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Abstract – In numerous clinical applications that support the diagnosis and treatment planning of a broad variety of disorders, medical 
image segmentation is essential. Medical picture segmentation using the Enhanced Extended Topological Active Net (EETAN) model has 
proven to be successful in correctly identifying structures. This study suggests a novel way to combine the best clustering techniques 
and parallel processing approaches to maximize the segmentation performance of the EETAN model. The Probabilistic Depth Search 
Optimization (PDSO) Algorithm, which makes the parallel searching technique to find the ideal contour set, is responsible for this. This 
work implements parallel processing and ideal clustering to improve the EETAN model's performance in medical image segmentation. 
Performance metrics like accuracy, precision, recall, dice similarity, and computational time are used for a comparison study. The results 
demonstrate the notable enhancements attained by employing parallel processing and effective clustering.

Keywords: Image Segmentation, Parallel Computing, Probabilistic Depth Search Optimization (PDSO),  
 Enhanced Extended Topological Active Net (EETAN)

1.  INTRODUCTION

Medical picture segmentation is an essential part of 
diagnostic imaging that helps medical professionals 
identify exact anatomical structures and make clinical de-
cisions based on those findings. The increase in volume 
and resolution of medical image datasets due to better 
medical imaging technology has made robust segmenta-
tion models necessary to handle the complexity of these 
datasets. Because it can capture complex structures in 
medical images, the Extended Topological Active Net 
(ETAN) model has emerged as a possible option [1]. How-
ever, it becomes more and more clear that more effective 
and scalable segmentation techniques are required as the 
size and complexity of medical datasets increase. Medical 
image data volume and resolution have increased expo-
nentially as a result of the quick development of medical 
imaging technologies. For significant information to be 
extracted from these massive databases, effective seg-
mentation techniques are crucial. A promising solution to 
the problems associated with medical image segmenta-

tion is the ETAN model, which is an extension of the Topo-
logical Active Net.

In contemporary healthcare, medical picture segmen-
tation is an essential task that is critical to diagnosis, ther-
apy planning, and image-guided therapies [2]. To extract 
relevant information from medical images and support 
healthcare practitioners in making decisions, accurate de-
lineation of anatomical features is essential. The Extended 
Topological Active Net (ETAN) model is a useful tool for 
medical image segmentation because it is recognized for 
handling intricate anatomical components.

The amount and complexity of medical image data 
have significantly increased as a result of the growing use 
of high-resolution imaging modalities like computed to-
mography (CT) and magnetic resonance imaging (MRI). 
Although the ETAN model performs well in segmentation 
tasks, applying it to large-scale datasets may provide a 
challenge to its computing efficiency. The need for seg-
mentation in real-time or almost real-time, especially in 
clinical contexts, makes it necessary to investigate novel 
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approaches to improve the ETAN model's speed and scal-
ability. The necessity to close the gap between the ETAN 
model's promise and the changing needs of modern 
medical imaging drives this research. We seek to over-
come the computational issues with the ETAN model and 
advance it toward a more effective and scalable solution 
for medical picture segmentation by utilizing parallel pro-
cessing capabilities and implementing optimal clustering 
algorithms. Through this investigation, we aim to provide 
a valuable contribution to the continuous endeavors 
aimed at refining segmentation techniques, which will 
promote progress in medical imaging technology and ul-
timately enhance patient care.

The idea for this study came from the realization that 
when dealing with large-scale medical picture datasets, 
the traditional sequential implementation of the ETAN 
model can run into processing difficulties. To overcome 
this difficulty, the incorporation of parallel processing 
methods is investigated as a way to improve the ETAN 
model's computational effectiveness. The potential to 
improve segmentation accuracy within the parallelized 
framework is another reason for including optimal clus-
tering techniques. The combination of best clustering and 
parallel processing is meant to offer a fast and precise way 
to segment medical images, which could lead to better 
clinical results.

We explore the complexities of the ETAN model in this 
work, recognizing both its advantages and disadvantag-
es. The next step of our trip is to investigate how paral-
lel processing and optimum clustering strategies might 
work together to overcome computational bottlenecks 
and improve the EETAN model's performance. The par-
ticle weight search parallel model improves performance 
by cutting down on time without compromising system 
accuracy. The PDSO optimization algorithm handled this. 
The approaches used, the integration of parallel process-
ing and optimal clustering, and the thorough assessment 
of the suggested strategy using pertinent performance 
measures are all covered in detail in the sections that fol-
low. The research's conclusions have potential ramifica-
tions for improving medical picture segmentation in the 
larger healthcare context in addition to aiding in the ETAN 
model's optimization.

          One significant difficulty is the exponential in-
crease in volume and complexity of medical image data-
bases brought about by advances in imaging technolo-
gies. When used on these larger datasets, conventional 
segmentation models—such as the ETAN model—may 
encounter scalability and processing speed issues. The 
need for segmentation techniques that can successfully 
manage the inherent complexity of contemporary medi-
cal images is growing as the need for more thorough and 
detailed medical imaging increases. The ETAN model's tra-
ditional sequential processing may make it more difficult 
for it to deliver findings quickly, particularly in situations 
where making decisions quickly is essential, like in clinical 
settings. The goal of enabling quicker and more effective 
segmentation capabilities within the EETAN framework 

is what drives the investigation of parallel processing 
techniques as a means of overcoming these constraints. 
Because the PDSO uses many optimization objectives to 
simplify contour searching and detect particles simultane-
ously, it also optimizes time consumption. Moreover, the 
realization that improving segmentation accuracy is just 
as important is what propels the incorporation of the best 
clustering approaches. Contour searching is the depiction 
of the boundaries or outlines of objects or shapes within 
an image. Contours are used to represent the structural 
information of objects within an image and are valuable 
in image segmentation. These are formed by connecting 
adjacent points with similar pixel intensity. So set of co-
ordinates that outline the boundary of an object helps in 
segmenting objects from the background in an image.

In the ETAN algorithm contours are represented as a 
series of connected points in Cartesian coordinates. In 
the ETAN algorithm, Chan-Vese segmentation is applied 
to the image. Chan-Vese segmentation is a level set-
based image segmentation method that partitions an 
image into regions based on intensity homogeneity. The 
Chan-Vese segmentation algorithm minimizes an energy 
function that consists of two terms: an internal term pro-
moting smoothness within regions and an external term 
penalizing deviations from a given intensity or gray level. 
This is employed to evolve a contour or boundary that 
separates different regions in the image. We seek to im-
prove the accuracy and consistency of the segmentation 
outputs generated by the EETAN model by integrating 
sophisticated clustering techniques, guaranteeing that 
the segmented structures closely match the ground truth.

2. ENHANCED EXTENDED TOPOLOGICAL 
ACTIVE NET MODEL

Building on the fundamental ideas of the classic Topo-
logical Active Net, the Enhanced Extended Topological Ac-
tive Net (EETAN) model offers a comprehensive and flex-
ible method for medical image segmentation. The EETAN 
model was created to address the difficulties presented 
by complex anatomical features and intensity variations in 
medical pictures. It accomplishes accurate and thorough 
segmentation results by combining topological geom-
etry with dynamic contour evolution. The core idea of the 
EETAN model is the use of deformable contour represen-
tations that dynamically change across repetitions while 
successfully respecting anatomical structure boundaries. 
The EETAN model is unique in that it incorporates topo-
logical flexibility, which makes it possible to depict several 
interrelated components and makes it easier to delineate 
complicated systems subtly. The EETAN model is well-
suited to the challenges presented by medical imaging 
datasets because it incorporates topological information 
into the segmentation process, which enhances its abil-
ity to capture fine-grained anatomical characteristics. The 
EETAN model's principal strength is its high degree of real-
ism while handling complex anatomy. Multiple connect-
ed component scenarios may be difficult for typical active 
contour models to handle, but the topological adaptabil-
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ity of the EETAN model allows it to navigate and define 
such systems with accuracy. Because of its versatility, the 
EETAN model can be used for a variety of medical imaging 
tasks, such as organ, tissue, and lesion segmentation. The 
EETAN model has limits, especially concerning computa-
tional efficiency. The following sections of this paper ex-
plore these limitations and suggest creative solutions that 
make use of parallel processing and efficient clustering 
approaches. With these improvements, the EETAN model 
should be able to meet the changing needs of modern 
healthcare by being more computationally efficient, scal-
able, and adaptive for medical image segmentation. The 
EETAN model is an advanced framework in the field of 
medical image segmentation that was created to tackle 
the difficulties caused by intricate anatomical structures 
and different levels of intensity in medical images. By uti-
lizing active contour evolution and topological geometry, 
the EETAN model achieves reliable and precise segmenta-
tion outcomes. Although the EETAN model performs ad-
mirably in segmentation, it is not without flaws. Its com-
putational efficiency is one of its main limitations, particu-
larly when dealing with large-scale medical imaging data-
sets. Traditional implementations' sequential design may 
cause extended processing times, which would make the 
model less applicable in situations where outcomes are 
crucial, including in healthcare settings. Furthermore, as 
medical datasets get more complex, the model may en-
counter difficulties with scalability and adaptability. To im-
prove the performance of the EETAN model, this research 
attempts to investigate fresh methodologies, particularly 
parallel processing approaches and optimal clustering 
algorithms. Through the resolution of these issues, we 
want to fully realize the promise of the EETAN model and 
further the development of sophisticated segmentation 
techniques for medical imaging. The approaches used to 
include parallel processing and optimal clustering into the 
EETAN model are described in depth in the following sec-
tions, which aim to improve its usability in modern health-
care applications while reducing its drawbacks. The EETAN 
model's intrinsic dependency on sequential processing 
is one of its main drawbacks. Processing duration may 
be prolonged due to the computing demands resulting 
from the expansion of medical imaging collections with 
higher quality and complexity. This presents difficulties, 
especially in situations involving patients when outcomes 
are crucial for making well-informed decisions. Concerns 
about the EETAN model's scalability arise as medical da-
tasets grow larger. The accuracy of segmentation can be 
affected by the EETAN model's sensitivity to initialization 
factors. In circumstances of unclear or difficult anatomy, 
suboptimal initialization might result in contour conver-
gence problems that affect the model's capacity to pre-
cisely define structures. Several user-defined parameters 
in the EETAN model may need to be fine-tuned depend-
ing on the particulars of the medical imaging task at hand. 
Due to the model's sensitivity to these factors, precise cali-
bration is required, which adds a level of subjectivity and 
may make it difficult to achieve the best results in various 
applications. Improving the EETAN model's performance 

requires addressing these constraints. To address these 
limitations, the following sections of this study investigate 
how parallel processing and appropriate clustering strate-
gies might be combined to improve the overall effective-
ness and suitability of the EETAN model for medical image 
segmentation. 

3. PARALLEL PROCESSING TECHNIQUES

In response to the computational challenges posed by 
the EETAN model, parallel processing techniques are ex-
plored to harness the power of concurrent computation, 
accelerate segmentation tasks, and address the growing 
demands of large-scale medical image datasets. The par-
allelization of the EETAN model is essential to overcome 
computational bottlenecks and enhance its efficiency in 
handling large-scale medical image datasets. The parallel-
ization of the EETAN model through multi-threading, GPU 
acceleration, task parallelism, and data parallelism collec-
tively address the computational challenges. The subse-
quent integration with optimal clustering techniques fur-
ther refines segmentation accuracy. In the multithreading 
approach, the segmentation algorithm is decomposed 
into concurrent threads allowing for the simultaneous 
execution of independent tasks. This approach enhances 
the utilization of multi-core processors resulting in faster 
iterations and reduced overall processing time.

The segmentation process within the EETAN model in-
volves iterative tasks providing opportunities for task par-
allelism. Each iteration can be treated as an independent 
task enabling concurrent execution and reducing the 
overall processing time. Efficient load-balancing mecha-
nisms are implemented to ensure optimal resource utili-
zation and performance. Dynamic task scheduling mech-
anisms are employed to adaptively distribute computa-
tional tasks based on workload variations. This ensures 
that processing units remain engaged and productive 
throughout the segmentation process. The dynamic load 
balancing mitigates the risk of idle resources and maxi-
mizes the utilization of available computational power.

The data parallelism is achieved by partitioning the 
medical image dataset into smaller subsets and each 
subset is then processed independently by different pro-
cessing units enabling parallel execution of segmenta-
tion tasks. The results from each subset are aggregated to 
produce the final segmented output. This approach en-
hances scalability and facilitates the efficient processing 
of large and high-resolution medical image datasets. The 
deformable contour evolution, a core component of the 
EETAN model is parallelized by distributing contour evo-
lution tasks across processing units which accelerates the 
convergence of contours to anatomical boundaries con-
tributing to faster and more efficient segmentation [3].

In conjunction with parallel processing, the integration 
of optimal clustering techniques into the EETAN model 
plays a crucial role in refining segmentation accuracy and 
addressing challenges associated with complex anatomi-
cal structures. Various clustering algorithms are explored 
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to enhance the robustness of the segmentation process 
[4]. The k-means clustering is applied to group pixels 
based on intensity similarities. By partitioning the image 
into clusters with similar intensity levels the EETAN model 
benefits from improved discrimination between different 
tissue types. To mitigate sensitivity to initialization robust 
initialization strategies are employed for K-Means clus-
tering. Smart initialization methods such as K-Means++ 
are implemented to improve convergence speed and 
ensure representative cluster assignments [5]. Hierarchi-
cal clustering is integrated to capture structural relation-
ships within the image data. This method enhances the 
adaptability of the EETAN model to complex anatomies 
by incorporating information at different hierarchical lev-
els contributing to more nuanced segmentation results.

The Fuzzy C-Means clustering is introduced to handle 
pixel memberships with degrees of uncertainty [5, 6]. 
This is particularly beneficial in regions where anatomical 
boundaries are ambiguous. The fuzzy clustering approach 
allows the model to represent partial memberships, en-
abling a more nuanced and accurate representation of an-
atomical structures. By combining optimal clustering with 
parallel processing, the segmentation algorithm gains the 
advantages of both enhanced accuracy from clustering 
and accelerated computation from parallelization. The 
resulting synergy creates a comprehensive solution for 
image segmentation demonstrating improved efficiency 
and adaptability across diverse datasets [7]. Clustering al-
gorithms such as K-Means [8], hierarchical clustering, and 
fuzzy C-Means [9] are integrated into the parallelized seg-
ments of the EETAN model. A hybrid parallelization ap-
proach is implemented combining the strengths of both 
CPU and GPU architectures. CPU-based parallelization 
handles complex control logic, task scheduling, and com-
munication, while GPU acceleration is employed for com-
putationally intensive tasks within both clustering and 
segmentation components. Load balancing mechanisms 
dynamically adjust the workload distribution based on 
the capabilities of CPU and GPU units preventing resource 
underutilization and optimizing overall processing speed 
[10]. The performance metrics including segmentation 
accuracy, precision, recall, and computational time are 
employed to quantitatively assess the effectiveness of the 
integrated parallel processing and clustering approach.

4. METHODOLOGY

The methodology, which uses the Probabilistic Depth 
Search Optimization (PDSO) algorithm in Figure 1, de-
scribes the methodical approach used to include paral-
lel processing techniques and effective clustering ap-
proaches in the EETAN model. PDSO algorithm is based 
on Particle swarm optimization (PSO) algorithm, where 
particles represent potential solutions that evolve over 
iterations. Particles for the optimization model are initial-
ized with random coordinate positions within a specified 
range. The particles are split into random coordinates and 
start searching for updates. The completion time for each 
direction is estimated based on starting and finishing 

times. The difference between the traditional ETAN and 
the proposed EETAN is the implementation of contour 
updates by using PDSO. In the PDSO optimization, the Vir-
tual Member set is initialized and processed as serial and 
parallel methods. The EETAN was implemented as a serial 
and parallel type of PDSO optimization to evaluate the 
time consumption. As per the implementation of PDSO 
in the EETAN model, this will enhance the performance 
level of segmentation. The actions made to improve seg-
mentation accuracy and computing efficiency to create a 
comprehensive framework for advanced medical image 
analysis are covered in this part. 

The main function of the PDSO optimization algorithm 
is to find the best particles for contour update. The esti-
mation of contour update will be based on the update 
of particle weight value as calculated from the objective 
function. This will make the large searching process which 
leads to time consumption. In that, some of the param-
eters are independent to find the best contour. This we 
can compute by the separate thread which refers to paral-
lel computing. This type of parallelization leads to reduc-
ing the time consumption for searching the best. This will 
update the weight and refer to the global parameters to 
validate the update of particles.

For the optimal searching process, the input of the 
function refers to the feature set, ‘T’ that was initialized as 
in equation (1).

(1)

To achieve the parallel process of optimization, this 
initializes the virtual member set ‘VM’ which is repre-
sented in (2). The virtual member set (VM) represents 
the entities that interact with the feature set during 
the optimization process. In this algorithm, the virtual 
members are associated with different parameters for 
the processing of endoscopic images. These param-
eters include:

1. Contour Update Parameters:

•	 Parameters governing the update of contours in 
the images.

2. Optimization Parameters:

•	 Parameters controlling the behavior of the algo-
rithm, such as swarm size, maximum iterations, 
and inertia weight.

(2)

From these parameters, the particles for the optimi-
zation model can be initialized by the random coordi-
nate positions as ‘X0’. This can be evaluated by the equa-
tion (3).

(3)

From the particle update, the particles are now split 
in the random coordinates and start searching for the 
particle updates. For that, the particles are now up-
dated in the right way by estimating the completion 
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time for each direction to search for the update which 
means the particles take less time to update the pa-
rameters. This is referred to in (4).

(4)

Where, 
ST – Starting time
FT – Finishing Time
i=1,2,…n // Index of the feature list
j=1,2,…m // Index of VM list.
From the estimation of completion time in (4), the 

maximum value is estimated, and this is the reference 
for other particles to update the parameters as in (5).

(5)

The average utilization of particles for each ‘VM’ is calcu-
lated to find the amount of usage that is to perform the 
update. Equation (6) and (7) represents the average utili-
zation and response time for iteration count respectively.

(6)

(7)

Then calculate the value of process in each particle 
as from (8). This is to refer to the weight value of each 
particle to find the best update of contour.

(8)

Where,
NT – Number of features in each VM at a time instant.
SR – Service Rate running in a VM.
The particles in the VM need to estimate the over 

process and under process to estimate the limit of par-
ticle movement for each iteration count. This can be 
evaluated from (9) and (10).

(9)

(10)

Where,
S(j) – Maximum size of each VM.
B – Boundary limit of VM.
OL – OverProcess of VM.
UL – UnderProcess of VM.
Based on this evaluation, the amount of resources 

that are scheduled and the available resources to apply 
search processes are estimated from (11) and (12).

(11)

(12)

Arrange the logical Confirm List (CL) from the esti-
mation of OL and UL. This is to eliminate the irrelevant 

features that are not updated in the contour validation. 
The list consists of logical values to represent the con-
firmed ‘1’ and not allowed ‘0’ respectively. This was rep-
resented in the equation (13).

(13)

Based on the evaluation factors, the particles are vali-
dated to perform the update of contour matrix that is 
to represent the relevant pixels that are matched with 
the neighboring. For that, the similarity between the 
patterns is referred to form the connected components 
that represent the contour for the current update. For 
the similarity measures, the angle of the findings ‘θ’ is 
estimated, and the similarity of particles. This was rep-
resented in (14) and (15).

(14)

Where α – Similarity constant is 0.5.

(15)

From the update of parameters, the fitness value is 
calculated as in (16).

(16)

The resource sequence are updated as in the format 
of elements in the array set by (17).

(17)

Where,

(18)

Si
t – Discrete Permutation sequences for the feature-

length ‘n’.

The standard deviation of updated particles is to rep-
resent the evaluated points to update the particles for 
the next iteration position which is represented in (19).

(19)

(20)

Equation (21) represents the normalized particle pa-
rameters for updating the coordinates of particles for 
the next iteration period.

(21)

The detailed flowchart is presented in Fig. 1. The Kva-
sir-SEG dataset (size 46.2 MB) containing 1000 endo-
scopic gastrointestinal images and their correspond-
ing ground truth from the Kvasir Dataset v2 is used. The 
resolution of the images contained in Kvasir-SEG var-
ies from 332x487 to 1920x1072 pixels. Implementing 
the EETAN model incorporates topological processing 
on an image, including smoothening, adding borders, 
computing persistence diagrams, and segmenting 
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components based on topological features. The basis 
for such advancements is a comprehensive description 
of the sequential EETAN model. To parallelize the EETAN 
model, the particle searches are done in batches. The 
parameters such as the VM weights, Average particle 
utilization for each VM, and time estimation to update 
the particles for iteration count. This makes the PDSO 
optimization parameters independent of estimating the 
prediction of contour update. Utilizing resources as effi-
ciently as possible is the goal of load-balancing systems.

The ETAN and the PDSO optimization techniques 
were combined to form the parallelized EETAN model. 
To work concurrently on segmented regions, the clus-
tering approaches leverage task and data parallelism. If 
the robust initialization and parameter adjustment tech-
niques are applied, the clustering results are more trust-
worthy. Between the segments and clustering sections, 
a feedback loop is established. Findings from clustering 
techniques have an iterative impact on the segmenta-
tion process. Flexible responses to evolving anatomical 
configurations and imaging qualities are ensured by 
mechanisms for dynamic parameter adjustments.

Fig 1. Flowchart for EETAN model

5. EXPERIMENTAL RESULTS

The experimental results provide a thorough assess-
ment of the suggested methodology that integrates 
the best clustering algorithms and parallel processing 
techniques into the EETAN model for medical image seg-
mentation. By showcasing increases in segmentation ac-
curacy and processing efficiency, the trials hope to show 
how successful the integrated method is. The algorithm's 
output is compared to ground truth annotations to de-
termine how accurate the segmentation results are. To 
measure segmentation accuracy, the Dice coefficient, and 
pixel-wise accuracy are calculated. We track and compare 
the segmentation computational time required with con-
ventional ETAN models. Precision and Recall parameters 
are calculated by the pre-defined formula estimated 
from the confusion matrix which is framed by the differ-
ence estimation between the actual and predicted re-
sult from the algorithms. The actual result is represented 
as the ground truth and the predicted result is referred 
to as the clustered/segmented result from the result of 
simulation output. To assess the efficiency advantages 
attained through parallel processing, speedup ratios are 
computed. Consistency and reproducibility are ensured 
by the use of appropriate programming languages and 
frameworks in the implementation of the methodology. 
A thorough evaluation of the advancements made is pos-
sible through comparisons with alternative segmentation 
techniques and conventional EETAN models. A qualitative 
comprehension of the visual quality and correctness of 
the segmented structures is facilitated by visual inspec-
tion of the segmented findings, expert reviews, and com-
parisons against ground truth annotations. Python is used 
to  implement the methodology for the EETAN model and 
parallel processing components. 

Table 1 shows the time comparison of ETAN and 
EETAN for different methods on average time taken. 
For all these comparisons the EETAN statistics are 
best with the average time taken for EETAN_serial as 
26.73 seconds and EETAN_parallel as 3.67 seconds so 
a reduction in time of image segmentation is nearly 
eight times whereas in Table 2 comparison based on 
percentage average accuracy, Kappa coefficients, MCC, 
TPR, and F1-macro is discussed and the various met-
rics in percentage resulted in accuracy as 95, Kappa 
coefficient as 73.96, MCC as 76.86, TPR as 96.87 and 
F1-macro as 86.87. These evaluation metrics are related 
to the quality of segmentation and found that in the 
proposed work they are improved so the quality of seg-
mentation is improved. Values of parameters are same 
in serial and parallel because whether we run it in serial 
or parallel, it is not affecting the quality of segmenta-
tion. Table 3 compares the performance measures us-
ing the Kvasir-SEG dataset in precision, dice similarity, 
and recall with 98.24, 96.63, and 96.75 respectively. In 
Table 4 the comparison of segmentation results with 
the existing methods on the Kvasir-SEG dataset is 
presented in precision, dice similarity, and recall with 
98.24, 96.19, and 96.75 respectively.   
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Table 1. Time Comparison of ETAN and EETAN

Methods Average Time taken (Sec)

ETAN_Serial 26.73

ETAN_Parallel 5.73

EETAN_Serial 24.56

EETAN_Parallel 3.67

Fig. 2. Sample segmentation Results. (a) Input images, (b) Segmentation result from ETAN, (c) Segmentation 
result from EETAN, and (d) Ground-Truth

(a)

(b)

(c)

(d)

Table 2. Comparison of Parameters in Average

Methods
Average 
Accuracy 

(%)

Average 
Kappa 

Coefficient 
(%)

Average 
MCC 
(%)

Average 
TPR (%)

Average 
F1-Macro 

(%)

ETAN_
Serial 86.95 52.02 58.61 91.38 75.19

ETAN_
Parallel 86.95 52.02 58.61 91.38 75.19

EETAN_
Serial 95 73.96 76.86 96.87 86.87

EETAN_
Parallel 95 73.96 76.86 96.87 86.87

Table 3. Comparison of Performance Measures in 
Kvasir-Seg Dataset

Methods Precision Dice Similarity Recall

CCS-Net [11] 92.47 90.89 91.41

CCS-Net with HFP [11] 96.81 92.93 90.01

MFRA-Net [12] 93.12 94.19 95.71

EETAN (Proposed) 98.24 96.63 96.75

Table 4. Comparing Segmentation Results with 
Existing Methods on The Kvasir-Seg Database

Methods Precision Dice Similarity Recall

A-DenseUNet [13] 97.66 90.85 94.48

MSRF-Net [14] 96.66 92.17 91.98

ResUnet++ [11] 81.33 79.27 87.74

CCS-Net [11] 92.47 90.89 91.41

MFRA-Net [12] 93.12 94.19 95.71

EETAN (Proposed) 98.24 96.19 96.75

Visual inspection of segmented results supported by 
expert evaluations provides qualitative insights into 
the visual quality and accuracy of the segmentation 
outcomes. Comparative visualizations against tradi-
tional ETAN models and ground truth annotations help 
validate the improvements achieved through clustering 
and parallel processing. The experimental results pro-
vide a comprehensive evaluation of the proposed meth-
odology, showcasing improvements in segmentation 
accuracy and computational efficiency. The subsequent 
sections of the research will discuss the implications of 
these findings, potential limitations, and avenues for 
future research in the context of medical image seg-
mentation using the integrated approach. Comparative 
analyses in fig. 3-5 demonstrate improvements in seg-
mentation accuracy achieved through the integration of 
optimal clustering techniques. PDSO optimization algo-
rithm contributes to better discrimination of anatomical 
structures, reflected in higher Dice coefficient.
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Fig. 3. Comparing segmentation results chart

Fig. 4. Average parameters comparison chart

Fig. 5. Comparison of the performance chart

6. FUTURE CONSIDERATIONS

Even if the research to date shows encouraging devel-
opments, there is a need for more investigation and im-
provement. To achieve even greater efficiency and scal-
ability, clustering algorithms and parallel processing tech-
niques may be further optimized. Finally, the integration 
of deep learning approaches, such as convolutional neu-
ral networks, may be explored to improve the segmenta-
tion model's learning capacity. The study shows that the 
EETAN model's incorporation of optimal clustering and 

parallel processing provides a potent remedy for deal-
ing with the difficulties presented by huge and intricate 
medical image collections. With this, the area of diagnos-
tic imaging will benefit from more precise and efficient 
applications of image segmentation techniques.

7. CONCLUSION

This proposed work has investigated the incorpo-
ration of optimal clustering techniques and parallel 
processing techniques into the Enhanced Extended 
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Topological Active Nets model for medical image seg-
mentation. The extensive studies and experimental 
results show notable improvements in segmentation 
accuracy and computing efficiency. The conclusions 
reached from this investigation are summed up in the 
following important elements. To increase the accuracy 
of segmentation, the PDSO optimization method is in-
tegrated and a concurrent process of particle searching 
for contour updates is carried out. A higher Dice coef-
ficient is the outcome of improved anatomical struc-
ture discrimination made possible by these clustering 
techniques. The feedback loop that exists between 
segmentation and clustering makes it easier to devel-
op the model iteratively, which improves its capacity to 
adapt to different anatomies. By using an integrated ap-
proach, segmentation accuracy is improved and a com-
prehensive framework that tackles the EETAN model's 
computational issues is created. When combined with 
appropriate clustering, the parallelized EETAN model 
has a synergistic impact that offers a comprehensive 
solution for advanced medical image segmentation.
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