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Abstract – At a macroscopic level derivatives and integrals are the usual mathematical tools to model real time processes and to 
perform the basic control and signal processing actions. However, the analysis, design, synthesis and implementation of fractional order 
differentiator and integrator is a difficult task because of its irrational behaviour. Therefore, for mathematical evaluation of any fractional 
order system, conversion to its approximate integer order equivalent is essential. In this paper approximated integer order models of 
fractional differentiator and integrator are developed using the continued fraction expansion technique. A continued fraction is an 
expression obtained through an iterative process. For any iteration to terminate, a finite numerical value is assigned, which in this paper 
is equal to the number of frequency points within the desired frequency band. It includes both the lower and upper limit values. A set of 
coefficients are obtained by finding the gains of the fractional term at respective frequencies and thereby applying the recursive formula. 
The coefficients thus obtained are substituted in the expression of continued fraction which results in a polynomial function of finite 
order. The developed models can be directly applied for analysis and realization of fractional order systems. The models are developed 
for fractional terms 0.1 to 0.9 in steps of 0.1, and also for 0.25 and 0.75. A detailed discussion on the sensitivity analysis is presented, which 
includes the influence of variable parameters on the accuracy and length of the order. Simulations have been performed in MATLAB. A 
comparison with both, the ideal values and also with existing methods is performed and tabulated to validate the correctness of the 
developed models both in terms of accuracy and integer order of the model. It shows that the Matsuda method yield very good results 
both in terms of magnitude and phase. And, is most suitable for linear phase circuits. Also, the proposed models can be directly used for 
the realization of customized fractional order Proportional Integral (PI), Proportional-Derivative (PD) and PID controllers. To establish 
the correctness of CFE based technique for hardware realization, the integer order approximated model of one-tenth and seven-tenth 
differentiator is decomposed to obtain the circuit parameters resistor (R) and capacitor (C). Then its implementation in OrCAD Capture 
CIS is performed. It can be seen that the results of realization closely match the actual response.

Keywords: Matsuda method, Continued Fraction Expansion, Fractional order differentiator, Fractional order integrators, 
 Frequency band

1.  INTRODUCTION

In recent years, researches have been able to explore 
many potential applications of fractional calculus in 
science, engineering and business administration [1-7]. 
It has also been shown that modeling and controlling 
many financial, biological, chemical, physical, electri-

cal and control phenomena is better done using frac-
tional order calculus [8-10]. Some physical phenomena 
which show fractional behaviour are; spectral densities 
of music, viscoelasticity (modelling of cement, gels, 
polymers), cardiac rhythm, diffusion in plasmas, trans-
port of substances by water in soil, muscle activities, 
flexible transmission lines, path planning and tracking 
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for a mobile robot, heat diffusion in the soil, relaxation 
behaviour of polarized impedances in dielectrics and 
interfaces and hydraulic actuator.

In order that richness of the dynamic features exhibited 
by a system or process be properly modified, we need a 
model of the system, tools for its analysis, ways to specify 
the required behaviour, methods to design the control-
ler, and techniques to implement them. Since the usual 
tools to model dynamic systems at a macroscopic level 
are integrals and derivatives, the algorithms that imple-
ment the controllers are mainly composed of such tools. 
Also, the basic control actions are proportional, derivative 
and integral. It is quite natural to conclude that by intro-
ducing more specific control actions and mathematical 
substitutes of the form sα and 1/sα, (0 < α < 1) we could 
achieve more satisfactory compromises between posi-
tive and negative effects and combining the actions we 
could develop more powerful and flexible design meth-
ods to satisfy the controlled system specifications [11-15]. 
In systems theory the analysis of dynamical behaviour 
is often made by means of transfer functions. The physi-
cal systems which exhibit fractional order (f-o) dynamic 
behaviour are described by f-o transfer functions in the 
s-domain. The simple form of a f-o transfer function is 
F(s)=s±α (0 < α < 1). The form sα is continuous time (c-t) f-o 
differentiator and the form s-α is c-t f-o integrator. To im-
plement transfer functions of this form is not easy, due to 
its infinite dimensional nature. Therefore, for implemen-
tation, it is required to convert fractional functions into 
integer order functions using different approximation 
techniques [16-24]. These techniques which are available 
in literature are based on rational approximations in the 
frequency domain developed to approximate the arbi-
trary order with low level of error and wide bandwidth, 
such as Oustaloup’s [16], refined Oustaloup’s [17], Charef’s 
[18], Carlson’s [19, 20], Matsuda’s [21], etc. Both Oustaloup 
and refined Oustaloup methods are based on pole and 
zero recursion and are useful where a frequency band 
of interest is set initially. Also the desired order of the de-
veloped model can be chosen a priori. Charef method is 
also based on interlacing of pole-zero technique, but in 
this technique the desired order of the developed model 
cannot be chosen a priori. And moreover, the order of the 
developed model depends on the fractional order α. The 
Carlson method is based on Newton iterative process. 
Similar to Charef method here also the order of the de-
veloped model depends on fractional order α and is not 
uniform for all values of α. In Matsuda method the approx-
imation is obtained using Continued fraction expansion 
technique and the frequency band as well as the order of 
the approximated model is set initially. The approxima-
tion of fractional differentiator s0.5 using different meth-
ods is summarized in a survey paper [25]. There are many 
more applications of fractional order calculus. For exam-
ple, a synthesis methodology of fractional-order chaotic 
systems was discussed in [26]. The analysis and analog 
design of fractional-order charge/flux controlled memris-
tor emulators of incremental/decremental type was de-
scribed in [27]. In [10, 28, 29] the analog design of fraction-

al-order proportional-integral-derivative controllers was 
reported. The fractional-order lead/lag compensator was 
investigated in [30, 31]. The design of double exponent 
fractional-order filters and power law filters were inves-
tigated in [32, 33], respectively, and so on. The dynamic 
analysis, and subsequently the hardware implementation 
and realization of such systems can be performed after 
representing them with finite number of poles and zeros. 
Usually, hardware implementation of finite order transfer 
functions is done easily using electronic components/de-
vices. Therefore, in order to study the dynamical behav-
iour, and for hardware realization purposes, the integer 
order approximation of the f-o system is required.

Here, the authors have proposed rational approxima-
tions of fractional order operator sα for all values of α in 
the range (-1 to 1) upto one decimal place and for α = ±¼ 
& ±¾. This forms one of the major contributions of the 
paper. While analysing fractional order systems, if the in-
teger order approximation of the different fractional or-
ders is readily available, then the fractional order transfer 
function is converted to its integer order equivalent by 
merely substituting the approximations of the fractional 
orders. The resulting transfer function then best approxi-
mates the original fractional order system. The Matsuda 
approximation technique has been utilized for this pur-
pose. Though, this technique is well established, the ef-
fect of variation of the parameters used to develop the 
approximation has not been considered yet. So, another 
major contribution of the paper is to highlight the varia-
tion in frequency response of the approximated integer 
order models of fractional operator by varying its param-
eters. The findings are as follows: In Matsuda method 
there are two important parameters to be selected. One 
is the number of frequency points (n) and the other is the 
frequency range for which the developed model is to be 
used. The relation between differentiator and integrator is 
that they are inversely proportional to each other and this 
concept is true for most of the models developed using 
the different approximation techniques. But this is not ap-
plicable to all the models developed by Matsuda method. 

The approximate fractional order derivatives obtained 
as ratio of polynomials in the Laplace domain can be 
implemented using analog and digital electronics. How-
ever, in both cases the exactness depends on the ap-
proximation to solve the fractional order function. The 
correctness of the circuit is therefore dependent on the 
numerical method and approximated Laplace model 
used for synthesis. The Field Programmable Analog Ar-
ray (FPAA) and Field Programmable Gate Array (FPGA) 
can be used for fast verification and prototyping of 
fractional order dynamical systems.  The circuit whose 
output displays the behaviour of an irrational function 
is known as fractional order element (FOE) or fractance 
device in literature [34-39]. The analog realization with 
different topologies viz., ladder network, nested ladders, 
first order RC filters, CMOS OTA based filters have been 
presented in [40, 41]. The authors in [42] present imple-
mentation of resistor less fractional order filters. A review 
of all the recent developments on the realization of frac-
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tance devices can be found in [43]. A comparative study 
of discrete component realization is given in [44]. The 
FPGA realization of fractional order chaotic systems is 
explained in [45, 46]. The drawback in FPGA implemen-
tation is that the hardware resources are dependent on 
the length of the digital word that is used, and this can 
degrade the desired response due to the finite number 
of bits to perform computer arithmetic. Therefore imple-
mentation with analog electronics using FPAA is good 
alternative to achieve desired accuracy as presented in 
[47]. This paper demonstrates a generalized design pro-
cedure to develop a passive element R-C structure of 
fractional order differentiator. As an example, two frac-
tional order differentiators of powers 0.7 (seven-tenth 
differentiator) and 0.1 (one-tenth differentiator) are sim-
ulated using the circuit simulator OrCAD Capture PSpice. 
A general formula for magnitude and frequency scaling 
is also presented. The magnitude and phase plots are 
discussed.

The section wise sequence is as follows: Introduction 
is covered in Section I. Matsuda method is explained in 
Section II. In this section integer order models of fractio-
nal order differentiator developed using the Continued 
Fraction Expansion (CFE) formula is listed. Performance 
and simulation results are discussed in Section III. Se-
ven-tenth and one-tenth differentiator is realized using 
OrCAD Capture CIS and is presented in Section IV. The 
conclusion of the paper is in Section V.

2. METhOD

In this section the mathematical steps involved to devel-
op the approximated integer order (AIO) models of frac-
tional differentiators and integrators of order α,(α∈([±0.1, 
±0.9] in steps of 0.1 and ±1/4, ±3/4)) based on CFE tech-
nique are discussed. This method is popularly known as 
Matsuda method among the fractional community. 

The fractional order (f-o) operator is given as [22]

(1)

The f-o differentiator (FOD) is defined as [22]

(2)

The f-o integrator (FOI) is defined as [22]

(3)

In Matsuda method, the approximated integer order 
transfer functions of the f-o system are obtained by the 
use of CFE [21]. For the fractional order α, there are two 
parameters to be set before applying the formula of 
continued fraction expansion as given in Eqn. (4). The 
two parameters are: number of frequency points (n) and 
the specific Frequency Band (FB) in which the approxi-
mation is to developed. ωi’s are the numerical values of 
the frequency points. A detailed explanation of the fre-
quency band and frequency points is given in section 
3.1.1. ai’s are the set of coefficients which are obtained 
using Eqn. (5). The f-o operator in (1) can be replaced by 
its equivalent integer order function given as [21, 22]

In Eqn. (4) ai’s are the set of coefficients at different 
frequencies ωi (1≤i≤n), which are defined within a de-
sired FB [21, 22].

(5)

where q1 (ωi) = |F(jωi )| for i = 1,2,3,…..,n   |F(jωi )| are the 
gains at respective frequencies.

The expression to find gain |F(jωi )| at a specific fre-
quency ωi is equal to ±(α)×20 log ωi

Rest of the q’s (q2, q3…,qn ) are obtained using the re-
cursive formulae [21, 22] 

Using Eqn. (4), the AIO models of f-o differentiators 
and integrators are derived and analyzed in the coming 
subsections.

The analysis of f-o differentiators based on Mat-
suda method is performed for all orders of α with FB 
[10-2, 102] and n = 9. The frequency points within this 
band are set as [0.01, 0.0316, 0.1, 0.3162, 1, 3.1623, 10, 
31.6228, 100]. Using this data, the AIO transfer func-
tions for the FOD sα,(α∈([0.1:0.1:0.9] and 1/4, 3/4)) are 
derived and given in Table 1. 

sα G_m atsuda(s)

s0.1 1.828((s+52.78)(s+3.143)(s+0.2456)(s+0.01342)/ 
(s+74.5)(s+4.071)(s+0.3181)(s+0.01894) )

s0.2 3.3572((s+44.96)(s+2.766)(s+0.2155)(s+0.01111)/ 
(s+89.98)(s+4.64)(s+0.3615)(s+0.02224) )

s0.3 6.2275((s+38.54)(s+2.435)(s+0.1887)(s+0.009063)/ 
(s+110.3)(s+5.298)(s+0.4106)(s+0.02594) )

s0.4 11.7439((s+33.2)(s+2.145)(s+0.165)(s+0.007245)/ 
(s+138)(s+6.06)(s+0.4661)(s+0.03011) )

s0.5 22.7203((s+28.72)(s+1.89)(s+0.1439)(s+0.005634)/ 
(s+177.5)(s+6.948)(s+0.5291)(s+0.03481) )

s0.6 47.7342((s+24.93)(s+1.665)(s+0.1252)(s+0.004207)/ 
(s+237.7)(s+7.987)(s+0.6006)(s+0.0401) )

s0.7 98.224((s+21.7)(s+1.467)(s+0.1085)(s+0.002945)/ 
(s+339.5)(s+9.211)(s+0.6817)(s+0.04607) )

s0.8 237.755((s+18.94)(s+1.292)(s+0.09376)(s+0.001833)/ 
(s+545.5)(s+10.66)(s+0.7741)(s+0.05278) )

s0.9 769.99((s+16.56)(s+1.137)(s+0.08061)(s+0.0008552)/ 
(s+1169)(s+12.4)(s+0.8795)(s+0.06036) )

s0.25 4.565((s+41.6)(s+2.595)(s+0.2017)(s+0.01006)/ 
(s+99.42)(s+4.957)(s+0.3853)(s+0.02403) )

s0.75 149.6819((s+20.27)(s+1.376)(s+0.1009)(s+0.002371)/ 
(s+421.6)(s+9.906)(s+0.7264)(s+0.04932) )

Table 1. AIO transfer function of FOD sα, (α ∈ 
([0.1:0.1:0.9] and 1/4, 3/4))using Matsuda method in FB

(4)
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3.  SIMUlATION RESUlTS

This section presents frequency response analysis 
of the approximated models. As examples magnitude 
and phase error plots of s0.1, s0.7 and s0.25 are shown in 
Section 3.1. In section 3.1.1 the effect of variation of n 
and FB on FOD response is discussed and results ana-
lyzed. Similarly, magnitude and phase error plots of 1/
s0.4, 1/s0.8 and 1/s0.75 are shown in Section 3.2 and the 
effect of variation of n and FB on FOI response is dis-
cussed in Section 3.2.1. 

The outcome of the analysis is summarized highlight-
ing the limitations and advantages of the proposed 
method. The Matsuda method based FOD models de-
veloped in this paper are compared with models de-
veloped using four other rational approximation tech-
niques. The results of the comparison are tabulated in 
Section 3.3. 

The comparison has three components: one is the 
maximum magnitude error in dB and second is the 
maximum phase error in degree with respect to their 
ideal values, and third is the order of the approximated 
model. 

3.1. MATSUDA METhOD BASED FOD

The magnitude and phase plots of one-tenth differ-
entiator s0.1 (model given in Table 1) is shown in Fig. 1. 
Also shown is the ideal continuous bode of f-o differ-
entiator s0.1 for comparison. The magnitude and phase 
responses of Matsuda based one-tenth differentiator 
closely matches the continuous bode in the defined FB 
[10-2,102]. 

Fig. 1. Frequency Response of Matsuda based one-
tenth differentiator s0.1 in FB [10-2, 102],n = 9 

Fig. 2. Frequency Response of Matsuda based 
seven-tenth differentiator s0.7 in FB [10-2, 102 ], n = 9

Figs 2 and 3 show the magnitude and phase plots of 
Matsuda based f-o differentiators s0.7 and s0.25 (models 
given in Table 1) compared with their respective ideal 
continuous bode counterparts. It is seen that the re-
sponses closely match the ideal responses.

Fig. 3. Frequency Response of Matsuda based one-
fourth differentiator s0.25 in FB [10-2, 102], n = 9

3.1.1. Effect of Variation of n  
 and FB on FOD Response

Matsuda method, the effect of variation of the two 
parameters - the specific FB and the number of fre-
quency points within it, on the response of the AIO 
transfer function of FOD is studied and results analyzed.

Case 1: For this purpose, n is set as 9 and the AIO 
transfer function for one-tenth differentiator s0.1 is 

(6)

Case 2: If the FB is changed to [10-2, 102], the fre-
quency points change [1, 1.7783, 3.1623, 5.6234, 10, 
17.7828, 31.6228, 56.2341, 100] and keeping n same, 
the AIO for s0.1 becomes

(7)
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We observe that the order of the transfer function 
remains same but the position of poles and zeros vary.

Case 3: Now, keeping FB as in Case 1 and varying n = 
13 with frequency points set as [0.01, 0.0215, 0.0464, 0.1, 
0.2154, 0.4642, 1, 2.1544, 4.6416, 10, 21.5443, 46.4159, 
100], the approximated transfer function for s0.1 is 

(8)

From Eqn. (8) it is clear that when n is increased, the 
order of the transfer function increases.

Fig. 4 shows the position of poles and zeros for the 
three cases. Generalizing, it can be inferred that for dif-
ferent FBs, if n remains unchanged, only the position 
of poles and zeros vary; but the order remains same. 
And if n is varied, the order of the approximated trans-
fer function also changes. Further, if n is increased, the 
plots exhibit better matching with the ideal continuous 
time (c-t) domain f-o differentiator. Analysis can also be 
performed for different FBs and different n. 

The set of frequencies generated in the FB [100, 102] 
and various n are listed in Table 2. Table 3 shows the set 
of frequency points for n= 9 in different FBs.

Fig. 4. Pole-zero maps of Matsuda based s0.1 for 
different FBs & n (a) [10-2,102], n = 9 (b) [100,1, 102 ], n = 9 

(c) [10-2,102], n =13

n Frequency points

3 0.01, 1, 100

5 0.01, 0.1, 1, 10, 100

7 0.01, 0.0464, 0.2154, 1, 4.6416,21.5443, 100

9 0.01, 0.0316, 0.1, 0.3162, 1, 3.1623, 10, 31.6228, 100

11 0.01, 0.0251, 0.0631, 0.1585, 0.3981, 1, 2.5119, 6.3096, 15.8489, 
39.8107, 100

13 0.01, 0.0215, 0.0464, 0.1, 0.2154, 0.4642, 1, 2.1544, 4.6416, 10, 
21.5443, 46.4159, 100

15 0.01, 0.0193, 0.0373, 0.0720, 0.1389, 0.2683, 0.5179, 1, 1.9307, 
3.7276, 7.1969, 13.8950, 26.8270, 51.7947, 100

17 0.01, 0.0178, 0.0316, 0.0562, 0.1, 0.1778, 0.3162, 0.5623, 1, 
1.7783, 3.1623, 5.6234, 10, 17.7828, 31.6228, 56.2341, 100

Table 2. Matsuda method: Set of frequency points 
for different n in the FB [10-2, 102]

FB Group of frequencies for n=9

[100, 102 ] 1, 1.7783, 3.1623, 5.6234,  
10, 17.7828, 31.6228, 56.2341, 100

[10-2, 102 ] 0.01, 0.0316, 0.1, 0.3162, 1, 3.1623, 10, 31.6228, 100

[10-3, 103 ] 0.001, 0.0056, 0.0316, 0.1778,  
1, 5.6234, 31.6228, 177.8279, 1000

[10-1, 105 ] 0.1, 0.5623, 3.1622, 17.7828, 100, 562.3413, 3162.2776, 
17782.7941, 100000

[10-1, 101] 0.1, 0.1778, 0.3162, 0.5623, 1, 1.7783, 3.1623, 5.6234, 10

[103, 105] 1000, 1778.2794, 3162.2776, 5623.4132, 10000, 
17782.7941, 31622.7766, 56234.1325, 100000

To study the effect of variation of n, the response of 
one-tenth differentiator s^0.1 has been plotted with FB 
[10-2, 102] with n = 7, 9, 11, 13 and is shown in Fig. 5. The 
corresponding magnitude and phase errors are shown 
in Fig. 6. 

Table 3. Matsuda method: Group of frequencies for 
different FBs, for n=9 

Fig. 5. Frequency Response of Matsuda based one-
tenth differentiator s0.1 in FB [10-2, 102 ], 

 n = 7,9,11,13

Fig. 6. Magnitude and phase errors of Matsuda 
based one-tenth differentiator s0.1 in FB [10-2, 102 ],  

n = 7,9,11,13
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From the frequency response and error plots, we see 
that as the choice of number of frequency points in-
creases the response matches more closely to the ideal 
c-t domain one-tenth differentiator. For the entire FB [10-

2, 102], the maximum magnitude error is less than 0.5 dB 
"for" n ≥ 9 and the flatness of the phase diagram is ob-
tained for n=13 which finds application in linear phase 
circuits. It is also observed that the magnitude error of 
the approximant is least at the chosen frequency points.

As the choice of the number of frequency points in-
creases, the order of the AIO transfer function also in-
creases and accuracy towards the actual value is attained. 

An important point worth mentioning here is that 
the order of the approximated transfer function does 
not depend on the order of the fractional operator.

Another important inference is that proper approxi-
mated models are obtained only for odd values of n 
and the system is non-causal for even values of n. To 
illustrate this, let the number of poles be np and the 
number of zeros be nz. 

For odd value of n, np = nz= (n-1)/2 ie. the numera-
tor and denominator polynomials have the same order. 
For even value of n, np = (n/2)-1 and nz=n/2 the numera-
tor polynomial has order one higher than denominator 
polynomial. Since system is non-causal, further analysis 
has not been pursued for FODs. Table 4 lists the order 
of the AIO models obtained for different values of n.

Table 4. Order of Approximated transfer function of 
FOD sα using Matsuda method for different values of n

n 3 5 7 9 11 13 15 17
Order of approximated 

integer order model 1 2 3 4 5 6 7 8

3.2.  MATSUDA METhOD BASED FOI

The AIO transfer functions of the FOI in Eqn. (3) are 
obtained by directly inverting the transfer function of 
the models obtained in Section 2. This is due to the fact 
that the order of numerator and denominator polyno-
mials is same in the models of Table 1. All the models 
thus obtained are stable.

Figures 7, 8 and 9 show the frequency responses of 
Matsuda based f-o integrator 1/s0.4 ,1/s0.8 and 1/s0.75 re-
spectively compared with their ideal continuous bode 
responses in the FB [10-2, 102] and n set as 9. It is ob-
served that the responses of the Matsuda based f-o in-
tegrator models closely match the ideal responses.

In Section 2 the AIO models of FOD were obtained 
only for odd values of n; the models being non-causal 
for even values of n. An important observation is that by 
inverting the models with even values of n, we could ob-
tain transfer functions with order of the numerator one 
less than that of denominator. The order of the model 
developed for even values of n is n/2. Figs. 10, 11 and 
12 show the frequency responses of Matsuda based f-o 
integrator 1/s0.1 ,1/s0.3 and 1/s0.8 respectively compared 

with their ideal continuous bode responses in the FB [10-

2, 102] and n set as 8. It is seen that the responses of these 
Matsuda based f-o integrator models for even values of 
n also closely match the ideal responses.

Fig. 7. Frequency Response of Matsuda based 
four-tenth integrator 1/s0.4 in FB [10-2, 102], n = 9

Fig. 8. Frequency Response of Matsuda based 
eight-tenth integrator 1/s0.8 in FB [10-2, 102], n = 9

Fig. 9. Frequency Response of Matsuda based 
three-fourth integrator 1/s0.75 in FB [10-2, 102], n = 9
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Fig. 10. Frequency Response of Matsuda based 
one-tenth integrator 1/s0.1 in FB [10-2, 102], n = 8

Fig. 11. Frequency Response of Matsuda based 
three-tenth integrator 1/s0.3 in FB [10-2, 102], n = 8

Fig. 12. Frequency Response of Matsuda based 
eight-tenth integrator 1/s0.8 in FB [10-2, 102], n = 8

3.2.1. Effect of Variation of n  
 and FB on FOI Response

Since FOI models are obtained directly by inverting 
the FOD models, the discussion presented in section 2 
also holds true for FOI response. 

To study the effect of variation of n, simulations have 
been performed for four-tenth integrator 1/s0.4 with dif-
ferent odd values of n and one-tenth integrator 1/s0.1 
with different even values of n. 

Fig. 13 shows the frequency response of approxi-
mated Matsuda based four-tenth integrator 1/s0.4 as 
compared to the c-t domain FOI for the FB [10-2, 102],  
n = 9, 11, 13, 15 and their corresponding magnitude 
and phase error plots are shown in Fig. 14. It is seen 
that if n is increased, the response matches very closely 
to ideal c-t domain FOI 1/s0.4. The maximum magnitude 
error is less than 0.5 dB and the maximum phase error 
is less than 5° for n ≥ 11. The maximum magnitude er-
ror is less than 0.1 dB for n ≥ 13 and the phase response 
is flat for n = 15 in the FB [10-1, 101]. The frequency re-
sponse of Matsuda based one-tenth integrator 1/s0.1 in 
the FB [10-2, 102]," for " n =6, 8, 10, 12 is shown in Fig. 15. 

The plot is compared with the ideal response of one-
tenth integrator and it is seen that if n is increased, the 
response matches closely to ideal c-t domain FOI 1/s0.1. 
The corresponding magnitude and phase error plots 
are shown in Fig 16. It is seen that the maximum mag-
nitude error is less than 0.3 dB for n = 12 and maximum 
phase error is less than 5° for n =6, 8, 10, 12.

Fig. 13. Frequency Response of Matsuda based 
four-tenth integrator 1/s0.4 in FB [10-2, 102 ], 

n = 9, 11, 13, 15

Fig. 14. Magnitude and phase errors of 
Matsuda based four-tenth integrator                                                                                 
1/s0.4 in FB [10-2, 102 ], n = 9, 11,13,15



Fig. 15. Frequency Response of Matsuda based 
one-tenth integrator 1/s0.1 in FB [10-2, 102 ], 

n = 6, 8, 10, 12

Fig. 16. Magnitude and phase errors of Matsuda 
based one-tenth integrator 1/s0.1 in FB [10-2, 102], 

n = 6, 8, 10, 12

Simulations have been performed for FOD and FOIs 
for order α (α ∈ ([±0.1:±0.1:±0.9] and ±1/4, ±3/4)) in 
the FB [10-2, 102 ] for different odd and even values of 
n using Matsuda method of approximation. Similar ob-
servations were noted. It is seen that accurate approxi-
mation is achieved for both magnitude and phase for 
higher values of n, specifically for n ≥ 13.

3.3. COMpARATIVE STUDy

In this section, a comparative analysis of the FOD 
models developed in this paper is done with models 
developed using four other rational approximation 
techniques. These are Charef method, Carlson method, 
Oustaloup method and Modified Oustaloup method. 
The comparison is based on the frequency response of 
the models i.e. maximum magnitude and phase errors 
are compared as shown in Tables 5 and 6. Also order 
of the developed approximated models are mentioned 
in the comparison table as it is an important factor for 
realization purposes. Since the number of active/pas-
sive elements required for hardware implementation 
depends upon the order of the approximated model, a 
compact hardware can be made only with lesser num-
ber of components.

In Carlson method and Charef method there is no 
provision in the formula to select the desired order for 
which the approximation is to be developed [20, 39]. 
Only the desired frequency band can be chosen a priori. 
The order of the approximated model depends on the 
fractional order α. But in the Oustaloup method and 
Modified Oustaloup method both desired order and de-
sired frequency band can be selected before applying 
the formula [16, 17]. This can also be seen from the Ta-
bles 5 and 6 that all the models developed by applying 
Matsuda, Oustaloup and modified Oustaloup methods 
have fixed orders, 4, 5 and 5 respectively. Whereas for 
the models based on Charef and Carlson methods the 
integer orders are not fixed. It depends on the value of α. 
Although we can the assign a parameter for desired or-
der in Oustaloup and modified Oustaloup methods, but 
the order of the generated transfer function will always 
be an odd number [16, 17]. For comparison, the order of 
these models are chosen as 5, because the models hav-
ing order 3 gave very poor results. 

Fig. 17. Magnitude and phase errors of Matsuda, 
Charef, Carlson, Oustaloup and Modified Oustaloup 
based three-tenth differentiator s0.3 in FB [10-2, 102]

Fig. 18. Magnitude and phase errors of Matsuda, 
Charef, Carlson, Oustaloup and Modified Oustaloup 

based nine-tenth differentiator s0.9 in FB [10-2, 102]

As an example, the maximum magnitude and phase 
error plots is shown in Fig 17 for FOD s0.3. The corre-
sponding error values obtained after simulation is pre-
sented in Tables 5 and 6. It can be seen that maximum 
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magnitude error is least for Charef method which is 
0.15 dB, and is 0.69 dB in Oustaloup method, 0.84 dB 
in Modified Oustaloup method, 1.02 dB in Matsuda 
method and 1.56 dB in Carlson method. The maximum 
phase error is 1.04°, 4.72°, 5.54°, 13.72° and 21.01° for 
models based on Charef, Matsuda, Modified Oust-
aloup, Oustaloup and Carlson methods respectively. 
Fig. 18 shows the maximum magnitude and phase er-
ror plots of FOD  s0.9 and its corresponding error values 
are tabulated in Tables 5 and 6. It can be seen that Mat-
suda based model has least maximum magnitude error 
of 0.39 dB. The maximum magnitude error for Charef, 
Modified Outaloup, Oustaloup and Carlson methods are 
0.81 dB, 1.03 dB, 2.58 db and 3.36 dB respectively. Also 
Matsuda based model has least maximum phase error 
of 2.08° and it is 4.39° and 5.85° for Modified Oustaloup 
and Charef based models respectively and is very high 

for Oustaloup (40.57°) and Carlson (58.21°) method ap-
proximated models. Similarly, simulations have been 
performed for all FOD of order α (α∈([0.1:0.1:0.9] and 
1/4, 3/4)) in the FB [10-2, 102] and results tabulated. It 
can be seen that order of Matsuda based models is 
4, which is least among all the other methods. Also it 
can be seen that the accuracy of the proposed Mat-
suda based models is very good in comparison to 
Carlson, Oustaloup and Modified Oustaloup methods. 
Although Charef based models have lesser magnitude 
and phase errors but the order of the approximated 
models are very high which is not suitable for imple-
mentation purposes. Therefore Matsuda based models 
are both accurate and have least order among all other 
methods and are therefore most suitable for applica-
tions in linear phase circuits.

sα
Maximum Magnitude Error (in dB)

Matsuda Method  

(All order 4)
Charef Method Carlson Method

Oustaloup Method  

(All order 5)

Modified Oustaloup 

Method  

(All order 5)

s0.1 0.38 0.81 (Order 4) 0.54 (Order 12) 0.22 0.30

s0.2 0.73 0.33 (Order 7) 1.02 (Order 7) 0.45 0.59

s0.3 1.02 0.15 (Order 9) 1.56 (Order 19) 0.69 0.84

s0.4 1.20 0.09 (Order 10) 2.04 (Order 14) 0.95 1.03

s0.5 1.27 0.08 (Order 11) 1.32 (Order 4) 1.22 1.15

s0.6 1.21 0.09 (Order 11) 1.86 (Order 16) 1.52 1.21

s0.7 1.03 0.15 (Order 11) 2.34 (Order 11) 1.84 1.20

s0.8 0.74 0.33 (Order 8) 2.88 (Order 23) 2.20 1.14

s0.9 0.39 0.81 (Order 5) 3.36 (Order 18) 2.58 1.03

s0.25 0.88 0.22 (Order 8) 1.21 (Order 6) 0.57 0.72

s0.75 0.89 0.22 (Order 9) 2.53 (Order 10) 2.02 1.18

Table 5. Maximum Magnitude Error comparison between proposed FOD sα, (α∈([0.1:0.1:0.9] and 1/4, 3/4)) 
in the FB [10-2, 102 ] with four different methods

Table 6. Maximum Phase Error comparison between proposed FOD
FOD sα, (α∈([0.1:0.1:0.9] and 1/4, 3/4)) in the FB [10-2, 102 ] with four different methods 

sα
Maximum phase Error (in degrees)

Matsuda Method  

(All order 4)
Charef Method Carlson Method

Oustaloup Method  

(All order 5)

Modified Oustaloup 

Method  

(All order 5)

s0.1 1.79 5.85 (Order 4) 7.06 (Order 12) 4.57 2.22

s0.2 3.40 2.24 (Order 7) 13.95 (Order 7) 9.15 4.06

s0.3 4.72 1.04 (Order 9) 21.01 (Order 19) 13.72 5.54

s0.4 5.58 0.64 (Order 10) 27.90 (Order 14) 18.25 6.54

s0.5 5.94 0.56 (Order 11) 30.31 (Order 4) 22.77 7.03

s0.6 5.75 0.65 (Order 11) 37.38 (Order 16) 27.26 7.01

s0.7 5.02 1.05 (Order 11) 44.26 (Order 11) 31.72 6.52

s0.8 3.78 2.24 (Order 8) 51.32 (Order 23) 36.16 5.61

s0.9 2.08 5.85 (Order 5) 58.21 (Order 18) 40.57 4.39

s0.25 4.11 1.48 (Order 8) 17.25 (Order 6) 11.44 4.86

s0.75 4.46 1.49 (Order 9) 47.56 (Order 10) 33.94 6.11
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4. IMplEMENTATION OF FOD

The proposed Matsuda method based fractional or-
der differentiators listed in Table 1 are developed us-
ing the CFE formula given in Eqn. 4. The frequency re-
sponse plots and the maximum magnitude and phase 
error plots of these s-domain models are generated 
using MATLAB software. In this section RC circuits of 
these s-domain models are created using partial frac-
tion expansion formula given in Eqn. 9 and the results 
verified using OrCAD Capture CIS circuit simulator.

4.1. RC (RESISTOR CApACITOR)  
 CIRCUIT MODEl

The integer order function of FOD for the FB [ωL ωH] 
rad/s is converted into partial fraction expansion form 
as follows [39]: 

(9)

The objective here is to develop an RC model of the 
FOD, analogous to the circuit of Fig. 19. The circuit is 
having one resistor and cascaded RC sets connected in 
parallel [39]. The RC sets count is dependent upon the 
number of poles of the integer order function. The re-
sultant admittance of the circuit is [39]

Comparing (9) and (10),

(10)

(11)

Fig. 19 becomes the equivalent circuit of FOD.

Fig. 19. RC circuit model

4.2. SCAlING

Once an RC model of FOD is generated in one FB, the 
conventional method used to generate the RC model 
for the same FOD in another FB was to start from scratch 
i.e. first develop the integer order approximation in the 
desired FB and then find the values of R & C. But scaling 
is a technique in which this repetition of procedure is 
not required. Directly from the RC model of FOD first 
developed in the chosen FB, the models in other bands 
can be obtained as explained in this section. In case if 
it is desired to change only the magnitude of FOD and 
not the FB, magnitude scaling is also presented here. 
There are three types of scaling, namely: magnitude 
scaling, frequency scaling and magnitude-frequency 
scaling as given in Table 7.

Table 7. Scaling parameters

Scaling Magnitude 
Scaling

Frequency 
Scaling

Magnitude-
Frequency Scaling

Scale factor m k a, b
New Scaled 

values
[R'=R/m,  
C'= mC]

[R'=R,  
C'=C/k]

[R'=aR, 
C'=C/(ab)]

Remark

To shift 
magnitude, 

plot  
up/down

To shift 
magnitude and 

phase plots  
right/left

To simultaneously 
shift magnitude plot 
up/down and phase 

plot right/left

4.3. ONE-TENTh DIFFERENTIATOR s0.1

The first example considered is a one-tenth differ-
entiator s0.1. Matsuda method is used to obtain the ap-
proximated integer order model given as 

(12)

The frequency range is set as 101 to 105 rad/s. For Mat-
suda based AIO transfer function nine frequency points 
are chosen within this range including the end fre-
quencies. Hence the set of frequencies are [(10, 31.62, 
100, 316.22, 1000, 3162.28, 10000, 31622.8, 100000)]. 
Eqn. 12 is transformed into partial fraction expansion 
form first and then the passive elements of the circuit 
are obtained using Eqn. 11.

The values for Matsuda approximated models are: 

Rp=0.9163Ω; 

R1=0.9273 Ω; R2=1.7050 Ω; R3=2.2232 Ω; R4=2.2676 Ω; 

C1=0.0144 mF; C2=0.1440 mF; C3=1.4000 mF; C4=23.300 mF

All the values of R and C are positive. 

These RC values are used to plot the frequency re-
sponse of one-tenth differentiator s0.1. The results ob-
tained using OrCAD Capture CIS simulator is shown in 
Fig. 20. It is seen that the plot exhibits 2 dB/dec rise and 
the phase is approximately 9 deg as desired in the FB 
[101  104 ] rad/s.

Fig. 20. Bode plot of one-tenth differentiator s0.1 in 
the FB [101  104] obtained using RC values based on 

Matsuda method

In this example, frequency scaling is demonstrated 
on Eqn. (12) by changing the FBs. It has been men-
tioned earlier in Section 4.2 that, in case of frequency 
scaling only the capacitance values change. The scaling 
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factor ‘k’  is the frequency value by which the FB is to be 
changed.  All the capacitances in the circuit are divided 
by ‘k’ to obtain the desired response. 

Thus the new values of capacitances for only fre-
quency shift are given as

(13)

Now, choosing k=10, the scaled capacitances ob-
tained for one-tenth differentiator s0.1 in the FB [102 
105 ] are C1

'=1.4475 μF, C2
'=0.0144 mF, C3

'=0.14 mF and 
C4

'=2.33mF.

Similarly choosing k = 103, 106, 109, 1012 and 1015, the 
scaled parameter is derived for the FBs [104 107],[107  
1010], [1010 1013], [1013 1016] and [1016 1019] respectively.

Simulations with scaled capacitances for one-tenth 
differentiator s0.1 are performed and it was observed 
that the frequency response plots were in correspon-
dence to the frequency response plots of ideal one-
tenth differentiator in the subsequent FBs of three-
decade widths.

Fig. 21. Magnitude plots of Matsuda method based 
one-tenth differentiator s0.1 for different FBs obtained 

by scaling of capacitances in the FB of interest

(a)

(b)

(c)

(d)

Fig. 22. (a)-(f ). Phase plots of Matsuda method 
based one-tenth differentiator sα (α=0.1) for 
different FBs [101 104 ], [104 107 ], [107 1010 ],  

[1010 1013 ], [1013 1016] and [1016 1019]  
obtained by scaling of capacitances

(e)

(f )

Figures 21 and 22 show magnitude and phase plots 
of one-tenth differentiator s0.1 for different FBs [101 104 
], [104 107 ], [107 1010 ], [1010 1013 ], [1013 1016] and [1016 
1019] of 3 decades each. The total span of frequency is 
from 101 to 1019, obtained by scaling of capacitances. 

From Fig. 21, it is observed that the responses of s0.1 
differentiator obtained by scaling the capacitances in 
different FBs, match with their ideal responses in the 
FB of interest (i.e. for three decades). In each case the 
slope of the magnitude plot is 2dB/dec (as desired for 
a s0.1 differentiator). It is further observed that there is 
no change in the magnitude when the FBs change. For 
each FB, the phase plots are shown in Fig. 22 (a-f ). 

It is again clear that the phase is approximately 9° (as 
desired for a s0.1 differentiator) in the region of interest 
for the whole range with a maximum error of 1.8° and 
0.8° in the ranges [101 104 ] and [102 104] rad/s respec-
tively in each plot. Separate subplots have been pur-
posefully shown so as to validate the results.

4.4. SEVEN-TENTh DIFFERENTIATOR s0.7

The Matsuda method is used to develop integer or-
der approximations of s0.7 in the FB [10-2 102]. The ap-
proximation is given in Eqn. 14.

(14)

Eqn (14) is then transformed into partial fraction ex-
pansion form. Since the order of the approximation is 4, 
the number of circuit elements required as per Fig. 19 is 
nine (five resistances and four capacitances). 

The values of the circuit elements obtained for Mat-
suda based AIO transfer functions are: 

Rp=98.0392 Ω; 

R1=10.6mΩ; R2=298.5m Ω; R3=1.9869 Ω; R4=11.1859 Ω; 

C1=277.7 mF; C2=363.7 mF; C3=738.2 mF; C4=1.9393 mF

Using these RC values, the circuit is simulated with 
input voltage as 1V ac. The magnitude and phase plots 
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of seven-tenth differentiator s0.7 is shown in Fig. 23. It is 
observed that the magnitude and phase values as ob-
tained from the plot for all the frequency points in the 
chosen FB are very close to their corresponding ideal 
values in the whole FB.

Fig. 23. Bode plot of seven-tenth differentiator s0.7 
in the FB [10-2  102 ] obtained using RC values based 

on Matsuda method

The analysis for magnitude scaling is performed on 
the Matsuda model.

Now, if it is desired to change the magnitude (gain) of 
the FOD, magnitude scaling is applied. The scaling fac-
tor ‘m’ depends upon the desired change in magnitude. 
For an ‘A’ dB rise or fall in magnitude, the scaling factor 
is obtained as follows: 

(15)

(16)

Correspondingly all resistances are divided by factor 
‘m’ and all capacitances are multiplied by factor ‘m’. 

Thus, new values of resistances and capacitances for 
magnitude shift are given as 

(17)

The following two cases are considered for simulations 
on Matsuda approximated seven-tenth differentiator: 

Case 1: 14 dB rise in magnitude

The scaling factor ‘m’ is calculated as 5.01187. The 
scaled values of resistances and capacitances are 

Rp=19.56 Ω; 

R1=2.1149 mΩ; R2=59.5586 mΩ; R3=396.439 mΩ; R4=.2318 Ω; 

C1=1.3917 F; C2=1.8228 F; C3=3.6997 F; C4=1.7195 F

Case 2: 25 dB fall in magnitude

The scaling factor ‘m’ is calculated as 0.056234. The 
scaled values of resistances and capacitances are 

Rp=174.34 KΩ; 

R1=188.84 mΩ; R2=5.3081 Ω; R3=35.33 Ω; R4=198.91 Ω; 

C1=15.616 mF; C2=20.45 mF; C3=41.51 mF; C4=109.054 mF

It can be seen that, all the values of R and C are positive.

Figure 24 shows the frequency response plot of sev-
enth-tenth differentiator for different two different scal-
ing factors. It can be seen that the magnitude plot is 
shifted up by 14 dB and down by 25 dB in the entire FB for 
Case 1 (red line with diamond shapes) and Case 2 (blue 

line with triangle shapes) respectively as desired. There is 
no change in the phase plots.

Fig. 24. Magnitude plots of Matsuda method based 
seven-tenth differentiator s0.7 for different scaling 

factors

Similar simulations were performed for other FODs 
of order (α∈([±0.1:±0.1:±0.9] and ±1/4, ±3/4)) (models 
presented in Table 1) with all RC elements having posi-
tive values.

5.  CONClUSION

In this paper, we have proposed s-domain stable 
models of f-o operator sα developed using continued 
fraction expansion technique, popularly known as Mat-
suda method. The findings of the parameter sensitivity 
analysis are as follows: the parameter of importance is 
n, the number of frequency points within the FB of in-
terest. It is observed that the selection of ‘n’ is directly 
proportional to the order of the approximated integer 
order transfer function and that the approximation is 
non-causal for odd values of n in case of FOD. A detailed 
frequency analysis is performed and it is seen that for 
the models proposed in our work, the error is less. Also, 
these models are most suitable for linear phase circuits 
as the phase response is almost flat in desired FB. In 
the Matsuda approximation method, if the number of 
frequency points chosen is n ≥ 13, the phase response 
shows linear behaviour throughout the desired FB. An 
important point worth mentioning here is that the 
order of the approximated transfer function does not 
depend on the order of the fractional operatorα. For 
the proposed model’s direct realization in hardware 
is possible for f-o control purposes as the order is less 
and accuracy is high. In order to validate the proposed 
models so that they can be used for realization pur-
poses, a structure with passive elements is designed 
and results of one tenth and seven tenth differentiator 
presented. Similar results were found for other FODs 
of order α(α∈([±0.1:±0.1:±0.9] and ±1/4, ±3/4)) (mod-
els presented in Table 1) with all RC elements having 
positive values. This shows that negative impedance 
converter is not required and also inductors, which 
would actually make the system bulky have not been 
used in circuit realization. This reduces the complexity 
of hardware realization. Another advantage of this de-
sign procedure is that there is only one junction other 
than reference junction. The scaling relations of R and 
C have been developed for smooth transition from one 
FB to another. Simulations were performed with scaled 
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parameters and it was found that the magnitude and 
phase response matched 20α dB/decade and 90α de-
grees respectively.
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