00

Table 3. Comparison of total noise average with 
Siafu simulation (measurement error of normal 

distribution).

ϵ w for  
T-Geo-I

T-Geo-I  
(noise average)

Geo-I  
(noise average)

TDP 
(noise average)

1 2.5 1.96 2.28 3.09

2 2.5 1.40 1.65 1.84

5 inf 1.36 1.40 1.36

10 inf 1.36 1.37 1.36

Table 4. Comparison of total noise MSE with 
Siafu simulation (measurement error of normal 

distribution).

ϵ w for  
T-Geo-I

T-Geo-I  
(noise MSE)

Geo-I  
(noise MSE)

TDP 
(noise MSE)

1 2.5 1.96 2.28 3.09

2 2.5 1.40 1.65 1.84

5 inf 1.36 1.40 1.36

10 inf 1.36 1.37 1.36

Table 5. Comparison of total noise average with 
numerical simulation (measurement error of 

lognormal distribution).

ϵ w for  
T-Geo-I

T-Geo-I  
(noise average)

Geo-I  
(noise average)

1 inf 1.65 4.17

2 inf 1.65 3.74

5 inf 1.65 3.60

10 inf 1.65 3.58

Table 6. Comparison of total noise MSE with 
numerical simulation (measurement error of 

lognormal distribution).

ϵ w for  
T-Geo-I

T-Geo-I  
(noise MSE)

Geo-I  
(noise MSE)

1 inf 7.39 22.85

2 inf 7.39 18.35

5 inf 7.39 17.09

10 inf 7.39 16.91

fig. 2. Average amount of noise added to achieve 
differential privacy with numerical simulation 

(measurement error of normal distribution)

fig. 3. Average amount of noise added to 
achieve differential privacy with Siafu simulation 

(measurement error of normal distribution)



293

fig. 4. Average amount of noise added to achieve 
differential privacy with numerical simulation 

(measurement error of lognormal distribution)

fig. 5. The time required to measure the location 
information on the user's smartphone device and to 

apply differential privacy noise

6. DISCUSSION

In Apple’s development, the privacy level parameter ϵ 
is equal to 1 or 2 per datum [35]. For example, Apple’s 
differential privacy team used ϵ = 2, 4, and 8 for their 
experiment evaluations [36]. In the study that proposed 
RAPPOR by Google, ϵ = log(3) was used as the main pa-
rameter [37]. In TDP study [23], ϵ is set in the range 1–10. 
Therefore, we experimented with ϵ = 1, 2, 5, and 10.

It was confirmed that the noise average was reduced 
not only in the numerical simulation but also in the Sia-
fu simulation. The Siafu simulation is based on a typical 
human behavior model on a map. This means that we 
can expect to enhance the usefulness of data even in 
real-life situations.

As shown in Figs. 2, 3, and 4, the noise average was 
higher at a higher degree of privacy protection. This 
means that the effect of noise reduction using the pro-
posed method is high if the degree of privacy protec-
tion is high. According to the results in Tables 1–6, the 
greatest reduction effect is obtained when ε = 1 and 2. 
Because the Laplace noise is small when ε = 5 and 10, 
the reduction in the total noise of the measurement er-
ror and the Laplace noise is small.

The case where w=inf means that no Laplace noise is 
added. When w=inf, the noise regarding the proposed 

T-Geo-I is from only measurement error. In other words, 
(ε,10−3)-differential privacy is satisfied even without 
adding any Laplace noise. It is shown that there are 
cases wherein privacy can be protected using only 
measurement errors. Note that the proposed method 
satisfies differential privacy at the specified level. In 
other words, the existing methods add unnecessary 
noise beyond the specified level.

It takes more than 5 h to calculate the threshold w 
when the number of samples is 108. However, once the 
value of w is calculated, the determined value w can 
be repeatedly used for actual privacy protection. 108 
Laplace noise generation is necessary for the simula-
tion to determine the threshold w and only needs to be 
done once on the server side. 

On the contrary, actual privacy protection takes a 
very short time. As shown in the newly added Fig. 5, 
actual privacy protection has a low computational cost. 
The computation time for all methods was almost the 
same. Privacy protection can be achieved in a short 
time of 270-290 ms. This shows that the proposed 
method is not algorithmically inefficient. Because this 
method has a very low computational cost, it can be 
easily introduced into various systems. The usefulness 
of the data can be improved compared with conven-
tional methods.

The conventional method TDP assumes a normal 
distribution of measurement errors [23]. Our method 
is not limited to normal distributions. An appropriate 
threshold value w can be determined by simulation of 
any distribution. This is an advantage of our method.

In this experiment, we assumed a normal distribution 
and a lognormal distribution for measurement errors. 
Many studies have been conducted on measurement 
errors in location information. They are affected by 
various factors such as radio waves and weather con-
ditions. They cannot be determined in one way. There 
is also research on simulation measurement errors [34, 
38]. In the future, experiments are expected to be con-
ducted on measurement errors in various situations.

The disadvantage is that the simulation for finding 
the threshold value w is computationally expensive. 
In the future, methods for determining the threshold 
value w based on the proof of mathematical formulas 
instead of simulation are expected.

Our method does not consider continuous location 
information. By acquiring continuous location infor-
mation based on the trajectory of a person’s move-
ment, the risk of estimating the person’s true location 
is increased [39–40]. In the future, we intend to address 
these issues.

7. CONCLUSION

Systems that collect location information and pub-
lish statistics, such as those that publish congestion 
information, have been extensively employed. These 
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systems use differential privacy to ensure the privacy of 
user data. Privacy protection using the Laplace mecha-
nism based on differential privacy adds noise, which 
reduces the usefulness of the data when the degree of 
privacy protection is high. Therefore, we focus on the 
fact that the values obtained by measurement devices 
contain errors and propose a location information pri-
vacy protection method that reduces the amount of 
added noise.

In the case wherein the measurement error is the 
normal distribution, the proposed method based on T-
Geo-I succeeded in reducing the noise average by up to 
18% and 41% compared with methods based on Geo-I 
and TDP, respectively, while maintaining a prespecified 
level of privacy in 108 samples of numerical data. It also 
reduced the noise MSE by up to 31% and 63% compared 
with methods based on Geo-I and TDP, respectively. The 
proposed method based on T-Geo-I reduced the noise 
average by up to 15% and 36% compared with meth-
ods based on Geo-I and TDP, respectively, in a location 
simulation of the human behavior of 104 users on a map 
using a typical human behavior model. It also reduced 
the noise MSE by up to 17% and 38% compared with 
methods based on Geo-I and TDP, respectively. 

In the case wherein the measurement error is the log-
normal distribution, the proposed method based on 
T-Geo-I succeeded in reducing the noise average and 
MSE by up to 60% and 67%, respectively, compared with 
methods based on Geo-I, while maintaining a prespeci-
fied level of privacy in 108 samples of numerical data. 

The maximum reduction rate was achieved when ε is 
small: the privacy protection level high.

These findings demonstrate that our method can im-
prove the usefulness of data while maintaining a pre-
specified privacy protection level.
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