
Federated Learning Implementation with 
Privacy Leakage Prevention for Hand-Written 
Digit Recognition

415

Original Scientific Paper

Abstract – Federated learning (FL) has brought significant advantages to applications where collaborative learning should occur 
at multiple participating devices to enhance user experience in specific tasks. However, FL results in privacy leakage when n-1 clients 
collude to infer the model of another client. In this paper, we not only implement an FL framework but propose a methodology 
for preventing privacy leakage while realizing machine learning-based automatic hand-written digit recognition. Our framework 
supports the FL of deep networks where models trained locally are averaged. Two machine learning models Convolutional Neural 
Network (CNN) and Multilayer Perceptron (MLP) are implemented with FL.  We proposed an algorithm, Federated Averaging with 
Privacy Leakage Prevention (FA-PLP), for model averaging to be done by the server. Our algorithm exploits differential privacy (DP) 
for realizing model averaging while getting rid of chances of privacy leakage. We evaluated our framework with two distributions 
of the MNIST dataset. Our empirical results revealed that FA-PLP with the CNN model could achieve the highest accuracy of 95.38%. 

Keywords: Federated Learning, Machine Learning, Deep Learning, Privacy, Collaborative Machine Learning

1.  INTRODUCTION

Federated learning (FL) is a novel phenomenon in 
which multiple distributed clients are involved in the 
machine learning process collaboratively while pre-
serving the privacy of locally available training data. 
Though FL minimizes privacy risk, it still may cause 
leakage of information about local training data in 
terms of the model's parameters or weights. There-
fore, it is indispensable to overcome this problem by 
proposing algorithms to realize ML models while pre-
serving privacy. With the emergence of fog computing 
and edge computing, it is made possible for diversified 
computing devices can participate in the FL process. 
For instance, modern smartphones when involved in 
FL can result in a rich user experience [1]. FL enables 
ML models to be trained in remote clients while local-
izing training data. A real-world example for FL is that 
in the healthcare domain, many hospitals (clients) can 
collaboratively participate in training a model to lever-

age prediction accuracy for a given disease diagnosis. 
FL assumes significance when the clients are not will-
ing to share their training data due to locally prevailing 
privacy policies. 

Many research endeavours are found in the literature 
on FL. Tao et al. [2] address privacy concerns in Vehicu-
lar Edge Computing (VEC) with Federated Learning (FL) 
in autonomous driving, considering malicious parties. 
Kang et al. [3] introduced FedGRU, a federated learn-
ing-based traffic flow prediction algorithm that main-
tains privacy while achieving accurate predictions. 
Zhao et al. [4] proposed a smart home system using 
federated learning (FL) and a reputation mechanism 
to help home appliance manufacturers improve their 
products. Zhang et al. [5] introduced VFL, a privacy-
preserving and verifiable federated learning method 
for big data in industrial IoT, enabling effective verifica-
tion with constant overhead. Fang et al. [6] introduced 
an efficient, privacy-preserving federated learning 
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(HFWP) scheme for cloud computing. It is observed 
from the literature that FL has significant limitations 
such as probably insecure communication and privacy 
leakage. Privacy leakage occurs when n-1 clients col-
lude to infer the model of another client. In this paper, 
we focus on proposing a framework which addresses 
privacy concerns in FL. Our contributions to this paper 
are as follows. 

1. We proposed an FL framework along with a meth-
odology for preventing privacy leakage while re-
alizing machine learning-based automatic hand-
written digit recognition. 

2. We proposed an algorithm known as Federated 
Averaging with Privacy Leakage Prevention (FA-
PLP) for model averaging to be done by the server. 
It addressed the problem of n-1 clients colluding to 
infer the model of another client (privacy leakage).

3. We built an application to evaluate our FL frame-
work using machine learning techniques like CNN 
and MLP, for automatic handwritten digit recogni-
tion, on two data distributions. 

The remainder of the paper is structured as follows. 
Section 2 reviews existing FL methods and their limita-
tions. Section 3 presents the proposed FL framework 
with underlying mechanisms and algorithms. Section 4 
presents the results of our experiments with two data 
distributions. Section 5 concludes our work and pro-
vides directions for the future scope of the research. 

2. RELATED WORK

This section reviews existing methods on FL. Chunyi 
et al. [1] proposed a fog computing scheme to enhance 
federated learning, bolstering IoT data privacy and se-
curity against various attacks. Demonstrated efficiency 
and potential for further improvements. Li et al. [2] 
address privacy concerns in Vehicular Edge Comput-
ing (VEC) with Federated Learning (FL) in autonomous 
driving, considering malicious parties. FL improves 
training efficiency and privacy, reducing training loss 
by 73.7% and enhancing accuracy in simulations under 
different scenarios. The proposed system significantly 
reduces bandwidth requirements.

Yi et al. [3] introduced FedGRU, a federated learning-
based traffic flow prediction algorithm that maintains 
privacy while achieving accurate predictions. It outper-
forms state-of-the-art methods in privacy preservation, 
demonstrating minimal accuracy loss. In Further the 
work is to enhance prediction accuracy using a Graph 
Convolutional Network (GCN). 

Yang et al. [4] proposed a smart home system using 
federated learning (FL) and a reputation mechanism 
to help home appliance manufacturers improve their 
products. The system involves two stages: customers 
train an initial model provided by the manufacturer us-
ing mobile phones and edge computing. Differential 
privacy protects features and ensures privacy. The pro-

posed approach guarantees accuracy and data privacy. 
Anmin et al. [5] introduced VFL, a privacy-preserving 
and verifiable federated learning method for big data 
in industrial IoT, enabling effective verification with 
constant overhead. Experimental results support its ef-
ficiency. Chen et al. [6] introduced an efficient, priva-
cy-preserving federated learning (HFWP) scheme for 
cloud computing. It employs lightweight encryption 
and optimization strategies. The approach is secure, 
improves efficiency, and is suitable for cloud and fog 
computing applications, offering possibilities for fur-
ther research, including combining SMC with DP and 
exploring alternative SMC techniques like Pallier. The 
private leakage prevention approach in FL in the pro-
posed methodology in this paper is different from [6] 
in both client-side and server-side phenomena besides 
in the usage of differential privacy.

Zhao et al. [7] proposed a privacy-preserving feder-
ated learning approach for industrial big data. It mini-
mizes parameter sharing, uses differential privacy with 
a Gaussian mechanism, a proxy server for anonymity, 
and a self-stop mechanism to enhance privacy while 
maintaining accuracy and performance and It is also 
related to the previous article.

Yu et al. [8] proposed a privacy-preserving federated 
learning scheme that ensures both privacy and integ-
rity through a Trusted Execution Environment (TEE). 
This scheme addresses causative attacks, making col-
laborative deep learning more secure and practical. It 
aims to bring the benefits of deep learning to domains 
with privacy and availability concerns.

Elgabli et al. [9] proposed an analog-based federated 
learning framework, that addresses wireless channel 
challenges to improve privacy, bandwidth efficiency, 
and scalability. It uses analogue transmissions, pre-
serving data privacy and demonstrating effectiveness 
under various conditions. Major contributions include 
theoretical advancements and algorithmic innova-
tions. Yang et al. [10] introduced an asynchronous fed-
erated learning (AFL) framework for multi-UAV net-
works, allowing local model training without transmit-
ting raw data. It employs device selection and an A3C-
based algorithm to improve learning accuracy and 
speed. Simulations confirm its superior performance. 
Yunlong et al. [11] presented a blockchain-based se-
cure data-sharing system for Industrial IoT, integrating 
federated learning into permissioned blockchain for 
data privacy and efficiency. Numerical results validate 
its effectiveness. Future work should explore further 
security threats, enhance data model utility, and ad-
dress resource constraints in IIoT data sharing. Xiaoxiao 
et al. [12] introduced a privacy-preserving federated 
learning framework for multi-site fMRI analysis, over-
coming privacy concerns and enhancing neuroimage 
analysis. It offers potential benefits in other medical 
data analysis fields. The approach allows data from vari-
ous institutions to be utilized while safeguarding pri-
vacy, and fostering collaboration in medical research. 
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Xiaofeng et al. [13] explored real-time data sharing for 
smart cities must ensure privacy. An adaptive pseud-
onymization framework enhances privacy robustness 
in real-time information brokering, with early positive 
results. Future work includes comprehensive valida-
tion and consideration of potential multi-dimensional 
correlation attacks. The approach could be applied to 
various information sources beyond energy data. Islam 
[14] focused on enhancing Federated Learning (FL) for 
Electronic Health Records (EHRs) by ensuring privacy 
through techniques such as data generalization, fea-
ture selection, and noise minimization. A distributed 
framework is proposed where local models make pre-
dictions based on local features, with added privacy 
protection using differential privacy. Weighted feature 
functions ensure a balanced trade-off between privacy 
and utility. No raw data, features, or model parameters 
are shared. The method aims to maintain data localiza-
tion and can be applied to healthcare data, with the 
potential for future comparisons and improvements.

Chamikara et al. [15] introduce a distributed per-
turbation algorithm called DISTPAB, addressing pri-
vacy concerns in distributed machine learning for geo-
graphically dispersed data, like healthcare and banking. 
DISTPAB shows minimal utility degradation and serves 
as a promising privacy preservation method for distrib-
uted machine learning. Future work will explore further 
efficiency improvements, particularly in the context of 
vertical federated learning with varying feature spaces.

Zhang et al. [16] discussed federated learning for pri-
vacy-preserving medical models in IoT-based health-
care. It uses cryptographic techniques and data quality 
weighting. The proposed scheme maintains privacy, 
and the experiments indicate promising accuracy for 
lesion cell type detection. In future, it includes optimiz-
ing for heterogeneous environments and addressing 
malicious server issues. 

Jiang et al. [17] introduced PFLM, a privacy-preserv-
ing federated learning scheme with membership proof, 
addressing the dropout constraint while ensuring secu-
rity and verifiability. Security analysis and experiments 
confirm its efficiency. Yuanhang et al. [18] found that 
a blockchain-based federated learning system ensures 
secure and privacy-preserving traffic flow prediction 
by decentralizing model updates and applying differ-
ential privacy. Yin et al. [19] proposed a novel hybrid 
privacy-preserving federated learning approach that 
uses advanced encryption, noise addition, and sparse 
differential gradients to enhance security and efficien-
cy. Yunlong et al. [20] describe an intelligent, secure 
architecture and privacy-preserving federated learning 
in VCPS to combat data leakage effectively, ensuring 
accuracy and security. Ma et al. [21] A privacy-preserv-
ing Byzantine-robust federated learning scheme (PBFL) 
enhances robustness and privacy by using encryption 
and zero-knowledge proof, providing higher privacy 
protection. Xiaoyuan et al. [22] introduced an Adap-
tive Privacy-preserving Federated Learning framework 

with differential privacy. It uses relevance propagation 
and adjustment technology to optimize the trade-off 
between accuracy and privacy, demonstrated through 
formal analysis and experiments.

Shixiang et al. [23] presented CI-PPFL, a class-imbal-
ance privacy-preserving federated learning framework 
for decentralized wind turbine fault diagnosis. Experi-
ments on real-world data show its superiority and pri-
vacy preservation. Future work includes extending it to 
heterogeneous label subspaces and integrating vibra-
tion data and SCADA data for broader applications. Wei 
et al. [24] observed that UDP algorithm adds artificial 
noise to shared models in Federated Learning, ensur-
ing user-level differential privacy. CRD method enhanc-
es learning efficiency and model quality for specified 
privacy levels. Future work aims to refine privacy bud-
get allocation. 

Ali et al. [25] explored privacy concerns in IoMT by 
introducing federated learning (FL) as a solution. It sur-
veys privacy issues in IoMT, discusses existing privacy 
techniques, and emphasizes FL's collaborative, privacy-
preserving nature. The survey further explores FL's ad-
vanced architectures with DRL, DNN, and GANs. Finally, 
it suggests real-time applications and future research 
directions for improving privacy in smart healthcare 
systems. 

Kong et al. [26] focused on privacy-preserving, flexi-
ble model aggregation in federated learning-based au-
tomotive navigation called FedLoc. Extensive analysis 
demonstrates its privacy and security properties, along 
with improved computational efficiency during partici-
pant changes. Future work includes real-world testing 
and performance assessment. Han et al. [27] proposed 
a verifiable federated learning scheme is for deep neu-
ral networks. It addresses privacy, trust, and accuracy 
concerns using key exchange, double masking, and 
tag aggregation. Security and efficiency analyses con-
firm its effectiveness. Fang et al. [28] introduced PCFL, a 
privacy-preserving, communication-efficient federated 
learning approach for IoT. PCFL excels in communica-
tion efficiency and model accuracy. Future work targets 
multi-task learning and advanced cryptographic proto-
cols for IoT security. Tian et al. [29] explored federated 
learning's unique attributes and challenges, highlight-
ing its distinct nature compared to traditional machine 
learning. It provides an overview of current approach-
es and identifies areas for future interdisciplinary re-
search. Cheng et al. [30] introduced SecureBoost, a 
privacy-preserving tree-boosting system in the context 
of federated learning, offering accuracy comparable to 
non-private methods. Information leakage is analysed, 
and solutions are suggested.

Huafei et al. [31] studied privacy-preserving weight-
ed federated learning within a secret-sharing frame-
work. It introduces weighted federated learning (wFL) 
and presents its implementation using random split-
ting and ElGamal encryption. The proposed solution is 
secure against honest-but-curious adversaries. 
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Wang et al. [32] introduced VANE, a secure and non-
interactive federated learning scheme for regression 
training with gradient descent. VANE facilitates train-
ing global regression models while preserving data pri-
vacy. It features a secure data aggregation algorithm 
and improved training efficiency. Security analysis and 
experiments demonstrate its effectiveness. Li et al. [33] 
reviewed the evolution of Federated Learning (FL) in 
industrial engineering and computer science. It identi-
fies research fronts, summarizes applications, and out-
lines FL's development prospects. This comprehensive 
analysis aims to guide future applications and address 
remaining challenges in FL. Lakhan et al. [34] discussed 
privacy and fraud issues in machine-learning-based In-
ternet of Medical Things (IoMT) systems. It introduces 
the FL-BETS framework, focusing on healthcare ap-
plications with energy and delay constraints. FL-BETS 
outperforms existing models. Future work aims to ad-
dress mobility fraud and extend security measures. Jie 
et al. [35] stated that the proliferation of healthcare 
data offers significant potential for improving care, 
but privacy challenges and data fragmentation persist. 
This survey reviews federated learning technologies, 
including their application in healthcare, addressing 
statistical, system, and privacy challenges. Challenges 
such as data quality and standardization in healthcare 
data are also discussed. 

Liu et al. [36] observed that edge computing is a 
technology to extends cloud services to the network 
edge, raises privacy concerns with user data transmis-
sion. P2FEC integrates federated learning and edge 
computing to preserve privacy and build deep learn-
ing models without central data storage, outperform-
ing standard edge computing in privacy protection. 
Future work is to enhance protection against privacy-
sensitive data leakage. Zengpeng et al. [37] introduced 
a triple-band cylindrical dielectric resonator antenna 
(CDRA) with HEM11, TM01, and HEM12 modes excited 
simultaneously using a composite feeding structure. 
Diverse radiation patterns make it suitable for various 
wireless applications, including WiMAX and vehicular 
use. Wang et al. [38] discussed the privacy issues in fed-
erated learning, particularly in ternary federated learn-
ing (TernGrad). This innovative approach improves 
communication efficiency and accuracy, representing 
the first research combining ternary federated learn-
ing with privacy-preserving technologies. Future work 
includes enhancing efficiency and security. Wei et al. 
[39] proposed NbAFL, a differential privacy-based ap-
proach in federated learning to enhance privacy, in-
volving noise, trade-offs, simulations, and future con-
siderations. Aledhari et al. [40] provided a comprehen-
sive study of Federated Learning (FL), highlighting its 
importance, enabling technologies, and challenges. It 
explores real-life applications and suggests directions 
for the future. FL holds the potential to improve data 
handling and privacy, but challenges such as fault tol-
erance, performance, and fairness need addressing in 
its implementation. From the review of literature issues 

like privacy and security in communications were still 
found possible. In this paper, we focus on proposing a 
framework which addresses privacy concerns. 

3. PROPOSED FRAMEWORK

This section presents the system model, problem 
definition, our methodology for federated learning 
implementation with privacy leakage prevention for 
hand-written digit recognition and the proposed algo-
rithm. 

3.1.  SySTEM MODEL AND PRObLEM 
 STATEMENT 

Let us consider a distributed environment where 
multiple mobile devices participate in language mod-
elling tasks to recognize hand-written digits. All par-
ticipating mobile devices train an ML model in a collab-
orative fashion. Each device trains a model ∆Wi locally 
instead of sending its training data to a remote server. 
Therefore, each mobile device is known as a client 
which needs to communicate with the server to send 
local model to it. The server is responsible for com-
puting a global model send it back to each client. The 
training process is repeated until it reaches a stopping 
condition or convergence. The system model with the 
FL approach is illustrated in Fig. 1. 

Fig. 1. Illustrates our system model for federated 
learning

An important advantage of FL is that it is able to de-
couple model training process and gets rid of direct ac-
cess to training data. However, the server is essential to 
coordinate the training process. Therefore, it is essen-
tial to have trust in the server or assume it. Neverthe-
less, there is privacy achieved due to the non-sharing 
of locally available training data. Thus FL has the poten-
tial to minimize security and privacy risks as the attack 
surface is reduced to the device instead of the attack 
surface encompassing to entire environment, prob-
ably, including the cloud. FL is found ideal for solving 
many kinds of problems that share common qualities 
such as distributed availability of data in multiple de-
vices, data is privacy-sensitive and supervised learning 
where labels can be interactively inferred. However, FL 
has significant limitations such as probably insecure 
communication and privacy leakage. 
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Privacy leakage occurs when n-1 clients collude to in-
fer model of another client. The former (security prob-
lem) can be overcome by implementing a secure multi-
party communication (MPC) system while the latter 
(privacy leakage) can be implemented with differential 
privacy (DP) at each client. In this paper, we focused on 
FL with privacy-preserving model training through DP 
implementation. 

3.2. OUR METHODOLOGy

The proposed methodology for FL with privacy leak-
age prevention is based on the system model illustrated 
in Fig. 1. We considered the problem of privacy leakage 
which occurs when n-1 clients collude to infer the model 
of another client. Federated learning, due to its modus 
operandi, has specific privacy advantages. However, pri-
vacy leakage occurs when n-1 clients collude to infer the 
model of another client. In the FL task, there is a minimal 
update required to improve model. Privacy depends on 
the content that needs to be updated in the learning 
process. Nevertheless, the updates are generally minimal 
and the source of the update is not required by the aggre-
gation process. Still there is the probability of n-1 clients 
colluding to cause privacy leakage. Our implementation 
overcomes this issue as it takes care of privacy-preserving 
model training. We combine FL with differential privacy 
to ensure the prevention of privacy leakage in FL.  An 
asynchronous scheme is considered for updates while 
proceeding with federated communication. A number 
of clients involved in FL I fixed and their local dataset is 
also fixed. When each round starts, a fraction of clients 
are chosen randomly and a global state is obtained from 
the server. The notion of selecting a fraction of clients is to 
improve efficiency. Clients perform computation locally 
on the locally available dataset depending on the global 
state provided by the server. The result of local computa-
tion is sent to the server. Afterwards, the server uses the 
updates to modify the global state and this procedure is 
done repeatedly. We considered a finite-sum-based ob-
jective for FL as expressed in Eq. 1. 

(1)

For given ML problem, fi (w)=l(xi ,yi ,w) is considered 
where w denotes model parameters and (xi ,yi) is the 
given example on which loss is computed. Assuming 
that there are k number of clients and data is partitioned 
accordingly consisting of indexes Pk associated to data 
in client k and nk=|Pk| where Pk is the partition. Then the 
objective can be modified as expressed in Eq. 2.

(2)

Pk is the partition associated with training examples 
for different clients distributed randomly, it forms the 
expression E(Pk) [Fk (w)]=f(w). It was observed empiri-
cally that in FL communication costs are more than 
computational costs, unlike the data centre-based ap-
proach. In our implementation, each client is involved 
in less number of updates in FL.

To ensure the prevention of the possibility of privacy 
leakage in FL, we used differential privacy (DP) which 
helps in adding noise so as to address privacy attacks. 
DP is the mathematical model to ensure the privacy of 
data being exchanged among participants in FL. The 
DP in its simplest form can be expressed as in Eq. 3.

(3)

When the DP mechanism satisfies expression, it can 
be used to add noise to the data so as to ensure privacy-
preserving communication among clients and servers 
in FL. It is known as 𝜖-differential privacy as discussed in 
[6]. We consider the Laplacian mechanism that has the 
potential to preserve 𝜖-differential privacy. Considering 
random noise X, concerning Laplacian distribution, the 
PFF is expressed in Eq. 4.

(4)

where 𝜆 denotes scale parameter, X is the random noise 
and the scale value is expressed as in Eq. 5.

(5)

We also support a distributed approach in adding 
noise. In this approach, each client adds its portion of 
noise. Since DP is compatible with the Laplace mecha-
nism, it is possible to generate a Laplace random vari-
able as expressed in Eq. 6.

(6)

where γp and γp' are random variables as per Gamma 
distribution, 𝜇 and 𝜆 denote mean and scale param-
eters respectively in the Laplace mechanism. Now this 
leads to the expression in Eq. 7.

(7)

where s and 1/𝑛 denote scale and shape parameters 
respectively. A technique expressed in Eq. 8 is used for 
each client adding γp-γp' in the proposed algorithm 
which makes use of distributed privacy.

Algorithm 1: Federated Averaging with Privacy 
Leakage Prevention

Server Side:
Server initializes w_0
For each round r in R 
 For each client k in K
wk

r+1←ClientSideProcess(k, wr)
 End For

End For
ClientSideProcess (k, w): 
For each local update 𝑢 in U
𝑤←𝑤− 𝜂∇𝑔(𝑤)
End For
Return 𝑤+ 𝛾 − 𝛾 ′
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As presented in Algorithm 1, there are a number 
founds in which communication takes place between 
servers and clients as part of FL. In the process, there is 
server-side functionality and also client-side functional-
ity. In the local updates about weights, noise is added by 
each client leading to a distributed approach to noise ad-
dition. This has the potential to prevent n-1 clients from 
colluding to infer models of another client. Thus the pro-
posed algorithm helps in preventing privacy leakage. 
Each client compares its weight with that of the previous 
round where the server sends global weights to the cli-
ent. As each client is contributing to the noise addition, 
it has a more efficient privacy-preserving mechanism 
in FL. Moreover, on local convergence, each client can 
come out of the FL system. Each time a client receives 
federated weight from the server, it can subtract the DP 
noise it has contributed for those federated weights. 
With this modus operandi, the proposed FL achieved 
privacy by defeating any privacy attacks besides sup-
porting the inherent privacy involved in FL. 

4. EXPERIMENTAL RESULTS 

We made experiments with our implemented pro-
totype for realizing FL. The MNIST dataset used for the 
empirical study is collected from [41]. The dataset is par-
titioned as the number of clients involved in the FL. Two 
approaches are followed to partition data over clients. 
The first approach simply shuffles the dataset D and 
distributes it among clients. We call it as D1. The second 
approach sorts the dataset D based on the digit label, di-
vides it into a number of shards of a given size and each 
client is provided with a specified number of shards. This 
is called D2. Experiments are made with both D1 and D2. 
Models such as CNN and MLP are used for realizing FL. 

Table 2. Parameters of CNN along with their values

Parameter Description Value

rounds Number of training rounds 100

C Client fraction 0.1

K Number of clients 100

E Number of training passes on a local dataset 
for each round 5

batch_size Batch size 10

LR Learning rate 0.01

Table 2 shows the parameters used for the CNN mod-
el. It uses 100 clients and 100 training rounds with a 
learning rate of 0.001 and a batch size of 10.

Table 3. Parameters of MLP along with their values

Parameter Description Value

rounds Number of training rounds 100

C Client fraction 0.1

K Number of clients 100

E Number of training passes on a local 
dataset for each round 5

batch_size Batch size 10

LR Learning rate 0.03

Table 3 shows the parameters used for the MLP mod-
el. It uses 100 clients and 100 training rounds with a 
learning rate of 0.03 and batch size 10. 

4.1. DATA VISUALIzATION 

The dataset collected from [41] is used for experi-
ments. It is related to hand-written digits. It is widely 
used in machine learning for language modelling and 
other related applications. 

Fig. 2. An excerpt from training data

Fig. 3. An excerpt from test data

Fig. 2 shows an excerpt from training data while Fig-
ure 3 presents an excerpt from test data. The dataset 
is used for hand-written text recognition tasks with FL 
approach. 

4.2. RESULTS OF THE CNN MODEL

Experimental results of FL with CNN model are pre-
sented in this section. It provides average loss dynam-
ics and accuracy of the CNN model for two dataset dis-
tributions namely D1 and D2.

Table 4. Average loss exhibited by CNN for D1

# Rounds Average Loss
Round 1 0.818

Round 10 0.04

Round 20 0.026

Round 30 0.02

Round 40 0.018

Round 50 0.014

Round 60 0.013

Round 70 0.013

Round 80 0.009

Round 90 0.008

Round 100 0.006

As presented in Table 4 the average loss exhibited by 
CNN in FL against different numbers of rounds is pro-
vided for D1.

As presented in Fig. 4, the average loss value exhib-
ited by CNN in FL is gradually decreases as the number 
of rounds is increased. At round 1 the average loss is 
exhibited as 0.818. The observation at round 10 is re-
duced to 0.04. When the number of rounds is increased 
to 50, the average loss value is 0.014. When the number 
of rounds reaches 100, the average loss observed is the 
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least with 0.006. These observations are recorded when 
D1 is used for experiments. Less average loss indicates 
better performance.

Fig. 4. Average loss of CNN in FL against number of 
rounds when D1 is used

Table 5. Average loss exhibited by CNN for D2

# Rounds Average Loss
Round 1 0.097

Round 10 0.021

Round 20 0.017

Round 30 0.008

Round 40 0.012

Round 50 0.007

Round 60 0.006

Round 70 0.006

Round 80 0.006

Round 90 0.006

Round 100 0.004

As presented in Table 5 the average loss exhibited by 
CNN in FL against different numbers of rounds is pro-
vided for D2.

As presented in Fig. 5, the average loss value exhib-
ited by CNN in FL gradually decreased as the number 
of rounds is increased. At round 1 the average loss is 
exhibited as 0.097. The observation at round 10 it is 
reduced to 0.021. When the number of rounds is in-

Fig. 5. Average loss of CNN in FL against number of 
rounds when D2 is used

creased to 50, the average loss value is 0.007. When the 
number of rounds reaches 100, the average loss ob-
served is the least with 0.0044. These observations are 
recorded when D2 is used for experiments.

Table 6. Performance of CNN with FL

Model & Dataset Accuracy (%)
CNN with D1 95.3856
CNN with D2 94.0512

As presented in Table 6, the performance of the CNN 
model with the two data distributions is provided in 
terms of accuracy achieved in hand-written digit rec-
ognition.

Fig. 6. Accuracy exhibited by CNN with FL when 
two data distributions are used

As presented in Fig. 6, the accuracy of CNN model in 
FL with two data distributions is compared. CNN model 
with D1 achieved better performance with 95.38% ac-
curacy. With D2, the CNN model in FL could achieve 
94.05% accuracy.

4.3. RESULTS OF MLP MODEL

Experimental results of FL with MLP model are pre-
sented in this section. It provides average loss dynam-
ics and accuracy of the MLP model for two dataset dis-
tributions namely D1 and D2.

Table 7. Average loss exhibited by MLP for D1

# Rounds Average Loss
Round 1 0.607

Round 10 0.059

Round 20 0.032

Round 30 0.026

Round 40 0.027

Round 50 0.017

Round 60 0.018

Round 70 0.013

Round 80 0.01

Round 90 0.013

Round 100 0.008
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As presented in Table 7 the average loss exhibited by 
MLP in FL against different numbers of rounds is pro-
vided for D1.

Fig. 7. Average loss of MLP in FL against number of 
rounds when D1 is used

As presented in Fig. 7, the average loss value exhib-
ited by MLP in FL is gradually decreased as the num-
ber of rounds is increased. At round 1 the average 
loss is exhibited as 0.607. The observation at round 10 
it is reduced to 0.059. When the number of rounds is 
increased to 50, the average loss value is 0.017. When 
the number of rounds reaches 100, the average loss ob-
served is the least with 0.008. These observations are 
recorded when D1 is used for experiments. Less aver-
age loss indicates better performance.

Table 8. Average loss exhibited by MLP for D2

# Rounds Average Loss
Round 1 0.125

Round 10 0.022

Round 20 0.013

Round 30 0.011

Round 40 0.014

Round 50 0.005

Round 60 0.008

Round 70 0.004

Round 80 0.012

Round 90 0.006

Round 100 0.008

As presented in Table 8 the average loss exhibited by 
MLP in FL against different numbers of rounds is pro-
vided for D2.

As presented in Fig. 8, the average loss value exhib-
ited by MLP in FL is gradually decreased as the num-
ber of rounds is increased. At round 1 the average 
loss is exhibited as 0.125. The observation at round 10 
it is reduced to 0.022. When the number of rounds is 
increased to 50, the average loss value is 0.005. When 
the number of rounds reaches 100, the average loss ob-
served is the least with 0.008. These observations are 
recorded when D2 is used for experiments.

Fig. 8. Average loss of MLP in FL against number of 
rounds when D2 is used

Table 9. Performance of MLP with FL

Model & Dataset Accuracy (%)
MLP with D1 93.3216

MLP with D2 90.4032

As presented in Table 9, the performance of the MLP 
model with the two data distributions is provided in 
terms of accuracy achieved in hand-written digit rec-
ognition.

Fig. 9. Accuracy exhibited by MLP with FL when 
two data distributions are used

As presented in Fig. 9, the accuracy of the CNN 
model in FL with two data distributions is compared. 
MLP model with D1 achieved better performance with 
93.32% accuracy. With D2, the MLP model in FL could 
achieve 90.40% accuracy. 

4.4. PERFORMANCE COMPARISON 

The performance of MLP and CNN models in FL is 
evaluated in terms of accuracy. The observations are 
made in this section with two data distributions.

As presented in Table 10, a performance comparison 
between MLP and CNN in FL is made in terms of accu-
racy in handwritten digit recognition.



Table 10. Performance comparison between MLP 
and CNN in FL

Model & Dataset Accuracy (%)
MLP with D2 90.4032

MLP with D1 93.3216

CNN with D2 94.0512

CNN with D1 95.3856

Fig. 10. Accuracy exhibited by MLP and CNN with 
FL when two data distributions are used

As presented in Fig. 10, the two models such as MLP 
and CNN are used in FL with two data distributions. The 
accuracy of MLP with D2 is 90.40%, MLP with D1 93.32%, 
CNN with D2 94.05% and CNN with D1 95.38%. Highest 
accuracy achieved by the CNN model with D2 is 95.38%.

Table 11. Performance comparison  
with state-of-the-art

FL Model Accuracy (%)
Chen et al. [42] 93.2145

Ng et al. [43] 93.4231

FA-PLP (Proposed) 95.3856

Our results are compared with state-of-the-art meth-
ods such as Chen et al. [42] and Ng et al. [43] as pre-
sented in Table 11.

Fig. 11. Performance comparison of FL models

The performance of the proposed model named FA-
PLP is compared against existing models. The results 
revealed that FP-PLP outperforms other models in 
terms of accuracy with 95.3866%.

5. CONCLUSION AND FUTURE WORK

In this paper, we not only implement an FL frame-
work but propose a methodology for preventing pri-
vacy leakage while realizing machine learning-based 
automatic hand-written digit recognition. Our frame-
work supports the FL of deep networks where models 
trained locally are averaged. Two models Convolutional 
Neural Network (CNN) and Multilayer Perceptron (MLP) 
are implemented with FL.  We proposed an algorithm, 
Federated Averaging with Privacy Leakage Prevention 
(FA-PLP), for model averaging to be done by the server. 
Our algorithm exploits differential privacy (DP) for re-
alizing model averaging while getting rid of chances 
of privacy leakage. We evaluated our framework with 
two distributions of the MNIST dataset. Our empirical 
results revealed that FA-PLP outperforms existing FL 
techniques in terms of communication cost, accuracy 
and privacy leakage prevention. Our framework with 
the CNN model could achieve the highest accuracy of 
95.38%. In future, we intend to improve our framework 
further by considering the security concerns of FL as 
well. We also elaborate on different privacy attack sce-
narios and system behaviours in our future research.
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