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Abstract – Antenna array diagnosis is an important operation in communication systems, whenever element (s) failure in the 
array that worsening the projected radiation pattern occur. There are various diagnostic techniques found in literature that employ 
compressive sensing. Conversely, the techniques are based on easy formulation of array factor with no incorporation of mutual 
coupling existing between the radiators. This article shows how this deficiency lead to defective and bad diagnosis when there is 
presence of mutual coupling using port-level coupling matrix and average embedded antenna pattern. Furthermore, the element 
excitations are optimized to reduce the effect of mutual coherence of system measurement matrix, causing reduced measurements 
required for effective fault detection. Numerical simulation and experimental results demonstrate how the incorporation of mutual 
coupling generates an adequate and reliable array diagnosis, which are not found in literature. For instance, when fault number is set 
at 5, and SNR equals 10 dB, the smallest measurements needed for the diagnosis, which is the most effective diagnosis, are achieved 
when the optimized excitations are used. In conclusion, the implementation of the developed framework using measurement probe 
in space, shows enough results towards the practical deployment for antenna systems in wireless communication system.
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1.  INTRODUCTION

Antenna array diagnosis is an important research 
topic that finds application in civilian and military. Pres-
ent and upcoming technology use larger number of el-
ements in the active arrays. For instance, large number 
of elements is employed in massive MIMO (multiple in-
put multiple output), full MIMO systems, and telecom-
munication devices that employ sophisticated arrays.  
Hence, the demand for a reliable antenna array diagno-
sis is an inevitable task to rectify the distorted radiation 
characteristics because of element (s) failure [1-6]. In 
addition, fault diagnosis is important in 5G wireless sys-
tems, where a very large number of elements are need-
ed to satisfy the required reconfigurability and high ra-

diation behaviour [2]. However, the more the number 
of elements in beamforming configuration, the more 
the probability of failed element (s). Therefore, an effec-
tive and highly reliable fault diagnosis method remains 
important, because replacement operation and manu-
al dismantling take a lot of time, costly, and not feasible 
in satellite communications [2, 4]. Compressive sensing 
(CS) technique has been adapted to fault diagnosis in 
antenna arrays, because the number of failed radiators 
is assumed and always smaller than the total number 
of radiators in the antenna array. 

Some array diagnosis algorithms, such as the back-
ward transformation method (BTM) [5] and matrix 
method (MM) [6], efficiently identify the locations 
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and excitations of faulty elements using discrete Fou-
rier transform (DFT) and matrix inversion techniques, 
respectively. However, these approaches are highly 
susceptible to noise and require a minimum number 
of sampling points. Specifically, for MM, the sampling 
points should equal or exceed the number of elements 
in the array to prevent ill-conditioned matrices during 
solving. Additionally, diagnostic methods employing 
intelligent optimization algorithms, such as genetic al-
gorithms [7] and artificial neural networks [8], are com-
putationally intensive.

Hence, the primary challenge in array diagnosis cur-
rently revolves around selecting an appropriate meth-
od to swiftly identify the faulty elements within the 
array. Additionally, this solution must exhibit low sen-
sitivity to noise and provide flexibility in the number 
of sampling points utilized. The matrix pencil method 
(MPM) was originally introduced for estimating the pa-
rameters of complex exponential and attenuation ex-
ponential signals [8, 9]. However, a drawback of MPM 
is its limitation in handling the continuous distribution 
of synthesised element locations [7-10], rendering it 
unsuitable for array synthesis featuring elements posi-
tioned at fixed grid coordinates.

Furthermore, there are different array diagnostic 
methods that employed CS [3], [8-18], even with vali-
dation with experiments [18]. The array diagnosis is 
demonstrated in most approaches in literature em-
ploying recovery sparse solution from small number of 
measurements to show the situation (healthy of faulty) 
of elements. Some methods advised array diagnosis 
employing measured data taken from a point with dif-
ferent excitations [18], [19]. Conversely, each technique 
uses easy array factor dependent far-field model. Sim-
plicity is offered, but non-ideal negligibility is conten-
tious towards array diagnosis in practical sense, specifi-
cally when inter-element spacing is in smaller. Some re-
cent literature modelled multipath channel to the fixed 
probe when there are faults [20], [21], but there is no 
work, to the best of authors’ knowledge, that considers 
the mutual coupling (MC) impacts [22] in fault identifi-
cation with the employment of a fixed receiver probe 
for measurements.

This article demonstrates why MC should be consid-
ered in fault diagnosis, and if not accounted for causes 
poor diagnosis. It is demonstrated how the proposed 
fault diagnosis method that employs a fixed probe and 
excitations optimization achieves optimal performance 
simply even while MC is considered. Furthermore, nu-
merical experiment is demonstrated and the results in-
volved AEAP (average embedded antenna pattern) and 
PLCM (port-level coupling matrix) methods; implying 
the proposed method provides effective and reliable 
array diagnosis. In addition, two MC modeling meth-
ods are presented in this article, they can be applied 
based on array patterns and available data about the 
antenna array to the user.

2.   SySTEM MODEl

This section provides the analysis of the faulty array 
at far-field, and the proposed fault detection approach.

2.1. FAUlTy ANTENNA ARRAy AT FAR FIElD

The Based on the linearity feature of Maxwell’s equa-
tions; that EM field originated from antenna array is for-
mulated as a linear excitations juxtaposition of elements 
in the array, E(r)=∑N

j=1 αj (r)yj, here, E(r) denotes the EM 
wave at point r , while yj are the excitations, αj (r) are the 
resulted combination of the coefficients that consist 
the information regarding the EM surrounding of the 
array element and the measurement setup, N is the 
number of elements in the array. Since the aim of this 
article is to conduct fault diagnosis with inter-element 
MC, then the computational steps that provide the sys-
tem model can be outlined as follows.

2.1.1. How is the Element’ Fault Modeled?

On this issue, the excitation yj is replaced by yj δj, δj∈C 
show the state of fault of the element. For instance, 
δj=1 means there is no fault, while δj=0 means a de-
ceased element.

2.1.2. MC Modeling

In simple term, if coupling is neglected (from element 
pattern isolation technique), αj is made up of parame-
ters that determine the gain of the element, and phase 
due to distance between the measurement point and 
location of the element. Conversely, if the αj parame-
ters are calculated using active element patterns [23], 
then the effects of MC are incorporated fully compared 
to the N full wave EM simulations of all measurement. 
Many more techniques are found in literature, which 
is involve AEAP [24] and PLCM methods [25-29]. Then, 
the measured field is expressed as [12]

(1)

while the parameter expression of αj is a function of the 
particular model employed for MC impacts.

2.2. PROPOSED FAUlT DETECTION 
 TECHNIqUE

By critical examination of Eq. (1), it can be observed 
that for a fixed measurement location, the αj parame-
ters are unchanged, hence the ‘r’ argument is dropped. 
Consequently, a M measurements vector is built, x ̃, and 
by relation to the excitation, we have x̃=∑N

i=1 yi
(i) αi δi, 

where yi
(i) represents element i excitation for measure-

ment j, which formulate the following model [12]

(2)
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where y(j) ∈ C1×N has the excitations of the element for the 
jth measurement, leading to total excitation matrix, Y ∈ 
CM×N, and δ∈CN×1 denotes the vector of the state of fault. 

Generally, in fault diagnosis, it is usually assumed that 
reference measurements, such as x(R), are accessible for 
a particular state of elements, δ(R), which corresponds to 
array without fault. Another assumption here is the spar-
sity of the number of failed radiators as to the reference, 
so, following the formulation of vector from the differen-
tial measurement, x=x(R)-x̃, the resulting problem requir-
ing solution for the diagnosis of faults becomes [12]

(3)

μ is a term that shares proportionality to standard de-
viation of the measurement noise.

The sparse recovery requires that D (sensing matrix) 
exhibits low mutual coherence [27, 28]. For mutual co-
herence, we optimized the excitation matrix Y via the 
approximation of a Grassmannian matrix by alternat-
ing method [27], which exhibits performance improve-
ment in comparison to randomized Y [29]. D is a diago-
nal matrix that multiplies Y, the mutual coherence of 
matrix D equals that of the Y, hence the optimization 
of the mutual coherence heedless to the kind of MC 
model employed. The main knowledge acquired is 
the constancy of the linear coupled forward model for 
various excitations. Note, this is impossible for multiple 
points measurements. Using the standard techniques 
to transform the unconstrained nonconvex optimiza-
tion problem [15, 16, 30] we have [12]

(4)

γ is the hyperparameter (empirical). The problem is 
resolved via the iterative reweighted l1 minimization 
[30-37] implemented using alternating direction meth-
od of multipliers (ADMM) [38].

3.  NUMERICAl SIMUlATIONS, RESUlTS, AND 
DISCUSSION 

This section demonstrate and verifies the effective-
ness of the proposed diagnosis method. 100 elements 
constituted of WR90 open-ended waveguide array 
working at 27 GHz as depicted in Fig. 1 [5]. The radia-
tion characteristics at no fault at ϕ=00 is given in Fig. 
2. The array aperture size is 24.88 𝗑 12.18 mm2 and the 
spacing between elements in both x and y axis is λ and 
0.5λ, respectively. The Ansys HFSS v.19 software was 
used for the simulations. 

Fig. 1. Open ended waveguide array used for 
diagnostic demonstration [5].

Fig. 2. Simulated radiation pattern of antenna array 
without element failure at principal plane ϕ=00[5].

The waveguide is excited using a 50 Ω generator im-
pedance and designed on the substrate ASTRA MT77 
with relative permittivity εr = 3 and loss factor tan δ = 
0.0017 to have an impedance of 50 Ω. Also, the physi-
cal overlapping of elements at smaller value spacing 
between elements, such as d=0.45λ, and broadband 
radiation pattern used in wireless networks is ensured.

Next is to present the results of the diagnosis using 
the complex E-field (Ey) measured data obtained at 
fixed point via excitations optimization. The measure-
ments of field of the faulty and healthy arrays (i.e. the 
forward models of αj in Eqn. (1)) of isolated pattern 
method (using the array factor method [33]), average 
embedded pattern method (using Eqn. (11) of [23]), 
and coupling matrix method (using Eqn. (A9) of [25]) 
were simulated using Matlab Antenna Toolbox. It is im-
portant to state that the MC model employed in this 
article is not restricted, any MC model can be employed 
by appropriate computation of αj based on the pro-
posed scheme (as in Eqn.) (2).

The point of measurement is fixed at a spherical an-
gular point (θ0, ϕ0)=(0,0), r=1000λ (in z-direction). Using 
these measurements, the solution of the fault is gotten 
by the iterative reweighted ℓ1 minimization. The hyper-
parameters γ of Eqn. (4) is given as γ=0.25‖DH x‖∞ and 
z=0.5 (z quasi-norm) for each fault diagnosis result. The 
γ is an empirical value obtained from a grid search from 
0.1‖DH x‖∞ to ‖DH x‖∞. The upper limit ‖DH x‖∞ is ex-
plained in [27]. The phase and amplitude of excitations 
are set at [0, 2π], [0, 1], respectively. Both randomized 
and optimized excitations are quantified into six-bit 
phase and amplitude, while we obtain randomized ex-
citations via multinomial probability distribution. 

The solution that is recovered is designed into bina-
ry numbers using the threshold of the actual part by 
1/2, i.e. for nth antenna δn=0. Fault recovery is success-
ful when the accurate faulty elements reconstruction 
and corresponding position is attained. It is important 
to state that thresholding action is unnecessary when 
dealing with non-binary faults. Rate of successful re-
covery (RSR) metrics is employed to present the results, 
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and the realizations percentage leading to successful 
recovery. The results are computed using 600 Monte-
Carlo simulations with random fault positions. The 
findings originated from the proposed method are 
outlined below.

3.1. ENHANCEMENT IN FAUlT DETECTION 
 USINg ExCITATIONS OPTIMIzATION

The proposed method incorporates the impact of 
MC. This implies there should be similar improvement 
in performance when excitations optimization with re-
spect to random excitations is used.  This is validated via 
performance analysis of fault diagnosis with coupling 
matrix model, without and with excitation matrix Y op-
timization at 10 dB signal-to-noise ratio (SNR). The ex-
citation matrix Y optimization is confirmed to be useful 
for coupling matrix method as depicted in Fig. 3. When 
the average pattern method is used as the MC model, 
similar results were attained.  This is an important re-
sult as all the merits of the optimized element excita-
tion method continuously apply when the impacts of 
MC are considered. Similar findings were observed at 
higher SNRs, and there is an improvement generally in 
the RSR for a particular number of faults.

Fig. 3. Plot of RSR for coupling matrix method using 
iterative reweighted ℓ1 minimization, at N=100, 

d=0.45λ, and SNR=10 dB

3.2. ENHANCEMENT IN FAUlT DETECTION 
 WITH MUTUAl COUPlINg

The RSR percentage versus the faults number via 
various coupling models with iterative reweighted 
ℓ1 minimization and excitations optimization for 10 
dB and 20 dB, respectively, is depicted in Fig. 4. Fig. 
4 are for two M, and it can be observed that evident 
reliability improvement in fault diagnosis is observed 
when MC impacts are considered in both measure-
ment cases. For instance, when SNR is 10 dB with 15 
measurements, M, and 3 faults, RSR of 100 is attained in 
the presence of MC, as against the 85 RSR without MC. 
In addition, when SNR is 10 dB with 20 measurements, 
M, and 4 faults, 98 RSR is attained in the presence of MC 
as against the 83 RSR without MC.

(a)

(b)

Fig. 4. Plot of RSR using iterative reweighted ℓ1 
minimization, at N=100, d=0.45λ, and excitations 

optimization for 2 measurements, M,  
(a) M=15 (b) M=20.

Furthermore, the RSR accuracy difference when the 
MC is considered is higher than when low SNR mea-
surements are used. For instance, comparing the per-
formance of high and low SNRs in Fig. 4, the high SNR 
line shoot out more than that of low SNRs. For high 
SNR, an improved RSR is observed when the presence 
of MC is considered, even at bigger number of faults. 
For instance, when SNR is 20 dB, and measurements, 
M is 20 including 10 faults; isolated pattern method 
attains 50 percent RSR, while coupling models attain 
about 71% RSR. 

3.3. VARyINg THE DISTANCE BETWEEN 
 ElEMENTS: ANAlySIS

When the antenna elements are closer, the impact of 
MC is more [34], it is expected to have all the methods 
converge to close performance at higher spacing be-
tween elements. As this can be demonstrated in the re-
sults, it is valid based on least measurements M needed 
correct diagnosis of faults. Tables I to IV depict the mea-
surements number, M required to achieve 90% RSR and 
98% RSR when array diagnosis is conducted for various 
spacings between elements with the developed mod-
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els and random/optimized excitations. Fault number is 
set at 5, and SNR equals 10 dB. The smallest measure-
ments M needed for the diagnosis, which is the most 
effective diagnosis, are achieved when the optimized 
excitations are used (as per Table 1 & 3).

Generally, the AEAP models and coupling matrix with 
excitations optimization exhibit better options of find-
ing fault in this scenario. Conversely, it becomes impor-
tant to state that the coupling matrix method is of the 
assumption that the array impedance matrix is readily 
available for the user. When it is not available, the av-
erage embedded pattern model is recommended for 
practical application with large array aperture, because 
it requires only the response of the embedded pattern 
of the element at the center, easy to achieve.

Table 1. The required number of measurements 
to achieve 98% RSR with varying spacing d and 5 

number of faults for optimized excitation

Spacing, d 0.45λ 0.95λ 1.45λ 1.95λ
Embedded Pattern 25 19 19 19

Coupling Matrix 23 20 21 19

Isolated 0 32 40 19

Table 2. The required number of measurements 
to achieve 98% RSR with varying spacing d and 5 

number of faults for random excitation

Spacing, d 0.45λ 0.95λ 1.45λ 1.95λ
Embedded Pattern 28 25 24 25

Coupling Matrix 31 24 27 23

Isolated 0 35 48 25

Table 3. The required number of measurements 
to achieve 90% RSR with varying spacing d and 5 

number of faults for optimized excitation

Spacing, d 0.45λ 0.95λ 1.45λ 1.95λ
Embedded Pattern 18 17 17 17

Coupling Matrix 18 17 17 17

Isolated 38 22 27 17

Table 4. The required number of measurements 
to achieve 90% RSR with varying spacing d and 5 

number of faults for random excitation

Spacing, d 0.45λ 0.95λ 1.45λ 1.95λ
Embedded Pattern 22 20 20 19

Coupling Matrix 24 20 22 21

Isolated 45 25 31 20

4. CONClUSION

In this paper, two methods of adding the impact of 
MC for effective and more reliable antenna array fault 
diagnosis via a notable CS method that employs fixed 
probe based measurements, and excitations optimiza-
tion. Based on the accessible data about the array, and 
corresponding characteristics, both methods can be 
employed. For a fairly large array, AEAP method is an ap-

propriate forward model, and coupling matrix method is 
appropriate for a particular antenna group. The superior-
ity of the forward models, which incorporate the impact 
of MC, have been demonstrated and the shortcoming of 
a forward model without the MC influences incorpora-
tion has been presented. For instance, when fault num-
ber is set at 5, and SNR equals 10 dB, the smallest mea-
surements needed for the diagnosis, which is the most 
effective diagnosis, are achieved when the optimized 
excitations are used. The proposed technique is verified 
and demonstrated to be highly correct, and reliable in 
fault finding in antenna arrays where the impacts of MC 
are cannot be ignored. Finally, the proposed technique 
is more practical and recommended for identification of 
faults in antenna arrays. 
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