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Abstract – The volume of the tumor plays a very crucial role in deciding the stage of lung cancer which in turn helps in deciding 
the best treatment and its schedule. Currently used computer-based volume estimation techniques are semi-automatic with limited 
accuracy. For any automatic lung cancer segmentation system, lung CT scans of hundreds of patients are required along with their 
corresponding annotated segmentation masks. It is difficult to get accurately annotated data as cancer segmentation of CT scans 
done by the radiologists, is a time-consuming manual process. Also, it is subjective and prone to intra and inter-observer variability. 
Further, owing to the irregular shape of the cancerous tumor, accurate volume estimation becomes a challenge with regular 
convolution models. This paper proposes an end-to-end automatic tumor volume estimation model that estimates volume using 
the GPR (Gaussian Process Regression) interpolation method. The proposed modified cancer segmentation model uses deformable 
convolutions. This modification offers a higher segmentation accuracy in terms of IoU (Intersection over Union) and clearly defined 
nodule boundaries with correct retention of the nodule shape. The research was undertaken in collaboration with Nanavati Hospital, 
Mumbai, and all the models were validated on a real dataset obtained from the hospital. The proposed model gives a mean 
segmentation IoU (Intersection over Union) of 0.9035 and a volume estimation accuracy of 93.13% which are almost 5% and 3% 
higher than 0.8548 and 90.51% which are the corresponding results obtained using a standard U-net++ algorithm. 
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1.  INTRODUCTION

Lung cancer is the most widespread type of cancer 
and is the second most common cancer after prostate 
cancer in males and breast cancer in 

females. The early detection of lung cancer plays an 
effective role in diagnosis and leads to an early treat-
ment increasing the likelihood of patient survival rate 
[1, 2]. Chemotherapy, which is the main treatment for 
lung cancer requires knowledge of the accurate loca-
tion of the cancer along with its spread along all the 3 
axes. Accurate volume estimation is required for deter-
mining the stage of the cancer. Volume estimation can 

be done using 3D or 2D CT scan images. Though 3D 
data gives more accurate volume estimation it suffers 
from a lack of annotated data required for training and 
higher complexity of the segmentation algorithms. So 
generally 2D data is used to estimate the slice-wise 
area of cancer spread and then volume is obtained us-
ing these area values. It is very difficult to get accurately 
annotated data as radiologists usually perform manual 
segmentation. Human intervention leads to errors aris-
ing out of fatigue and subjectivity. To overcome this 
problem, cancer segmentation models based on deep 
learning were proposed but they require a large data-
set along with corresponding annotations of every CT 
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scan for training to get acceptable segmentation ac-
curacy that leads to precise area calculation. Also, the 
majority of cancer segmentation algorithms fail to de-
fine the boundaries of cancerous nodules clearly. While 
many software programs are available for calculating 
volume automatically, they are semi-automatic as they 
need demarcations of cancerous portions to be done 
by radiologists in every or at most on alternate slices. In 
this paper, a fully automatic tumor volume estimation 
model is proposed that performs segmentation of can-
cerous portions by modifying the U-net++ algorithm 
using deformable convolutions. The volume is calcu-
lated using GPR interpolation. The proposed model of-
fers highly accurate volume estimation and requires a 
lesser number of original CT scans. 

The primary contributions of our proposed research 
are as follows:

1) Designed an improved segmentation algorithm 
based on a modified convolution that achieved an 
improved segmentation accuracy in terms of well-
defined nodule boundaries and the retention of 
actual nodule shape.

2) Developed the cancer volume estimation system 
using interpolation techniques that provided bet-
ter accuracy of volume estimation.

2. RELATED WORK

In recent times CT scans have been dominantly used for 
cancer detection and a lot of research on developing AI 
(Artificial Intelligence) based cancer detection algorithms 
is reported in the literature. Matt Daykin et al. used a One-
Class Support Vector Machine (OCSVM) based model to 
detect lung abnormality [1]. The method, however, does 
not use complete images but patches of lung CT scans 
majorly to increase the size of the data set. Automatic 
feature extraction or the use of deep learning techniques 
is also not explored fully. Other reported abnormality de-
tection algorithms [2, 3] majorly dealt with cancers other 
than lung cancer. Irigoien et al. applied OCC (One Class 
Classification) to medical data for the detection of vari-
ous diseases like breast cancer, liver disorders, leukemia, 
etc. [2]. The authors compared the performance of four 
different algorithms namely Gaussian, mixtures of Gauss-
ian, Parzen, and typicality approach based on their aver-
age AUC (Area Under Curve). The paper reported the best 
results with an average AUC of 77.4% with the typicality 
approach. Tarassenko et al. [3] also applied OCC to inves-
tigate normality using a large number of available mam-
mograms which do not show any evidence of mass-like 
structures. The recent advancement in deep learning tech-
niques allows for automatically extracting features from 
the images, thereby improving the overall performance 
as compared to conventional CAD (Computer Aided Di-
agnosis). The use of transfer learning techniques is also re-
ported in literature where fixed feature extraction is done 
using a pre-trained network. Ardimento et al. [4] applied 
three transfer learning models viz; VGG (Visual Geometry 

Group), Xception, and ResNet for feature extraction and 
combined the results using ensemble architecture to clas-
sify the scans as cancerous and noncancerous. Similarly, 
the state-of-the-art transferable architectures such as 
VGG-16, VGG-19, GoogLeNet, Inception-V3, ResNet-18, 
ResNet-50, ResNet-101, InceptionResNet-V2 and 3D mul-
tipath VGG like network have also been used for lung 
cancer feature extraction [5-9] and the performance of 
SVM (Support Vector Machine) and AdaBoostM2 classifier 
is analyzed on the deep features extracted from publicly 
available datasets. In [10] the performance of various ma-
chine learning algorithms was evaluated on a lung cancer 
detection task. The fusion of DenseNet201 with color his-
togram techniques was used to extract a hybrid feature 
set. Similarly, an innovative deep-learning model for lung 
cancer detection by integrating markers from mRNA, 
miRNA, and DNA methylation was developed [11]. The 
principal components analysis (PCA) was implemented to 
streamline features and the synthetic minority over-sam-
pling technique (SMOTE) algorithm was applied to ensure 
class balance. The PCA-SMOTE model achieved an F1 
score of 0.97. Lung nodule segmentation methods can be 
categorized into traditional approaches and deep learn-
ing-based techniques. Traditional methods encompass 
threshold and region-growing methods, clustering meth-
ods, active contour models, and mathematical models 
[12-20]. On the other hand, deep learning-based methods 
for segmentation can be further divided into 2D and 3D 
segmentation networks [21]. While traditional segmenta-
tion methods do not necessitate a substantial amount of 
labeled data for model training, they heavily rely on hu-
man intervention and are more focused. These methods 
primarily rely on shallow image features such as grayscale 
and texture. In contrast, 2D segmentation networks uti-
lize 2D convolution to extract features from images. The 
original Fully Convolutional Neural Network (FCN) [22], 
has found extensive use in various image segmentation 
fields but it lacks global context information which is 
very important in the case of medical image segmenta-
tion. Ronneberger et al. [23] introduced a U-Net network 
based on the FCN architecture for medical image seg-
mentation. U-Net incorporates both low-resolution and 
high-resolution information through skip connections, 
which is particularly advantageous for segmenting medi-
cal images with blurred boundaries. In this approach, low-
resolution information is used for target identification, 
while high-resolution information aids in the localization 
of the segmentation. Consequently, U-Net has served as 
a foundation for several improved algorithms. The aver-
age IoU of 77.5% ia achieved but the algorithm failed to 
consider the multiscale information required for accu-
rate segmentation. So, to further improve segmentation 
results, some researchers have explored the integration 
of Atrous Spatial Pyramid Pooling (ASPP) [24] instead of 
the intermediate or output layer of U-Net. This approach 
enables the extraction of multi-scale image information 
through different perceptual fields [25-27] but lacks in re-
tention of exact shapes. Though the average IoU of 81.3 
was achieved, the algorithm lacked complete recovery 
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of spatial information. Some 3D segmentation networks 
utilize 3D convolution to extract features from volumet-
ric images, allowing them to better capture the spatial 
relationship between nodules and surrounding tissues 
compared to 2D segmentation networks. Duo et al. [28] 
introduced a 3D fully convolutional neural network that 
automatically segments the liver and cardiac great ves-
sels. Milletari et al. [29] incorporated residual connections 
inspired by ResNet [30] and employed 3D convolution in 
their V-Net architecture for prostate volume segmenta-
tion, departing from the 2D convolution used in U-Net. 
Deepseed [31] proposed 3D-squeeze-and-excitation (SE) 
networks, incorporating dynamic scaling with cross-en-
tropy loss [32] to address the sample imbalance problem. 
Their method was evaluated on the LIDC (Lung Image 
Database Consortium) [33] and LUNA16 (LUng Nodule 
Analysis) [34] datasets, demonstrating promising results 
for lung nodule segmentation. However, it is worth noting 
that 3D networks suffer from longer training times and 
may not necessarily outperform 2D networks in terms of 
evaluation metrics. Zhou et al. [35] proposed U-net++, an 
extension of U-Net that incorporates dense skip connec-
tions to enable multi-scale fusion and feature acquisition 
at different levels. The model achieves an average IoU of 
81.4% but as the algorithm involves non-integral convo-
lution, it fails in maintaining the exact shape of nodules. 
In [36] the attention module is used with the U-net al-
gorithm having residual connections for fast backpropa-
gation. But model failed to maintain the exact shape of 
cancerous nodules. Similarly, different deep learning seg-
mentation models were evaluated on different datasets, 
and the effects of different preprocessing methods were 
examined [37]. Though the TransUet model achieved the 
highest segmentation accuracy with an average dice co-
efficient of 0.81, it failed to maintain the exact shape of 
the cancerous nodule. Being a transformer-based model, 
the decision-making process and interpreting predictions 
was challenging. Also, in [38] a method to integrate fea-
ture information through a dual-branch network frame-
work and multi-dimensional fusion module is proposed. 
By training and validating with multiple data sources 
and different data qualities, the method demonstrated 
leading performance on the LUNA16, Multi-thickness 
Slice Image dataset, LIDC, and UniToChest, with an aver-
age dice similarity coefficient of 82%. This method failed 
to maintain the cancer nodule's exact shape, leading to 
inaccurate segmentation. Accurate segmentation of can-
cerous nodules is of high importance as the accuracy of 
volume estimation and grading is directly depending on 
the same. 

3. METHODOLOGY

Fig. 1 shows the schematic of the proposed system. 
Raw CT scans are first cleaned and then features are 
extracted from the isolated lung section. Extracted fea-
tures are then applied to the cancer detection model as 
explained in the sections that follow. 

Fig. 1. Schematic of the proposed system

3.1 DATA COLLECTION AND PRE-PROCESSING

Normal and cancerous 2D lung CT scans were made 
available by the Nanavati Hospital, Mumbai. They were 
of DICOM (Digital Imaging and Communications in 
Medicine) file type. Each CT scan is of size 512 X 512. 
The dataset was checked, classified, and annotated in-
dependently by two radiologists and used for training 
and testing. A total of 872 normal and 146 cancerous 
scans were collected. Cancerous scans were increased 
to an optimum of 584 using data augmentation tech-
niques approved by the doctors to balance the avail-
able data without the risk of overfitting. All the simu-
lations were carried out using Python running on a 
server with AMD Ryzen 5 processor, 8GB RAM, and one 
NVIDIA GeForce GTX 1650 GPU with a compute capa-
bility of 7.5. Training of an algorithm took 14 hours and 
testing of applied image takes just 8 seconds.

3.2 DATA AUGMENTATION

A significant obstacle in training deep learning mod-
els for various tasks is the abundance of data required. 
This challenge is particularly pronounced in the field 
of medicine, where limited access to costly imaging 
resources or a scarcity of study subjects can hinder 
progress. Additionally, the requirement of annotations 
for every cancerous scan puts a limit on data collection. 
Consequently, there is a growing trend of employing 
data augmentation techniques in research involving 
small data sets [39, 40]. 

The demand for extensive data in deep learning net-
works has spurred the development of various strate-
gies. Only those strategies are used in this work that pro-
vide a different visual impact compared to an original 
image. Vertical flipping, horizontal flipping, PCA (Princi-
pal Component Analysis), and image overlay techniques 
are used in our work for data augmentation. 

Fig. 2 shows the images generated using corre-
sponding data augmentation methods for a sample CT 
scan. Fig. 2(a) shows the original CT scan. The irregu-
larly shaped cancerous nodule is highlighted using the 
red bounding box. Figs. 2(b) and 2(c) show the results 
of the flipping operation performed on the original CT 
scan. After vertical and horizontal flipping the position 
of the cancerous nodule changed, making it appear as 
a new image for a deep-learning model. Horizontal flip-
ping is used because objects like cancer exhibit hori-
zontal symmetry as it often looks similar when flipped 
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horizontally. Vertical flipping is useful in the medical 
domain where the orientation of objects like cancer 
varies significantly. Fig. 2(d) shows the result obtained 
by performing PCA with 20 components. Similarly, Fig. 
2(e) shows the new image generated using the image 
overlay technique.  

(a)

(b)

(c)

(d)

(e)

Fig. 2. (a) Original CT scan (b) Vertical flipping 
(c) Horizontal flipping (d) PCA with 20 principal 

components (e) image overlay 

3.3 CANCER DETECTION  

After data augmentation, the CT scans were applied 
to the cancer detection model. The cancer detection 
model was trained using both normal and cancerous 
CT scans. 872 normal and 584 cancerous CT scans were 
used in training. The features extracted using VGG were 
applied to three different classifiers namely SVM, Deci-
sion Tree, and Random Forest. The model was validated 
on a test dataset of 50 normal and 50 cancerous scans. 

3.4 CANCER SEGMENTATION

The u-net algorithm proved to be the most signifi-
cant segmentation algorithm for medical images [23]. 
Many variations of the basic algorithm have been de-
veloped in recent years. The basis of the U-net algo-
rithm is the duplication of feature maps of the encoder 
to the decoder section to improve the quality of the 
upsampling feature map. U-net++ further improves 
the segmentation performance of the U-net algorithm 
by using the concept of deep supervision and nested 
skip connections that use convolutional layers [35]. 
However, in conventional convolutional layers, the re-
ceptive field remains unchanged for a given network 
structure, regardless of the object's size. But use of the 
same receptive field for objects of different sizes is not 
ideal. In the field of medical image segmentation, the 
lesions to be segmented often exhibit irregular shapes 
and sizes. The use of conventional convolution results 
in less accurate demarcation of cancer nodules [41, 42].

Fig. 3 shows the schematic of the proposed architec-
ture consisting of 5 layers in the encoder and decoder. 

The encoder performs downsampling by capturing the 
contextual information and reduces spatial dimensions 
while the decoder performs upsampling and constructs 
the segmented image based on encoded features. The 
skip connections concatenate feature maps from the en-
coder to the decoder at the same spatial resolution. The 
nested skip pathways combine feature maps from differ-
ent encoder resolutions to capture multi-scale contex-
tual information. The weighted sum of the feature maps 
shown by in Fig. 3 improves the aggregation of features 
from different levels of the encoder.

Fig. 3. The schematic architecture of the proposed 
algorithm
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 +To further improve upon the segmentation accura-
cy, the proposed model uses deformable convolution 
instead of conventional convolution in the encoder 
and decoder layers. The increased geometric flexibility 
results in improved segmentation accuracy by retain-
ing the original shape of the cancerous nodule. 

We strategically incorporated deformable convolu-
tions [41] into different parts of the network to iden-
tify the most effective place. Considering that the first 
downsampled convolution block is responsible for ex-
tracting the image's basic features, adding deformable 
convolutions to this block significantly prolongs net-
work training time. Also, after multiple convolution and 
downsampling operations as the feature map size be-
comes very small and the feature information becomes 
abstracted, the benefits of using deformable convolu-
tions are not evident. Taking these factors into account, 
we included the deformable convolution operation in 
the basic convolution block of the second, third, and 
fourth layers of the architecture as shown in Fig. 3.

3.4.1 DEFORMABLE CONVOLUTION

Fig. 4. (a) lung CT scan (b) Grid of conventional 
convolution showing fixed locations of points  
(c) trainable offsets to perform convolution at 

variable locations instead of fixed places  
(d) features map extracted

(a) (b) (c) (d)

Fig. 4(a) shows the lung CT scan. In the case of con-
ventional convolution, the process of convolution is 
performed using a fixed grid and because of this, the 
receptive field remains the same. Figure 4(b) shows a 
fixed convolution grid of size 3 x 3. It is not appropriate 
to use the constant receptive field in our case as can-
cer nodules are of varying shape and size. Deformable 

(1)

Here, the pixel value at P0 is replaced by weighted ad-
dition performed between image pixels and convolu-
tion mask at locations Pn + ΔPn where

Pn ∊ R (2)

R = {(−1, −1),(−1, 0), . . . ,(0, 1),(1, 1)} (3)

yi (P0) = ∑Pn ϵ R w(Pn). x(P0 + Pn + ΔPn)

for a grid of 3 x 3 size and ΔPn indicates the learnable 
distance offset for the best location to perform con-
volution. In equation (1), w indicates the convolution 
mask and x indicates the image.

3.5. VOLUME ESTIMATION

When a series of CT scans of the patient is applied to 
the cancer segmentation model, it provides correspond-
ing masks having cancerous portions highlighted for ev-
ery CT scan. These annotated masks are applied to the 
volume estimation model that calculates the area of the 
cancerous portion of every scan and uses the interpola-
tion method to find the volume of the tumor. 

From the segmented mask, several white pixels are ob-
tained. The area of the cancerous portion is calculated by 
multiplying the number of white pixels by the area of each 
pixel which is obtained from pixel height and pixel width 
functions of the Python library. Likewise, the area is calcu-
lated for all consecutive CT scans and then the volume is 
obtained from these area values using the interpolation 
method. Fig. 5 shows the consecutive cancerous scans for 
one sample patient case. Corresponding area values are 
0.435, 2.966, 4.104, 3.8, and 1.755 respectively. 

Fig. 5. Consecutive cancerous scans of a sample patient

convolution solves the problem of constant receptive 
field by using trainable offsets that are added to a fixed 
grid before performing convolution. Figure 4 (c) shows 
the trainable offsets. This process allows the network to 
learn information about nodule boundaries more ac-
curately and it leads to better segmentation accuracy 
with retention of the exact shape of the cancerous nod-
ule. Figure 4(d) shows the corresponding feature map 
extracted. Mathematically the deformable convolution 
can be represented as shown in Eq. (1).

Slice 1 Slice 2 Slice 3

Slice 4 Slice 5
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Each slice is 5 mm thick. This means the real area of 
cancer spread is known only at intervals of 5 mm each 
and not in between. Considering the same cancerous 
area throughout the slice thickness will lead to wrong 
volume calculation. For better volume estimation, in-
terpolation is used to predict the area values of the can-
cerous portion 0.01 mm apart slice-wise. Various types 
of interpolations like linear, bilinear, cubic, Lagrange, 
and GPR were tried to determine the volume of cancer, 
and their results are compared with the actual volumes 
obtained from radiologists. GPR interpolation is found 
to be the best approach. 

3.5.1.  GPR INTERPOLATION

The basic idea of GPR is to model the relationship 
between the input data and the output values as a 
Gaussian process. A Gaussian process is a collection of 
random variables, any finite number of which have a 
joint Gaussian distribution. In GPR, we assume that the 
output values follow a Gaussian process with a mean 
function μ(x) and a covariance function k(x, x') that 
captures the similarity between given data points and 
interpolation points. 

The most commonly used covariance function is the 
Radial Basis Function (RBF) kernel. This interpolation 
is the most suitable for irregular data as it can better 
capture underlying trends and patterns. This property 
makes GPR the most suitable interpolation method in 
cancer volume estimation. The key idea of GPR inter-
polation is to use Bayesian inference to compute the 
posterior distribution over the unknown value ŷ condi-
tioned on the observed data. The posterior distribution 
is a Gaussian distribution with a mean μ̂ and a covari-
ance Σ̂. The mean μ̂ represents the estimated value of ŷ, 
and the covariance Σ̂ quantifies the uncertainty associ-
ated with the estimation.

Mathematically GPR interpolation can be explained 
as follows:

First, the mean function μ(x) and the covariance func-
tion k(x, x') were defined. Then the covariance matrix 
K(X, X) between the observed input points in X and the 
covariance vector k(X, x̂) between the observed input 
points in X and the new input point x̂ were computed. 
The covariance scalar k(x̂, x̂) between the new input 
point x̂ and itself was then calculated. Finally, the mean 
vector μ̂ and the covariance matrix Σ̂ of the posterior 
distribution were obtained using the formulae [43] giv-
en in equations (4) and (5)

μ̂ = k(X, x̂)ᵀ [K(X, X) + σ²I]⁻¹ y (4)

Σ̂ = k(x̂, x̂) - k(X, x̂)ᵀ [K(X, X) + σ²I]⁻¹ k(X, x̂) (5)

where σ² is the noise variance parameter and I is the 
identity matrix.

The estimated output value ŷ at the new input point 
x̂ was obtained by the mean μ̂, and the uncertainty as-
sociated with the estimation was quantified by the co-
variance Σ̂.

4. 4. RESULTS AND DISCUSSIONS

4.1. CANCER DETECTION

It was found that classification results are optimum 
for a random forest classifier for the finalized values 
of hyperparameters when compared to other classi-
fiers. All the cancerous scans were correctly classified 
by Random Forest, with a recall (or sensitivity) of 100%, 
accuracy of 99.75%, and precision of 99.5%. Accuracy 
considers all predictions (both positive and negative) 
and measures the overall correctness of the model. 
Whereas, the precision focuses only on the positive 
predictions and measures how many of those predict-
ed positives are true positives. Also, 100% recall indi-
cates that the model has successfully identified every 
case who had a disease. 

4.2. CANCER SEGMENTATION 

In this work, the Intersection over Union (IoU), Dice 
Similarity Coefficient (DSC), Relative Volume Difference 
(RVD), Average Surface Distance (ASD), and Hausdorff 
Distance (HD) were used to evaluate the image seg-
mentation results. IoU is calculated by finding the ratio 
of the area of overlap between the predicted segmen-
tation and the ground truth segmentation to the area 
of union between the two. In mathematical terms, it is 
defined as shown in equation (6)

IoU = ∣X∪Y∣ / ∣X∩Y∣ (6)

Here, X and Y represent the sets or regions of pixels 
that belong to the predicted segmentation and the 
ground truth segmentation, respectively. A higher 
IoU value indicates a better segmentation result, with 
a value of 1 indicating a perfect overlap between the 
predicted and ground truth segmentations. The Dice 
coefficient is a similarity measure commonly used in 
image segmentation to evaluate the overlap between 
a segmented mask and a ground truth mask. Mathe-
matically it is defined as given in equation (7).

DSC=(2*|X ∩ Y|)/ (|X| + |Y|) (7)

RVD quantifies the relative difference in volume or 
size between the segmented region and the ground 
truth region.
RVD=( |Volume segmented - ground truth volume| ) 

/ ground truth volume

The RVD value is a measure of how closely the seg-
mented region's volume matches the ground truth 
volume. It's typically expressed as a percentage, with 
values closer to zero indicating a more accurate seg-
mentation. If RVD is exactly zero, it means the segmen-
tation perfectly matches the ground truth. A positive 
RVD indicates an overestimation, meaning the seg-
mented region is larger than the ground truth, while a 
negative RVD indicates an underestimation, meaning 
the segmented region is smaller than the ground truth.

ASD on the other hand quantifies the average dis-
tance between the surfaces of the segmented region 
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and the corresponding surfaces of the ground truth 
region. It calculates the distance between each corre-
sponding pair of points, one from the segmented re-
gion's surface and one from the ground truth region's 
surface. Then it calculates the average of these distanc-
es. Smaller ASD values indicate a more accurate seg-
mentation, as they imply that the segmented region's 
surface is closer to the ground truth surface.

HD is also a measure of the dissimilarity between the 
boundary of a segmented object and a ground truth 
boundary. It calculates the Euclidean distance between 
each point in one set and its nearest neighbor in the 
other set. First, it calculates the Hausdorff distance from 
the first set to the second set (H1) as the maximum dis-
tance among the recorded Euclidean distances from 
the above step. Similarly, the Hausdorff Distance from 
the second set to the first set (H2) is calculated. The HD 
is then defined as the maximum of H1 and H2.

The deformable convolution was used basically to 
improve the accuracy of the cancerous nodule seg-
mentation. Table 1 shows the performance metrics 
for the proposed algorithm with regular convolution-
based U-net++. The performance metrics for 3 patients 
CTP1, CTP2, and CTP3 are highlighted in Table 1. It is 
seen that for all three patients, the RVD value is reduced 

with the proposed algorithm compared to that with U-
net++ which indicates improvement in segmentation. 
Similarly, there is a reduction in ASD value for three 
patients, particularly for patients CTP2 and CTP3. Also, 
the average values of performance parameters for 58 
patients indicate that IoU and DCS show considerable 
improvement of 5.69% and 3.72 % respectively for the 
proposed model as compared to the U-net++. Simi-
larly, other parameters RVD, ASD, and HD have been 
reduced for the proposed model by 41.02%, 65.67%, 
and 65.39% respectively which indeed indicates better 
segmentation. Fig. 6 shows the results of segmentation 
obtained using U-net++ and the proposed algorithm 
for patients. It is seen clearly that the proposed algo-
rithm retains the shape of a nodule by correctly de-
marcating its boundaries and provides more accurate 
segmentation compared to U-net++. The retention of 
the exact shape of the cancerous nodule is of prime 
concern as the accuracies of the estimation of the high-
est dimension, volume are directly dependent on it. 
The spider chart showing the comparison of U-net++ 
and the proposed algorithm for various segmentation 
metrics is shown in Fig. 7. The larger difference in the 
areas covered by the two algorithms in the spider chart 
indicates the difference in their performance.

Patients Algorithm/ parameters IoU DSC RVD ASD HD

CTP1
U-net++ 0.8607 0.925 0.1256 0.1725 3.1623

Proposed algorithm 0.8887 0.941 0.0874 0.1157 2.00

CTP2
U-net++ 0.7723 0.872 0.2375 0.8460 15.6525

Proposed algorithm 0.8327 0.909 0.1 0.1998 3.6056

CTP3
U-net++ 0.9305 0.964 0.0529 0.2115 11.4018

Proposed algorithm 0.9441 0.971 0.0371 0.0712 3.6056

Average for 58 
patients

U-net++ 0.8548 0.913 0.156 0.428 10.419

Proposed algorithm 0.9035 0.947 0.092 0.1469 3.6056

Table 1. Comparison of proposed algorithm with U-net++ for various segmentation metrics

Fig. 6. (a) Original CT scan (b) Ground truth (c) result of U-net++ (d) result of the proposed algorithm

(a) (b) (d)(c)
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Fig. 7. Spider chart of comparison of U-net++ with 
the proposed algorithm

4.2. VOLUME ESTIMATION

The results of the cancer segmentation model are ap-
plied to the volume estimation model. The 

segmentation model generates annotations cor-
responding to all the cancerous scans. The cancerous 
portion is demarcated in white and the area corre-
sponding to this cancerous portion is calculated in Py-
thon. Interpolation is performed on obtained area val-
ues to get area values of unknown places between the 
slices. Then the volume is obtained by summing up all 
area values. Various types of interpolations like linear, 
bilinear, cubic, Lagrange, and GPR (Gaussian Process 
Regression) are checked in this work and their results 
are compared. Table 2 shows the results of these in-
terpolation methods applied to CT scans of 3 patients. 
VP1, VP2, and VP3 are the volumes estimated for 3 pa-
tients P1, P2, and P3 respectively. These volumes are 
compared with ground truth volumes calculated by 
the radiologists. It is seen that there is a huge difference 
in calculated volume and ground truth volume when 
interpolation is not used. In the case of VP3, volume 
estimation accuracies with the quadratic, cubic, spine, 
Lagrange, and GPR interpolations are 88.13%, 88.91%, 
90.27%, 91.63%, and 94.36% respectively. Similarly, for 
the other patients, it is found that GPR gives the best 
volume estimation accuracy with an average value of 
93.13%. Fig. 8 indicates the spider chart showing the 
comparison of various interpolation methods. It is evi-
dent from the diagram that the GPR curve is the closest 
to the ground truth volume. 

For comparison purposes, we applied GPR interpo-
lation on the segmentation masks obtained using the 
U-net++ algorithm. Table 3 indicates volumes obtained 
using GPR interpolation applied to the Unet++ algo-
rithm and our proposed algorithm for VP1, VP2, and 
VP3. It is seen that the accuracy of the proposed algo-
rithm is approximately 4% higher than that of U-net++. 

The comparison of results obtained is shown in Fig. 
9. For all volumes VP1, VP2, and VP3 as well as for av-
erage it is seen that the volume estimated using the 
proposed algorithm is closer to the ground truth com-
pared to that of the U-net++ algorithm.

Volume is one of the important parameters in decid-
ing the stage of the cancer. It also helps radiologists 
to further decide about the treatment. Though cancer 
grading depends on multiple factors including the 
spread of cancer to lymph nodes, spread of cancer to 
another lung, etc. volume is considered to be the most 
important factor.

Fig. 8. Spider chart of comparison of various 
interpolation methods

So if volume estimation goes wrong, it may lead to 
the inaccurate prediction of the stage of cancer and 
hence the corresponding dosage and the treatment. 

Keeping the aim of a fully automated end-to-end vol-
umetric estimation system, in this work we proposed 
the idea of deformable convolution and GPR interpola-
tion to achieve better accuracy of cancer nodule seg-
mentation and volume estimation respectively.

Fig. 9. Bar graph of comparison of volume 
estimation using U-net++ and proposed algorithm
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5. CONCLUSION 

This paper proposes a fully automatic system that 
automatically segments the cancerous portions from 
the applied CT scans and calculates the volume of the 
cancerous nodule. The proposed model uses a modi-
fied cancer segmentation algorithm which is based on 
deformable convolution. The modification captures the 
shape of the nodule more accurately as the convolution 
was performed at flexible locations instead of fixed loca-
tions. These locations were obtained using trainable off-
sets. This flexibility resulted in improved segmentation 
accuracy and clearly defined nodule boundaries with 
correct retention of the nodule shape. The average value 

of segmentation, an IoU of 0.9035, obtained with the 
proposed segmentation algorithm is nearly 5% higher 
than that given by the U-net++ algorithm. The work also 
uses GPR interpolation resulting in better volume esti-
mation accuracy. It proved to be the best interpolation 
method for irregularly shaped cancer nodules leading 
to a final volume estimation accuracy of 93.13%. The 
fully automatic lung cancer volume estimation system 
reported here not only removes the need for radiologist 
intervention and thereby the resulting subjectivity but 
also improves the overall accuracy of lung cancer detec-
tion, segmentation, and volume estimation, leading to 
an improved cancer grading.

Table 2. Volume estimations (in cubic cm) for various interpolation methods

Nodule volume estimation / 
Type of interpolation

Ground truth 
volume

Volume without 
interpolation Quadratic Cubic Spine Lagrange GPR Volume estimation 

accuracy in % for GPR
VP1 5.79 6.53 6.37 6.36 6.39 6.35 6.192 93.06

VP2 4.49 4.93 4.13 4.09 4.12 4.18 4.21 93.77

VP3 5.14 5.97 5.75 5.71 5.64 5.57 5.43 94.36

An average of 32 patients 5.17 5.82 5.78 5.81 5.69 5.63 5.52 93.13

Table 3. Comparison of volume estimations (in cubic cm) for U-net++ and proposed algorithm

Nodule volume estimation Ground truth 
volume

Volume: GPR 
interpolation on 

U-net++

Volume accuracy in 
% for GPR on Unet++

Volume: GPR 
interpolation on the 
proposed algorithm

Volume accuracy 
in % for GPR on the 
proposed algorithm

VP1 5.79 6.422 89.08 6.192 93.06

VP2 4.49 4.039 89.95 4.21 93.77

VP3 5.14 5.62 90.66 5.43 94.36

An average of 32 patients 5.17 5.66 90.51 5.52 93.13
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