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Abstract – Parkinson's disease (PD) classification plays a crucial role in medical diagnosis and patient management. Identifying 
Parkinson's disease at an early stage can lead to more effective treatment and improved patient outcomes. However, existing methods 
for Parkinson's disease classification face several limitations. The foremost limitation is the need for accurate and reliable diagnostic 
tools, as misdiagnosis can lead to inappropriate treatments and unnecessary stress for patients. Thus, a hybrid deep learning model is 
introduced in this research. The proposed model involves the utilization of EEG signals obtained from a publicly available dataset. Key 
features are extracted from the EEG signals using a bandpass filter, and every feature is associated with specific brainwave frequencies 
and cognitive states. The feature mapping and classification are executed through the Chaotic Chebyshev Zebra optimization-
based Residual GhostNet (CCZO_Residual_GhostNet). This hybrid classifier, Residual GhostNet, combines ResNet-152 with GhostNet, 
enhancing classification precision. Furthermore, the CCZO algorithm optimizes the loss function, introducing elements of chaos and 
Chebyshev mapping to improve classification accuracy. The assessment based on accuracy, sensitivity, specificity, and F-score acquired 
98.76%, 98.59%, 98.95%, and 99%, respectively.

Keywords: EEG signal, hybrid deep learning, Parkinson's disease classification, Feature extraction, GhostNet, ResNet-152.

1.  INTRODUCTION

People get older, and their neurons decline along 
with a decrease in the connections between brain cells. 
Nerve cells cannot replenish themselves, in contrast to 
other cell types in the body [1]. Neurons can get dam-
aged or degenerate over time. Neurodegenerative ill-
nesses are a group of disorders characterized by the 
progressive degeneration of the structure and function 
of the nervous system. These conditions often result 
in the gradual loss of cognitive and motor functions. 
Some common neurodegenerative illnesses include 
Alzheimer's disease, Parkinson's disease, Huntington's 
disease, and Amyotrophic Lateral Sclerosis (ALS). Par-
kinson's disease (PD) is a neurodegenerative illness 
that primarily affects neurons in the brain's substantia 
nigra. These neurons are essential for the synthesis of 
dopamine, which is a neurotransmitter that connects 

neurons in the brain [2]. Dopamine helps messages go 
from the brain to other regions of the body, especially 
when it comes to speech articulation and physical 
motions. When a considerable proportion of dopami-
nergic neurons degenerate or when dopamine levels 
in the brain diverge from normal, Parkinson's disease 
symptoms become apparent [3]. Statistics from the 
World Health Organization indicate that about 10 mil-
lion people suffer from the effects of this illness. It is 
more common in older adults, affecting those in their 
fifties and older. Males are 1.5 times more prone to PD 
than females, and around 4% of cases are identified 
before the age of fifty [4]. The initial symptoms could 
be difficult to notice and modest at first, but they get 
worse over time. Dyskinesia, syncope, exhaustion, 
tremors, stiffness, dystonia, hypomimia, diarrhea, poor 
smell or taste, and loss of weight are examples of both 
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motorized and non-motorized symptoms. Because PD 
is untreatable, early diagnosis is essential for patients to 
take proactive steps for managing the condition, which 
allows them to continue with their regular activities [5].

Depending on how Parkinsonism is classified, many 
imaging modalities are used to diagnose PD [6]. There 
are different kinds of Parkinsonism, and this study fo-
cused on the most common kind, idiopathic PD, usu-
ally referred to as PD, which has an unclear etiology 
[7]. As part of the diagnostic procedure for PD, PET 
(positron emission tomography) and SPECT (single 
photon emission computed tomography) show ex-
ceptional sensitivity in detecting dopamine shortages 
[8]. However, the high cost and specialized equipment 
required for these imaging modalities limit their broad 
use in routine clinical diagnosis [9]. In addition to im-
aging techniques, 90% of patients who undergo the 
olfactory dysfunction test are utilized as a preliminary 
clinical sign of PD. Techniques based on biomarkers in-
clude quantifying biological markers found in different 
parts of the body and blood to provide information on 
the existence and severity of illness. Another potential 
diagnostic method for PD is electroencephalography 
(EEG) [10]. EEG-based treatments have several benefits 
with respect to other diagnostic techniques, such as 
cost-effectiveness, non-interfering, and better resolu-
tion, as they are non-invasive. The number of studies 
utilizing EEG technology is increasing [11, 12].

Many different methods are presented in this field; 
most of them use speech signals, handwriting signals, 
gait signals, MRI, and very few use EEG. One of the most 
effective methods for diagnosing PD is electroencepha-
lography (EEG) [13]. Since EEG technology is portable 
and affordable, its value is demonstrated by its capacity 
to record brain activity in real-world settings [14]. More-
over, EEG-record-based brain activity occurs faster than 
other modalities and for longer periods. Thus, the analy-
sis of EEG integrated with machine learning techniques 
has already proven to be useful in the diagnosis of a 
number of neurological disorders, including epilepsy, 
major depressive disorder, schizophrenia, Alzheimer's 
disease, autism spectrum disorder, and dementia [15, 
16]. The amount of medical data that is being recorded 
has grown to incredible heights; signals and photo-
graphs in particular have amassed gigabytes and even 
terabytes of data. It is a laborious undertaking to process 
these enormous datasets and extract valuable insights 
from them. One aspect of artificial intelligence called 
machine learning gives machines the ability to antici-
pate outcomes based on data analysis, teaching them to 
mimic human intellect [17]. Thus, a novel deep learning-
based framework is introduced in this research. The ma-
jor contributions of the research are:

•	 Design of CCZO Algorithm: The proposed CCZO 
algorithm is designed by integrating the chaotic 
Chebyshev mapping with zebra optimization to 
enhance the randomization criteria for obtaining 
the global best solution.

•	 Design of hybrid Residual_GhostNet: The hybrid 
deep learning by integrating the ResNet-152 with 
the GhostNet to improve the classification accu-
racy. 

•	 Design of CCZO-Residual_GhostNet for PD clas-
sification: The PD classification is employed using 
hybrid Residual_GhostNet, wherein the loss func-
tion optimization is employed using the CCZO al-
gorithm.

The organization of the research is: Section 2 details 
the related works and Section 3 explains the Proposed 
PD classification. Section 4 elaborates the experimental 
outcome and Section 5 concludes the research.

2. RELATED WORKS 

This section offers a survey of the literature on ma-
chine learning-based Parkinson disease classification. 
The EEG signal was used by [18] to distinguish between 
individuals with PD who were taking medication and 
those who were not. Pre-processing of the signals was 
done in order to remove significant artifacts. Based on 
the collected characteristics, [19] created a collection of 
machine learning methods for classifying Parkinson's 
illness. These methods make it possible to automati-
cally classify EEG data into those with PD and those 
without it. In this case, the discriminative characteris-
tics of Parkinson's illness were improved by the use of 
spatial filtering. Analyzing variables such as frequency 
bands, segment lengths, and feature reduction num-
bers provides valuable information for improving the 
suggested approaches' efficiency and versatility. Com-
plexity may be introduced by utilizing various machine 
learning algorithms and feature extraction metrics, 
which can make the models difficult to comprehend 
and use in clinical contexts. To accurately classify PSD 
and healthy control (HC) participants, a convolutional 
neural network (CNN)-based classification model with 
seven hidden layers and various filter sizes was sug-
gested [20]. Three-dimensional data was transformed 
into a one-dimensional tensor flow using a flattening 
layer. In order to determine the initial danger of PSD 
patients, the dense layer finally outputs a categoriza-
tion of HC and PSD patients depending on the strength 
of their tremors. With a tremor detection rate of 92.4%, 
it surpassed the conventional models. In order to 
demonstrate the value of deep learning-driven voice 
recognition as a diagnostic instrument for Parkinson's 
disease (PD), a speech signal processing technique 
was suggested [21]. It was explored if voice recordings 
could offer a straightforward, inexpensive approach to 
assessing and testing for Parkinson's disease, utilizing 
deep learning to forecast and assess expert scores. As a 
result, a modified Hybrid Mask U-Net architecture with 
an adaptive custom loss function called the Deep U-
lossian model was developed for PD assessment and 
recognition, aiming toward an improved ratio of recall 
and precision in handled speech.
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It is discussed how to classify the high-dimensional 
PD data [22]. In order to create effective ML classifiers 
to classify Parkinson's disease (PD), the best subset of 
features from the PD data set is chosen using a bio-in-
spired feature selection strategy. Eleven machine learn-
ing classifiers (ML) were used in the study: LR, lSVM, 
rSVM, GNB, GPC, kNN, DT, RF, MLP, AB, and QDC. Two 
bioinformatics techniques (GA and BPSO) were used 
for feature selection. The PD data set is split into train-
ing and testing sets in the ratio of 0.7:0.3 to train and 
test all 11 ML classifiers. Based on numerous classifica-
tion assessment measures, the effectiveness of these 
ML classifiers is assessed both prior to and following 
the selection of bioinspired features. The presented 
results indicate that three of the best BPSO-inspired 
classifiers, BPSOMLP, and three of the best GA-inspired 
classifiers, GAMLP, GAGPC, and GALR, can be suggested 
for categorizing the PD data.

2.1. PRObLEM STATEMENT

PD is a crippling neurological ailment that has sev-
eral negative consequences. It mostly affects the mo-
tor function of the person, resulting in symptoms like 
tremors, muscular stiffness, and postural instability. As 
the illness worsens, mobility issues may arise, increas-
ing the risk of falls and associated injuries. PD can also 
include non-motor symptoms such as anxiety, sadness, 
insomnia, and cognitive decline. Difficulties with swal-
lowing and speech might also occur, making everyday 
living even more challenging. PD can have a significant 
emotional and social impact on a person, sometimes 
resulting in social disengagement, a decline in daily 
functioning, and a breakdown of relationships.

Various methods are currently used for PD diagnosis, 
but they come with their own set of challenges. Imag-
ing techniques like MRI and DaTscan can visualize brain 
changes, but they are costly and not always readily 
available. Biosensors offer continuous monitoring but 
struggle to distinguish PD from other movement disor-
ders. Genetic testing can identify rare mutations linked 
to PD, but most cases do not involve these mutations. 
EEG-based methods can detect brain activity changes 
but require advanced data analysis and interpretation.

The hybrid Residual_GhostNet model represents a 
promising approach to overcome these challenges. By 
using deep learning and neural networks, this model 
can analyze EEG data, identifying patterns associated 
with PD more objectively and efficiently. It leverages a 
data-driven approach for automatic extraction of rel-
evant features from EEG signals, reducing the need for 
manual feature engineering and human interpretation. 
Loss function optimization technique using CCOZ fine-
tunes the model's parameters, enhancing its ability to 
classify PD accurately. With the automation and effi-
ciency of deep learning models, the Hybrid Residual_
GhostNet can analyze large datasets rapidly, offering 
a potential solution to the challenges of subjectivity 
in clinical assessments, early-stage PD detection, and 

the requirement for cost-effective and non-invasive 
diagnostic tools. This model represents a significant 
advancement in the field of Parkinson’s disease detec-
tion, potentially leading to more timely diagnoses and 
improved patient care.

3. PROPOSED METHODOLOGY 

The proposed PD classification is presented in Fig. 1, 
wherein the input EEG signal is acquired from the pub-
licly available dataset. Initially, the essential features 
are extracted from the EEG signal by the bandpass 
filter. From the extracted features, feature mapping 
and classification are employed using the proposed 
Chaotic Chebyshev Zebra optimization-based Residual 
GhostNet (CCZO_Residual_GhostNet). Here, the hybrid 
classifier Residual GhostNet is designed by integrating 
ResNet-152 with GhostNet. Besides, the loss function 
optimization is employed using the CCZO algorithm 
designed by incorporating the chaotic Chebyshev with 
the conventional zebra optimization algorithm for en-
hancing the classification accuracy.

Fig. 1. Workflow of proposed PD classification

3.1. DATA ACqUISITION

The input data for processing the PD classification is 
acquired from the publically available dataset named 
the UCSD dataset.

3.2. FEATURE ExTRACTION

The acquired EEG signal is filtered using the band-
pass filter to acquire the required features alpha, beta, 
gamma, delta, and theta.

Delta Waves (0.5-4 Hz): Delta oscillations manifest as 
the most languid cerebral frequencies, intimately en-
twined with profound slumber, tranquility, and states 
of subliminal awareness. They organize the symphony 
of physical and psychological rejuvenation.

Theta Waves (4-8 Hz): Theta waves find their similarity 
with profound serenity, dream, and the primary phases 
of inactivity. These waves are also patrons of ingenuity 
and transcendental contemplation.

Alpha Waves (8-13 Hz): Alpha rhythms take centre stage 
when one is in an awakened yet tranquil disposition. 
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They often grace us when our eyelids are shut, her-
alding a composed and vigilant mentality.

Beta Waves (13-30 Hz): Beta frequencies accompany 
lively, conscious cogitation and acumen. They flourish 
during periods of vigilance, attentiveness, and cogni-
tive riddles.

Gamma Waves (30-100 Hz and beyond): Gamma 
waves, the swiftest of neural harmonics, intertwine 
with loftier cognitive faculties, perception, and cog-
nizance. They partake in the orchestration of informa-
tional processing and may be linked with epiphanies.

From the acquired signal, the PD classification is em-
ployed.

3.3. PD CLASSIFICATION USING IMPROVED 
 RESIDUAL_GHOSTNET

The Parkinson’s disease classification is employed us-
ing the proposed Improved Residual_GhostNet. Here, the 
ResNet-152 is integrated with the GhostNetto enhance 

the disease classification precision. Besides, the loss func-
tion optimization is devised using the CCZO algorithm for 
enhancing the classification accuracy further.

3.3.1. Architecture of ResNet

ResNet architectures are known for their skip con-
nections, also called residual connections. These con-
nections enable the network to skip over one or more 
layers and add the output from a previous layer to the 
output of a subsequent layer. This is done through 
element-wise addition. The key criteria for a skip con-
nection are that the dimensions of the feature maps 
must match. ResNet-152 is a deep convolutional neural 
network with 152 layers. It comprises various compo-
nents, including convolutional layers, residual blocks, 
maxpooling, fully connected layers, and activation 
functions. These components work together to map 
the features from the input features to perform the 
classification more accurately. The architecture of the 
ResNet-152 is depicted in Fig. 2.

Fig. 2. Architecture of ResNet-152

3.3.2.  Architecture of GhostNet

Using the features mapped by ResNet-152, the PD 
classification is employed using GhostNet. The utili-
zation of GhostNet for PD classification offers a range 
of significant benefits. GhostNet, renowned for its ef-
ficiency and compact architecture, stands out as an 
optimal choice in the field of disease diagnosis and 
classification. Its lightweight design and reduced 
computational requirements result in faster inference 
times, making it ideal for real-time or near-real-time 
applications. This attribute is particularly crucial in the 
context of healthcare, where swift diagnosis and moni-
toring are paramount. The architecture of GhostNet is 
depicted in Fig. 3.

Fig. 3. Architecture of GhostNet

The two various paths utilized by the GhostNet are the: 
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Convolutional Layer: The Convolutional Path is the 
primary pathway in GhostNet for processing input data. 
It consists of standard convolutional layers, which are 
fundamental in deep learning for feature extraction. 
The Convolutional Path plays a critical role in capturing 
low- and high-level features from the data, gradually 
building a hierarchical representation of the input. The 
outcome of the Convolutional layer is represented as:

(1)

where, refers the outcome of the convolutional layer, 
bias is notated as, the input data is represented as, and 
defines the conventional filters.

Ghost Layer: The Ghost Path is a distinctive aspect of 
GhostNet's architecture. It complements the Convolu-
tional Path to improve feature representation and model 
performance. The Ghost Path consists of ghost modules, 
which are essentially lightweight versions of standard 
convolutional layers. These ghost modules are created 
by using depth-wise separable convolutions. In the 

(2)

where, the filter utilized in the ghost path is denoted 
as and the outcome of the Ghost module is defined as.

The outputs from the ghost modules are then com-
bined with the outputs from the Convolutional Path. This 
fusion of information enhances the network's ability to 
learn discriminative features while maintaining efficiency.

3.3.3. Architecture of Residual_ GhostNet

The proposed Residual_GhostNet is designed by in-
tegrating the conventional ResNet-152 with the Ghost-
Net for enhancing the classification accuracy, which is 
depicted in Fig. 4. In this the outcome of the GhostNet 
is connected with the fully connected layer and the 
softmax layer for classifying the PD.

Fig. 4. Architecture of Residual_GhostNet

Here, the proposed PD model is tuned optimally us-
ing the CCZO algorithm for enhancing classification ac-
curacy.

Loss Function Optimization: The loss function opti-
mization is devised using the proposed Chaotic Cheby-
shev Zebra Optimization (CCZO) algorithm. In this, the 
solution trapping at the local optima is eliminated by 

Ghost Path, the ghost modules are designed to capture 
additional features and patterns in the input data. They 
operate in parallel with the Convolutional Path.

incorporating the randomness criteria in the explora-
tion phase using the Chaotic Chebyshev mapping.

Initialization: Each zebra in this population is like 
a potential solution to a problem that the algorithm 
is trying to solve. The location of each zebra on the 
search space represents a set of values for the decision 
variables related to the problem. Essentially, the zebra's 
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positions correspond to different potential solutions. 
This randomness is part of the algorithm's exploration 
of several solutions. The initialization of the population 
is stated as:

(3)

Here, the population of the zebra is denoted as A, 
and Ak refers to the kth zebra in the search space. The 
total count of zebras considered in the algorithm is de-
noted as G, and ak, l represents the kth zebra with the 
solution dimension l. After placing the population, the 
feasibility of the solution is evaluated.

Feasibility Evaluation: The feasibility of the solution 
is estimated for every zebra to identify the closeness of 
the solution to the required target. In the proposed dis-
ease detection, the mean square error is considered for 
evaluating the feasibility and is stated as:

(4)

where, the fitness is F, overall samples is denoted as 
T, the observed value is Ox and the target value is de-
noted as Tx.

Randomization: The randomization of the algo-
rithm utilizes the foraging behaviour, wherein the food 
searching is employed. A specific type of zebra grasses 
in the plains and is named as Pioneer zebra that leads 
the group members to get the food and updates the 
solution as:

(5)

Here, the zebra that guides the team members in ob-
taining the food is denoted as DEl and the value [0,1] 
is the limit for the arbitrarily chosen variableq. The ex-
pression for identifying the factor H is expressed as:

(6)

Here, random number denoted as dhas the limit [0,1] 
and hence, the range of the factor H is varies from {1,2}. 
After evaluating the solution for the zebras, the upda-
tion of the acquired solution is devised by:

(7)

The solution accomplished by the zebra in the ran-
domization phase is denoted as ak,l

R, and the fitness for 
this phase is defined as Fk

R.

Here, in the randomization phase, the chaotic cheby-
chev randomization is incorporated with the foraging 
behaviour of the zebra for enhancing the exploration 
strategy to obtain the global best solution. The expres-
sion that represents the chaotic chebyshev randomiza-
tion is expressed as:

(8)

(9)

(10)

Thus, using the equation (10), the solution updation 
is devised using the CCZO algorithm and assist to ob-
tain the global best solution.

Escaping Capability: In this phase, the zebra tries to 
escape from the predator like the lion. Similarly, zebras 
offend some predators like dogs and hyena’s. Thus, the 
solution updation devised by the zebra in both the es-
caping and offending capability is expressed as:

(11)

Here,

(12)

Thus, using the evaluation of the fitness, the solution 
updation is devised.

Stoppage: The acquisition of the targeted solution 
or the completion of the iteration stops the iteration 
processing. 

4. RESULT AND DISCUSSION 

The implementation of the proposed PD classifica-
tion is performed using the PYTHON programming lan-
guage. Besides, the comparison with the conventional 
PD classification methods likes 2D-CNN [22], CSP+KNN 
[19], DWT+SVM [18] and Channelwise CNN [20] for de-
picting the superiority of the proposed model.

4.1. DATASET DESCRIPTION

The dataset comprises of various EEG signal, where in 
each EEG recording in the dataset is associated with a 
label indicating the presence or absence of Parkinson's 
disease. These labels are essential for supervised machine 
learning tasks, where the goal is to classify EEG signals as 
either Parkinson's disease or non-Parkinson's disease.

4.2. PERFORMANCE ANALYSIS

The performance evaluation of the proposed CCZO-
Residual_GhostNet model for various iterations is vi-
sualized in Fig. 5. When using 100 iterations with 50% 
of the data allocated for training, the model achieves 
an accuracy of 95.12%. However, when the model is 
evaluated with 80, 60, 40, and 20 iterations, the accu-
racy decreases to 92.33%, 91.23%, 89.42%, and 88.37%, 
respectively. This analysis reveals that the model per-
forms better with a higher number of iterations and a 
larger percentage of training data.

The superior outcomes in these scenarios are attrib-
uted to the use of the CCZO algorithm for loss function 
optimization. This optimization enhances the model's 



281Volume 15, Number 3, 2024

generalization capability, allowing it to achieve higher 
accuracy and better performance.

4.3. COMPARATIVE ANALYSIS

The comparative assessment of PD classification is 
visualized in Fig. 6. In this assessment, the accuracy 
achieved by the CCZO_Residual_GhostNet model 
is 96.01%. This accuracy outperforms the 2D-CNN, 

CSP+KNN, DWT+SVM, and Channelwise-CNN meth-
ods by margins of 1.40%, 2.00%, 4.10%, and 5.79%, re-
spectively, when 80% of the data is used for training. 
Likewise, when considering sensitivity, the CCZO_Re-
sidual_GhostNet model demonstrates a sensitiv-
ity of 94.21%. This sensitivity surpasses the 2D-CNN, 
CSP+KNN, DWT+SVM, and Channelwise-CNN methods 
by margins of 3.16%, 5.40%, 6.00%, and 7.18%, respec-
tively, when 70% of the data is allocated for training. 

(a) (b)

(c) (d)

Fig. 5. Analysis of Improved Residual_GhostNet (a) accuracy, (b) Sensitivity, (c) Specificity and (d) F-Score

The analysis provided in the table offers insights into 
how the hybrid deep learning model excels in classi-
fying the disease with minimal complexity. This effi-
ciency is attributed to the model's minimal number of 
layers, which effectively capture essential features for 
accurate classification.

The accuracy-loss analysis of the proposed PD clas-
sification method is presented in Fig. 7. The accuracy 
analysis depicts the superior outcome for the training 
data compared to the testing data. Similarly, the loss 
function is higher for the testing data. But the perfor-
mance is closer to the training data.

4.4. COMPARATIVE DISCUSSION

The precision ascertained through the adept CCZO_Re-
sidual_GhostNet achieves a remarkable 98.76%, bestow-
ing a substantial superiority of 2.18%, 2.74%, 4.13%, and 
6.96% in contrast to the 2D-CNN, CSP+KNN, DWT+SVM, 
and Channelwise-CNN techniques. Further delving into 
the assessment, the sensitivity estimations courtesy of 
the CCZO_Residual_GhostNet reveal a remarkable edge. 

The metrics stand at 98.59%, eclipsing their counterparts 
by margins of 2.20%, 4.37%, 6.94%, and 8.77% when jux-
taposed with 2D-CNN, CSP+KNN, DWT+SVM, and Chan-
nelwise-CNN, respectively. It is paramount to elucidate 
the specificity aspect, where the CCZO_Residual_Ghost-
Net truly excels. Recording an estimable score of 98.95%, 
it soars above the 2D-CNN, CSP+KNN, DWT+SVM, and 
Channelwise-CNN by significant differentials of 2.32%, 
4.68%, 7.13%, and 9.26%. To further enhance the narra-
tive, the F-Score, a comprehensive metric of precision and 
recall, is a standout. The CCZO_Residual_GhostNet attains 
an impressive 99%, accentuating its dominance over its 
peers. These achievements underscore the model's supe-
riority, boasting advantages of 2.02%, 4.31%, 6.17%, and 
8.29% compared to the 2D-CNN, CSP+KNN, DWT+SVM, 
and channelwise-CNN methods, respectively.

Here, the analysis depicts the superior outcome in terms 
of all assessment measures by the proposed model. Sever-
al real-world applications of Parkinson's disease classifica-
tion using deep learning are emerging, showing promise 
for improving diagnosis, treatment, and patient care.
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(a) (b)

(c) (d)

Fig. 6. Comparative Analysis (a) accuracy, (b) Sensitivity, (c) Specificity and (d) F-Score

(a)

(b)

Fig. 7. Accuracy-Loss Analysis:  
(a) Accuracy and (b) Loss

5. CONCLUSION 

In summary, this research presents a robust method 
for PD classification. By employing the CCZO_Residual_
GhostNet model, we achieve superior accuracy, sensitiv-
ity, specificity, and F-Score compared to conventional 
methods such as 2D-CNN, CSP+KNN, DWT+SVM, and 
Channelwise-CNN. The utilization of ResNet-152 with skip 
connections, coupled with GhostNet's efficient architec-
ture, ensures an efficient tool for disease classification. The 
incorporation of the CCZO algorithm further refines the 
model's performance, eliminating local optima and en-
hancing global optimization. This method offers a prom-
ising approach for accurate and efficient PD classification 
using EEG signals, contributing to advancements in the 
field of medical diagnosis and treatment. In the future, 
it might be helpful to recognize present clinical data sets 
that have been utilized that could help the clinical classifi-
cation of the illness, like DaTscan, or to capitalize on infor-
mation set methods such as sleep EEGs, which could help 
with the possible rapid detection of biological indicators 
of PD and its associated issues, such as MCI and dementia.
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