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Abstract – The growing need for managing extensive dynamic datasets has propelled graph processing and streaming to the 
forefront of the data processing community. Given the irregularity of graph workloads and the large scale of real-world graphs, 
researchers face numerous challenges when designing high-performance graph processing and streaming systems, due to the sheer 
volume, intricacy, and continual evolution of graph data. In this paper, we highlight the challenges related to two vital aspects within 
Graph Processing Systems that significantly impact the overall system performance: 1) the graph storage, encompassing the data 
structures storing vertices and edges, and 2) graph mutation protocols, referring to the ingestion and storage of new graph updates, 
such as additions of edges and vertices. Our paper provides a practical taxonomy of techniques designed to improve the efficiency 
of graph storage and mutation, by reviewing state-of-the-art systems and highlighting the challenges they face in offering a good 
performance tradeoff for read, write, and memory consumption. Consequently, this enables us to highlight overlooked aspects of 
performance, that are essential for real-world applications, such as the lack of mutation protocols for graph properties and auxiliary 
graph data, lack of configurability and cross-platform evaluation of solutions for graph processing and streaming.
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1.  INTRODUCTION

Graph processing technology is continually advanc-
ing and thriving due to the distinctive capacity of 
graphs to model intricate relationships and dependen-
cies within data, making them ideal for various con-
temporary applications. Notable graph applications 
include Knowledge Graphs (KG) [1] used in search en-
gines, personal assistants, and recommendation sys-
tems; Graph Neural Networks (GNNs) [2] employed in 
AI tasks such as node classification, link prediction, and 
graph classification; and real-time graph analysis for 
streaming data from platforms like Twitter and finan-
cial transactions.

Given the extensive use of graphs, there is an increas-
ing demand for efficient management and analysis. This 
demand has spurred the creation of graph processing 

systems and databases like Neo4j [3], which are adept 
at storing, analyzing, and streaming large graph datasets 
due to their scalability, real-time processing capabilities, 
and proficiency in handling complex relationships.

An ideal graph processing system should excel in an-
alytics performance, provide fast mutations, and exhib-
it low memory consumption, regardless of mutation 
operations. However, these systems encounter several 
challenges inherent to graph processing and stream-
ing. These challenges include the varying graph char-
acteristics, the memory-intensive graph algorithms, 
the access patterns that cause latency, and the continu-
ous evolution of graph topology and properties [4]. 

To understand these challenges, it is important to 
recognize that among the crucial software design ele-
ments are the graph data structure, which is responsi-
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ble for storing vertices and edges, and the graph muta-
tion protocols, such as additions or deletions of vertices 
and edges. While most of the optimization techniques 
in the literature stem from the data structures research 
community, there is a lack of research on their practical 
applicability within graph workloads. 

Our research contributes by providing a practical tax-
onomy of techniques aimed at enhancing the efficien-
cy of graph storage and mutation. These techniques in-
clude the optimization of the memory layout of graph 

data structures, compression, partitioning, batching 
techniques, changeset-based updates with delta maps 
and multi-versioning to improve the update-friendli-
ness of classic data structures such as the Compressed 
Sparse Row (CSR) [5]. Furthermore, our analysis delves 
into the performance claims of existing literature on 
high performance, unveiling persistent challenges in 
read, write, and memory performance. This allows us to 
shed light on research gaps and overlooked aspects of 
performance crucial for real-world scenarios. 

Fig. 1. Conceptual framework of our review

We present the background in Section 2 of our study. 
Second, we discuss our research methodology and re-
search questions in Section 3 before presenting our re-
view and analysis in sections 4 and 5. Finally, we discuss 
our findings in section 6, present the related work in 
section 7, and then present our future work and con-
clude in section 8.

2. BACKGROUND & CONTEXTUALIZATION

A graph is defined as a mathematical representation 
comprising vertices (nodes) and edges, which rep-
resent entities and the relationships between them, 
respectively. The volume, velocity, and variety of big 
data [6-8] that come from storing and processing large 
graph data, pose unique challenges in the field of com-
puter science and data processing. 

Graph technology, including graph processing sys-
tems and graph databases like Neo4j [3], emerges as a 
suitable approach for storing, analyzing and streaming 
big graph data, due to its scalability, real-time processing 
capabilities, and ability to handle complex relationships. 

These GPS store graph data (i.e., graph topology and 
properties) in containers using data structures, such 
as adjacency lists, edge lists, or matrices [5]. They also 
provide algorithms for running analytic workloads and 
queries as well as updating graphs. These systems use 
combinations of high-performance data structures and 
update protocols to achieve their target performance. 

They take advantage of hardware resources such as 
parallelism and Distributed machines to address the 
scalability challenge of processing and streaming large 
graphs efficiently. 

From our research, it became evident that graph pro-
cessing and streaming systems encounter three major 
challenges in efficiently storing and updating graphs 
which are as follows.

Challenge 1. Many real-world situations can be un-
derstood via the lens of scale-free networks. These 
graphs have a power-law distribution of degrees and 
a low density [9], with many vertices having very few 
or even zero degrees. The Internet and other social 
networks are two common examples of such graphs. 
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When designing systems, however, it might be diffi-
cult to account for the skew (degree variation) of these 
graphs. In reality, additional memory and processing 
power (RAM, CPU) may be needed to process vertices 
with higher degrees.

Challenge 2. The large size of graph data and access 
patterns of graph algorithms are important factors in 
the practical applicability of graph systems in produc-
tion environments. Essentially, the memory-intensive 
nature of graph algorithms and their access patterns is 
one of the primary causes of the latency in graph com-
putations. For instance, the PageRank algorithm [9] re-
quires a large amount of input/output (I/O) operations 
to main memory and random accesses when iterating 
over vertices and edges in the graph, causing a lot of 
cache misses [10] and more slowdown

Challenge 3. The velocity characteristic of big data 
makes processing data more challenging where large 
amounts of graph data are generated rapidly and need 
to be added to graphs as new relationships in real-time. 
This is handled by stream processing systems, closely 
associated with real-time processing, involving pro-
cessing data as it is created [11]. 

In summary, big data’s volume, velocity, and variety 
pose challenges for traditional data processing meth-
ods including the storage, mutation and processing of 
graph data sets. 

3. METHODOLOGY

There is a growing body of literature in the context of 
processing and streaming big dynamic graphs. In our 
paper, we aim to give a global overview of the different 
techniques used by researchers to improve the perfor-
mance of graph processing systems and streaming.

In an attempt to give this overview, we narrowed 
the scope of this review to cover literature published 
over the past 16 years. We define a set of strings de-
rived from keywords related to our research. The initial 
keywords are Graph, Analytics, Processing, Storage, 
Streaming and Mutation. We then use combinations 
to form strings to search for relevant papers on IEEE 
Xplore, ACM Digital Library and Google Scholar. We 
compile our database of around 97 prominent publica-
tions, we exclude some papers as they are out of our 
scope (e.g., incremental computation and graph data-
base systems [12]).

With the collected papers, we note the following 
techniques that are used generally in the literature, 
which include:

•	 The optimization of graph data structures for the 
storage of dynamic graphs

•	 The design of parallel algorithms to execute graph 
analytics and queries efficiently on dynamic graphs

•	 The design of high-level graph languages to ex-
press and execute graph queries

•	 The implementation of algorithms for Distributed 
processing of graphs

•	 The design of efficient graph mutation protocols 
for fast graph updates

We focus on the graph representation in memory 
and the algorithms for graph updates as shown in Fig. 
1 and Table 1. 

Table 1. Analysis dimensions and their 
corresponding sections in this paper

Dimension Description RQ RQ Section

Graph 
Representation

The data structures to store 
the graphs RQ1 Sec. 4

Memory 
Consumption

The memory footprint of 
the graph represented in 

physical memory

RQ2, 
RQ3 Sec. 4 & 5

Graph Mutation
The implementation of graph 

mutations: in-place, delta 
maps, snapshots

RQ4 Sec. 5

Performance 
Optimization

The process of modifying 
a system to improve its 

functionality, thus making 
it more efficient in read and 

updating workloads

RQ2, 
RQ3, Sec. 4 & 5

Parallelism 
& Hardware 
Resources

The underlying architecture 
of systems such as multi-

core, CPU Cache and 
Distributed Systems   

RQ2, 
RQ3, Sec. 4 & 5

4. TAXONOMY OF TECHNIQUES FOR EFFICIENT 
GRAPH REPRESENTATION

In this section, we give an overview of techniques 
for optimizing classical graph data structures for high 
analytic and update performance as well as minimizing 
the memory footprint. We organize this section as the 
following. First, we discuss the performance of classi-
cal data structures, to identify their limitations. Then we 
analyze the different techniques available for research-
ers to optimize them, namely: optimizing the memory 
layout of the data structures (Section 4.2), compression 
(Section 4.3), using memory allocator software (Section 
4.4) and partitioning (Section 4.5). Finally, we present a 
summary in Table 2.

4.1. REPRESENTATIvE GRAPH CONTAINER

In the following, We provide descriptions of classical 
graph data structures and we discuss the costs of per-
forming graph mutations on each structure.

Adjacency Matrix

It holds a square matrix M with dimensions VxV, 
where V stands for the graph's vertex count. To indicate 
a directed edge from a source vertex vs to a destina-
tion vertex vd, the cell M[vs][ vd] must be assigned a 
non-zero value. While this method simplifies edge ma-
nipulation, it's inefficient for sparse graphs due to high 
memory usage and suboptimal analytics performance. 
Moreover, adding or removing vertices requires com-
pletely recreating the matrix.
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Adjacency Lists

This structure stores vertex information within a 
node list, with each element pointing to a list of its 
neighbours. It consumes less memory compared to an 
adjacency matrix because it only stores existing edg-
es. The typical approach involves using linked lists for 
these connections, yet there are more efficient alter-
natives designed for better caching. For instance, vari-
ants like Blocked Adjacency Lists use simpler arrays for 
representing adjacencies [13] or utilize linked lists with 
fixed-size edge-containing buckets.

CSR (Compressed Sparse Row)

This representation, widely used for sparse graphs, 
condenses adjacencies into primarily two arrays: an 
edge array holding indices of destination vertices from 
the node array. The latter contains offsets to identify 
the beginning and end of the neighbours' list. To find 
the degree of node i, we compute Node_Array[i+1] – 
Node_ Array[i]. However, while this format is efficient 
in many cases, it still faces limitations, particularly in 
contexts where frequent updates occur. Several varia-
tions of CSR (Compressed Sparse Row) have been sug-
gested—such as CSR++ [14-16] —aiming to enhance 
support for quicker structural updates. Further details 
on this topic are discussed in subsequent sections.

4.2. MEMORY LAYOUT AND CACHE 
 AwARENESS

A good memory layout for a graph representation 
refers to the optimal way to arrange the graph data 
in memory to enhance its performance [10], by using 
hardware optimizations such as caching and prefetch-
ing. Moreover, knowing the access patterns of graph 
algorithms and storing graph entities in a specific lay-
out can guarantee both spatial and temporal locality 
for graph data structures and algorithms [14, 17, 18], 
hence better performance. 

By considering these factors, researchers in the graph 
community propose new variants of data structures by 
changing their memory layouts [9, 14, 16, 18, 19]  to op-
timize the performance of graph analytics, queries and 
streaming, and improve their overall efficiency.

Essentially, to remediate the poor cache locality 
of AL, many researchers [13, 20] use bucketing tech-
nique where buckets are used to group edges from 
the same source vertex together, or use linked lists to 
group edges from different source vertices together 
(we elaborate this on Section 5. As we note from the 
evaluation results of works in the literature, there are 
only a few works that provide a thorough sensitivity 
analysis of different variations of their solutions like  
[19, 21]. There is a consensus on the size of the buckets 
which shouldn't be too huge, as it would slow down 
update performance, or too small, as that would cause 
cache misses. Apart from [16] as a pioneer solution for 
dynamic graph storage, we think there is a lack of con-

figurability in systems in the literature and therefore a 
lot of opportunities to tweak existing designs in favour 
of new ones and for different types of workloads. 

Furthermore, since CSR is known for its high cache 
performance and slow update performance, many re-
searchers  [15, 16, 19] opt for it as a main data structure 
for graph analytics and queries, then use an extra data 
structure to store the updates. For instance, to support 
fast updates, LLAMA stores multiple versions of the 
graph in CSR structures. 

Essentially, it implements two variants of CSR, name-
ly performance-optimized (PO) and space-optimized 
(SO), where the former keeps a complete list of edges 
of the same vertex in each version of the graph, and the 
latter only stores fragments of the edge lists for every 
vertex in different snapshots. As the names suggest, 
the PO provides high performance since all the edges 
are stored contiguously but the memory suffers from 
multiple copies of the edge list.

The SO saves on memory; however, it is slower since 
the edge lists are not stored contiguously, and the sys-
tem needs to reconstruct the full adjacency of a vertex 
for read queries. 

Finally, while memory layout techniques predomi-
nantly focus on graph topology, we emphasise the 
criticality of aligning memory layout with storing graph 
properties and auxiliary graph data (e.g., user keys), es-
pecially given the prevalence of graph algorithms deal-
ing with weighted graphs.

4.3. COMPRESSION FOR DYNAMIC GRAPHS

Compression allows for a reduction of the memory 
needed to store data while maintaining its essential 
properties and functionality [22]. It is more efficient in 
graph representation since it allows for better cache 
performance since more data can be loaded in the 
cache and accessed at once by the CPU.

However, despite being a classic technique, there 
appears to be a scarcity of research exploring the ap-
plication of compression techniques within the realm 
of graph updates. Notably, we observed a prevailing re-
liance on Ligra+ [23] within existing systems, attribut-
able to its user-friendly interfaces. Among the notable 
systems claiming high performance in this context are 
Aspen [18], and SSTGraph [24], suggesting a potential 
avenue for further investigation into optimizing graph 
update procedures. 

Aspen stores graph data in compressed purely func-
tional trees, a form of persistent data structure for stor-
ing large graphs. By compressing trees, Aspen solves 
the issue of storing massive graphs (up to 200B edges) 
in machines with just 1TB of RAM by using compres-
sion. Given that Aspen stores edges as integers, it uses 
difference encoding to reduce the size of the edge ar-
rays. However, while this method can significantly re-
duce memory consumption, it still increases the price 
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of encoding and decoding processes, and a penalty 
may be incurred when executing queries or updating 
the graph. 

To remediate this cost, SSTGraph a parallel framework 
designed for the storage and analysis of dynamic graphs, 
is based on the tinyset parallel dynamic set data struc-
ture, which implements set membership using sorted 
packed memory arrays. This allows for logarithmic time 
access and updates, as well as optimal linear time scan-
ning. Compared to systems that use data compression, 
tinyset achieves comparable space efficiency without 
the computational and serialization overhead.

Finally, there is a notable absence of exploration 
into advanced compression algorithms within this do-
main. We propose that the graph processing commu-
nity delve deeper into the challenges associated with 
graph workloads to assess the feasibility and potential 
benefits of implementing sophisticated compression 
algorithms.

4.4. MEMORY ALLOCATORS IN GRAPH  
 STREAMING

A memory allocator is a software component that 
manages the allocation and deallocation of memory 
in a computer program [25]. GPS either develop their 
memory allocators or use out-of-the-box allocator 
libraries to manage their memory allocations and re-
duce memory fragmentation [26]. 

The first approach is used by some systems [20, 21, 
27] where they develop built-in memory managers 
that facilitate the speedy allocation of memory needed 
for applying mutations. For instance, to efficiently per-
form memory reclamation and manage space, Hornet's 
[27] internal memory management uses a B+ tree for 
insertions and deletions to keep track of the available 
blocks of edges. Moreover, when data is duplicated, the 
system uses a load-balancing mechanism to locate the 
freed memory for later usage. 

However, our findings underscore both the lack and 
the potential for smart predictive allocation techniques 
[28], particularly concerning updates within graph pro-
cessing systems. Notably, while reallocation of edges 
commonly employs a predefined factor in existing 
systems, this often results in unnecessary allocation of 
extra space. We posit the feasibility of implementing 
smarter allocators leveraging machine learning meth-
odologies to predict the optimal reallocation factor, 
thus enhancing memory utilization efficiency within 
graph processing frameworks.

The second approach uses memory allocators such 
as Jemalloc [29] and TCMalloc [30], which are widely 
used for their parallel support of memory allocation 
which helps with providing high update throughput. 
Moreover, these allocators use highly efficient algo-
rithms to limit memory fragmentation, which leads to 
better cache locality and lower memory footprint.  

We note a particular system called Metall [31] which 
is a persistent memory allocator that uses the copy-
on-write technique for graph workloads, stores and 
manipulates large graphs at the exascale (billions of 
billions of operations per second), by employing smart 
allocation algorithms like those found in TCMalloc [30]. 
Essentially, Metall employs the use of mmap system 
calls to create memory-mapped files. With mmap, one 
may essentially access the files as if they were RAM, 
since it redirects the data to a virtual memory region. 
Therefore, to offer lightweight multi-versioning, Metall 
makes use of copy-on-write by taking snapshots of the 
graph after ingesting a batch of updates and employ-
ing a file copy method in the filesystems called reflink, 
which permits copy-on-write of data. 

4.5. DYNAMIC DATA STRUCTURE 
 PARTITIONING

Graph data partitioning is the process of dividing 
a large graph into smaller subgraphs [7], called parti-
tions, to enable parallel processing of the graph on 
multiple machines or processors [8]. 

Some GPS systems [32, 33] use partitioning to opti-
mize their performance by introducing several novel 
techniques to scale graph processing on a distributed 
cluster, including partitioning for sequential storage ac-
cess, random distribution of data across the cluster, and 
work stealing for load balancing. These techniques en-
able GPS to handle graphs with trillions of edges, repre-
senting up to 16 TB of input data. However, the research 
on graph mutations using partitioning in a distributed 
system is still premature, and a very small number of ar-
ticles address the challenges that come with it. 

Finally, a single previous study provided an overview 
of graph update types, dynamic graph partitioning, and 
associated challenges [34]. Additionally, [35] did not ad-
dress the performance consequences of partitioning on 
updates, memory, and read operations. Hence, it could 
be beneficial to investigate this aspect further.

Table 2. Summary of the characterization of 
systems included in this study based on their 

techniques for efficient graph storage

Dimension Impact  
on Perf. Implementations

Graph 
Processing 

& 
Streaming 

Systems

Memory 
Layout 

Cache-friendly data 
structures

Blocking, CSR, 
PMA

[15, 17, 19, 
27, 36]

Data 
Compression

 Small memory 
footprint and better 

cache locality

Difference 
Encoding, Bit 

Indexing
[18, 24, 33]

Partitioning 
Distributed 

processing and load 
balancing

Edge-cut, Vertex-
cut [32, 37] 

Memory 
Allocators

 Parallel allocation, 
low memory 

fragmentation, high 
cache performance

Jemalloc, 
TCMalloc, B+ Trees

[14, 16, 20, 
27, 31]  
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5. TAXONOMY OF UPDATE PROTOCOLS FOR 
EFFICIENT GRAPH MUTATION

In addition to the representation of graphs in mem-
ory for graph queries and analytics, a wide range of 
GPS [16, 18, 20, 38] support graph mutation by allow-
ing modifications to the graph's topology by adding or 
removing edges and vertices, as well as modification to 
the graph properties.

Essentially, to achieve that, we identify emerging pat-
terns in the literature where GPS implement different 
techniques that we refer to as update protocols, which 
are different approaches for the ingestion and storage 
of new incoming graph data. 

In the following, and in an attempt to answer our re-
search question, we define the update protocols and 
analyze the different techniques in the literature for 
implementing graph updates and discuss their perfor-
mance implications and limitations. Finally, we present 
a summary in Table 3.

5.1. OvERvIEw OF UPDATE PROTOCOLS

a) Update Ingestion

We categorize the update ingestions depending on 
two criteria: i) How a stream of incoming updates is 
handled right before storing them in the system? (Sec-
tion 5.2), and ii) how a stream of incoming updates is 
handled in the presence of analytical queries (e.g., al-
gorithms, pattern matching, scans ...) (Section 5.3).

First, there are two approaches to ingesting the up-
dates in the GPS: i) Single update queries refer to the 
insertion or removal of a single edge or vertex at a time, 
while ii) batch updates refer to the grouping of the up-
dates in a batch before applying them all at once. More-
over, we extrapolated two modes researchers are explor-
ing for ingesting updates depending on how the graph 
analytics and queries are executed:  in bulk or concur-
rently. Essentially, in the bulk mode, updates and graph 
algorithms are executed sequentially “in phases”. On the 
other hand, in the concurrent mode, updates and graph 
analytics are processed simultaneously [13, 20, 27].

b) Update Storage

When applying the mutations, changes can be applied 
1) in-place (i.e., incorporated into the main structure) or 
2) stored in additional data structures called deltas [16]. 
In-place update is a technique where systems augment 
the traditional graph data structures, by permitting in-
place storage of updates without the costly rebuilding 
of the whole graph data structure. As for the Delta ap-
proach, GPS use update-friendly data structures such as 
Adjacency List or Edge List to quickly store the updates, 
with the additional cost of merging these updates into 
the main read-friendly structure such as CSR. We elabo-
rate on these techniques in Sections 5.4 and 5.5.

5.2. UPDATE INGESTION: SINGLE  
 vS BATCH UPDATES

First, single updates are challenging to support for 
two main reasons. First, in most cases [14, 19, 20] and 
especially in deletion workloads,  the system needs to 
perform a search over the neighbours of a vertex upon 
every edge insertion, which is not possible to do in par-
allel. This makes the system's performance very slow.

Fig. 2. Dynamic graph data structures. A) CSR representation of a graph using PMA to store the edge array. 
B) Adjacencies of a graph are stored in growable arrays with factor x2. C) Adjacencies of a graph are stored 

in a linked list of blocks

Second, depending on the availability of memory, 
systems need to allocate more memory to store the 
new edges [14]. Consequently, the frequent checks 
for memory availability and reallocations cause a large 
overhead, making the single updates very slow.

To remediate the slow single update performance, 
systems [14, 16, 18, 38] opt for batch updates where the 
batch of edge updates is pre-processed.

For instance, the sorting allows grouping all the 
edge updates of a specific vertex, separating deletions 
from insertions, which allows running edge updates in 
parallel for separate vertices. This improves the rate of 
update ingestions. This finding is supported by prior 
research [9, 17, 20] highlighting the effectiveness of 
sorting in optimizing the processing of edge updates.

Moreover, another technique used in batch updates is 
partitioning, which refers to splitting the updates into par-
titions that can be handled in parallel by multiple threads 
simultaneously [32]. This allows for better load balancing 
between parallel threads, especially for skewed graphs. 

Unfortunately, the techniques mentioned above still 
incur large latency overhead as measured by GPS in litera-
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ture [14, 16, 19], and most systems do not offer both single 
updates and batch updates, which is necessary for some 
real-world scenarios where updates are not frequent.

5.3. UPDATE INGESTION &  
 MULTI-vERSIONING: BULK vS 
 CONCURRENT UPDATES 

The approach used by systems [13, 20, 27], to imple-
ment updates using the bulk mode, is a sequential 
approach where updates are held back until queries 
are completed, allowing updates to modify the graph 
while keeping data consistency [39], which ensures 
that the returned results accurately represent the cur-
rent state of the data. 

On the other hand, in the concurrent mode, systems 
may process updates and queries simultaneously. In this 
case, maintaining query consistency can be challenging. 

Systems [14, 17, 20] in the bulk mode, mostly focus 
on supporting high update rates since updates don’t 
have to be delayed by the queries. For instance, STING-
ER achieves an update rate of over 1.8 million updates 
per second on single multi-core machines, by execut-
ing updates in batches and running them in parallel 
without being concerned about concurrent reads. 

Despite the high update throughput, research [18] 
shows that systems that employ the bulk mode have 
limited usage, since in real-world scenarios, graph us-
ers are constantly updating and running analytic que-
ries concurrently. In the case where update/read hap-
pens in phases, this can introduce delays and decrease 
the system's overall performance. 

On the other hand, in the concurrent mode, systems 
may process updates and queries simultaneously. In 
this case, maintaining query consistency can be chal-
lenging . In the following, we review different ap-
proaches used in practice, to allow concurrent updates 
and queries and discuss the challenges researchers 
face and potential research areas for the future. 

Hybrid Store 

A lot of systems [16, 18, 19, 40] implement protocols 
to maintain data coherence and consistency between 
multiple readers and writers through different isolation 
levels, which is similar to traditional database systems.

One way to achieve concurrent analytic workloads 
and update workloads is by creating a hybrid graph 
representation that uses separate data structures [16], 
[19]: one usually referred to as the write-optimised (WO 
Storage) data structure for the incoming updates and 
another read-optimised (RO Storage) structure for stor-
ing the main graph and can be accessed concurrently. 
This way, updates and read workloads would operate 
in parallel on different structures. 

In this category, we cite a notable system LLAMA [16], 
which creates a new delta, a.k.a., snapshot, every time 
the user runs a batch of updates as shown in Fig. 4 B). 

This technique enables readers to have parallel access 
to the previously created snapshots and run analytics 
and queries on the RO store without interfering with the 
newer update queries performed on the WO store. An-
other example is GraphOne [40], which implements a 
hybrid store for snapshots using an adjacency lists (AL) 
store and an edge list (EL) as shown in Fig. 3 A). The AL 
keeps track of a linked list of vertex degrees at various 
points in time using timestamps. 

Concurrency Control

Concurrency Control (CC) is a notable approach we 
extracted from the literature for processing concur-
rent reads and writes in GPS literature. For instance, a 
popular model is the Multiversion Concurrency Con-
trol (MVCC) [19] used by transactional systems such 
as Teseo [19] to achieve Snapshot Isolation. Teseo uses 
timestamps and a reversed chain of images to store the 
original copies of data, showing the items as they were 
before any changes were made (from newest to old-
est). These versions are temporarily kept in the transac-
tion's undo buffers whilst they are being rolled back, 
and then they are garbage collected as soon as the 
transaction is no longer valid (i.e. version pruning). 

However, Teseo and many other systems face chal-
lenges with garbage collection, necessitating its ex-
ecution without disrupting ongoing queries, thereby 
imposing additional costs on performance. We ob-
served the lack of systems addressing the performance 
implications of executing compaction. We deem this 
a critical performance concern as both the execution 
of version pruning and the required resources may be 
hindered by the granularity and frequency of updates.

5.4. UPDATE STORAGE: IN-PLACE UPDATES

 Systems [9, 13, 14, 19, 20] implement in-place up-
dates by designing data structures that are suitable 
for graph updates, where the new entities (vertices 
or edges) can be directly stored in the data structures 
without requiring to reallocate the main data structure 
or to store them in extra data structures. 

The main idea is to leave some space in the data 
structure for the new incoming entities, and in case 
there is not enough space, the data structure should al-
locate extra space suitable for that new entity as shown 
in Fig. 2. In the following, we discuss the popular ap-
proaches to achieve in-place updates.

a) Dynamic Arrays

A lot of systems use growable dynamic [9, 13, 14] 
where edge insertions are performed by directly stor-
ing the new edges in dynamic growable edge arrays. 
Systems employing Adjacency Lists are more prone to 
use this technique as shown in Figs. 2 B) and C).

NetworKit [13] performs edge insertions by directly 
storing the new edges in dynamic growable edge ar-
rays and reallocating twice the initial array size when 
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there is no memory space available. The same method 
is employed by Madduri et. al. [9] except that the size 
of the new edge array is defined in terms of a customiz-
able factor rather than a fixed factor of 2. 

Subsequently, when employing dynamic arrays, the 
amortised cost for updates is O(1) for insertions and 
O(deg V) for deletions. However, the memory footprint 
can be quite substantial as the reallocations leave un-
used space, when there are no updates. As mentioned 
above, using smart memory managers can help keep 
track of unused space and perform a better strategy 
for pre-allocation while maintaining a memory foot-
print comparable to static graph data structures. We 
also highlight the importance of knowing the pattern 
of the streams, to estimate the size of the reallocation. 
We predict that machine learning techniques are a pos-
sible venue for research that the community of graph 
processing and streaming should explore to propose 
innovative mechanisms to tackle these challenges in 
real-world graphs. For instance, by learning the pat-
terns of the creation of relationships in social networks, 
e.g., a post that goes viral on social media might bring 
many followers in a short amount of time. 

b) PMAs

Packed Memory Arrays (PMAs) are another classic 
technique in data structures that allows in-place up-
dates by maintaining dynamic sets of sorted elements. 
It is based on storing an array of sizes larger than the 
number of elements N and leaving gaps between the 
elements to allow for new insertions with a moderate 
cost of O(lg²(N)). However, PMA relies on extra compu-
tation using an implicit balanced tree that keeps track 
of gaps within regions of the array as shown in Fig. 2 A).  
Essentially, when the number of gaps is too small or too 
large, systems are required to perform a re-balancing 
of the tree to rearrange the gaps in the array. This may 
slow down the update performance and delay the ana-
lytic workloads.

For instance, [17] developed a variant of CSR based 
on PMAs called PCSR, which provides efficient single-
threaded mutations by leaving space at the end of 
each adjacency list. Moreover, multi-versioning sys-
tems like Teseo use PMAs to store multiple versions of 
the graph. By using PMAs, Teseo updates graph data in 
place, hence preserving the contiguous memory place-
ment of the data. Ultimately, PMAs have gained trac-
tion within dynamic graph representations [19, 41, 42]. 
However, the expected improvement in read perfor-
mance associated with PMAs does not justify the over-
head incurred by tree rebalancing. Systems employing 
dynamic arrays [21] outperform PMAs in terms of up-
date performance while supporting in-place updates.  

c) Deletions

Regarding the deletions of graph entities, there are 
two main approaches: physical deletions and logical 
deletions. In the latter, systems [14, 16] enhance ver-
tex and edge data with flags that can be set if they are 

removed, which allows for logical deletions of entities. 
The disadvantage of this method is that it requires 
changing the graph algorithms to account for deleted 
entities during traversals, which can make them slower, 
due to extra branches in the algorithm.

On the other hand, when entities are deleted physi-
cally from memory, the corresponding slots in the data 
structure are left unfilled, which results in a higher 
storage cost than logical deletion. Systems [16, 19, 40] 
employ compaction, which means reconstructing the 
graph without assigning space for the removed enti-
ties, to decrease unnecessary space after numerous 
physical deletions. This operation is very costly as it re-
quires a whole rebuild of the graph, however, it helps 
reduce memory fragmentation and, therefore better 
read performance.

5.5. UPDATE STORAGE: DELTA UPDATES

One way to extend CSR to support fast updates is 
by employing deltas, which are separate structures to 
store only the new changes in vertex/edge logs. For in-
stance, edge lists [16, 40] are particularly well suited for 
storing updates as deltas, as we can append new edges 
in O(1) time and space. They also help to maintain the 
temporality/history of updates, since the edges are 
stored in the order they arrive.

In practice, to support deltas, systems [16, 18, 19, 40] 
tend to design separate structures as read-optimized 
stores (usually CSR-based) and write-optimized stores 
which practically refer to a delta. However, the down-
side of storing updates in delta maps or edge lists is 
two-fold. First, maintaining separate structures for 
each batch of updates increases the system’s memory 
requirements, as a frequent stream of graph updates 
results in many deltas. Second, analytics performance 
is degraded because they need to read from both the 
original structure and the deltas and reconcile them.

For example, LLAMA creates a new delta (i.e., snap-
shot) once the write-optimized store has been “flushed” 
into the read-optimized store. This might be practical 
for multi-versioning, but creating new deltas too fre-
quently often results in out-of-memory errors as shown 
in [21] which can be fatal for real-time systems. 

Finally, to remediate this problem, these systems per-
form compaction on the frequently created data struc-
ture into one main structure. For this purpose, several 
authors [16, 19, 40] have attempted to design their ver-
sion of compaction. Throughout our research, we came 
across a multitude of references to the same operation, 
such as “archiving,” “merging,” and “building.” 

GraphOne [40] stores newly added edges in a circu-
lar log and uses adjacency lists as the main read-opti-
mized store, which provides a coarse-grained snapshot 
method as shown in Fig. 3 A). First, GraphOne estab-
lishes an edge log cutoff for the "transfer" of the edges 
from the buffer to the base structure to preserve the 
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separate store for the update operations and achieve 
good analytic performance. Second, in some cases, 
some data may be kept in both stores for a predeter-
mined amount of time to maximize efficiency, this is 
known as data overlap. However, when there is a lot of 
duplication, it may use more RAM than usual.

It is shown in [19] that GraphOne's iterator architec-
ture is to blame for its subpar performance in reading 
workloads. Point lookups are not possible because of 
the high space and time costs associated with analytic 

performance, which are incurred whenever the system 
iterates over vertices or edges and copies neighbours 
into an intermediate buffer.

In summary, compaction is computationally demand-
ing, often zeroing the mutability performance benefits 
of these structures. For users who wish to operate on the 
most up-to-date version of the graph data, we believe 
that designing a system for in-place graph mutations is 
a better option to achieve higher analytics and update 
performance with lower memory requirements.

Fig. 3. Delta Updates, A) Hybrid storage using AL main storage and Edge List as delta. B) Snapshot 
mechanism as seen in LLAMA to access multiple versions of the graph. C) Delta structures stored in PMAs 

used in Teseo to support concurrent read and writes

Table 3. Summary of the characterization of 
systems included in this study based on their 

techniques for efficient graph updates

Technique Category  Advantages  Systems

Single Upd. Ingestion
Fine granularity of updates 
& Requires more CPU and 

memory
[14, 17, 20]

Batch Upd.  Ingestion
 Fast update, load 

balancing Requires extra 
pre-processing 

[14, 16, 18, 
40]

Upd. in Bulk  Ingestion
Fast update throughput, 

fast analytics & No 
concurrency

[9, 14, 17, 
20, 27]

Concurrent 
Upd.  Ingestion

Parallel updates and 
reads& High memory 

footprint, slow updates

[16, 18, 19, 
40]

In-place 
Upd. Storage Low memory footprint, fast 

analytics & Slow updates
[9, 13, 14, 
17, 19, 42]

Delta Upd. Storage

Multi-versioning, fewer 
resources & Slow analytics, 

high memory footprint 
slow updates 

[16, 18, 40]

6. RESULTS & DISCUSSION

In the following, we summarize key insights about the 
50 research on high-efficiency graph representation and 
51 update protocols. Table 4 presents a classification of 
the most popular graph systems reviewed in our paper, 
based on the dimensions discussed previously. 

a) Configurations and Hybrid Representations

Based on the findings presented in Table 4, it is evi-
dent that numerous systems heavily rely on the Com-
pressed Sparse Row (CSR) format due to its cache-
friendly nature and reduced memory footprint. Howev-
er, these systems often incorporate optimizations such 
as hardware enhancements or distributed computing 

frameworks [37], and supplementary data structures to 
manage updates efficiently, but there are limited de-
signs for inherently fast data structures that support 
fast in-place and single updates while maintaining low 
memory footprint and high read performance.

Researchers can take advantage of the power of ma-
chine learning, to have more adaptable configurations 
depending on the workload. For instance, in the case 
of social networks, we can use learning algorithms to 
estimate the factor by which we can grow our dynamic 
arrays. This means that for a celebrity account, there are 
higher chances of gaining more followers than a nor-
mal account, therefore we can choose a higher factor 
(x4, x5) to pre-allocate the edge lists while keeping an 
x2 factor for normal accounts to maintain a low memo-
ry footprint of our dynamic graph.

b) Cross-platform implementation  
 and evaluation

We highlight the prevalence of shared-memory sys-
tems, underscoring the ongoing necessity for advance-
ments in this domain to attain comparable perfor-
mance levels to distributed systems. Moreover, within 
the realm of distributed systems, there exists a notable 
lack of research on graph streaming, particularly con-
cerning protocols tailored for update ingestion and 
storage in distributed infrastructures, or at least evalua-
tion of the data structures in Distributed environments 
to showcase the advances in that area.

This observation implies that while the examined 
systems may ensure performance within specific hard-
ware configurations, they lack assurance regarding the 
portability of their data structures across different in-
frastructures. Thus, there arises a demand for solutions 
which can seamlessly transition between single-ma-
chine and distributed environments. 



Table 4. Summary of reviewed systems. Infra.: 
the supported architecture either Single Machine 
(SM) or Distributed (Dist); DS: data structures (CSR, 

Adjacency List, Tree); SU: support for single updates; 
Batch: support for batch updates; MV: support for 

multi-versioning; Compact: support for compaction; 
Up. Store: the update storage, either In-place (IP) 

or Delta (D); Scans: performance in read workloads; 
Mem: memory consumption; Up. Perf.: performance 
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BGL[43] SM AL + - - + IP - - +

PGX.SM[36] SM CSR - + + - D + + -

Ligra[44] SM CSR - - - - X + + -

GraphLab[45] Dist CSR - - - - X - + -

PGX.D[37] Dist CSR - + + - D + + -

STINGER[20] SM 
Dist AL + + - - IP - - +

Hornet[27] GPU AL + + - - IP - + +

Madduri et. 
Al. [9] SM AL - + - + IP - - +

PCSR[42] SM CSR + - - + IP + - +

LLAMA[16] SM CSR - - + + D + - -

Metall[31] SM AL - + + + D - + +

GraphOne[40] SM AL+EL + + + + D - + +

Aspen[18] SM Tree - + + + IP - + +

Teseo[19] SM Tree + + + + IP + - +

c)  Achieving optimal performance trade-offs

We have shown that the choice of the optimization 
techniques, in either graph representation or updates 
depends on the specific characteristics of the graphs, 
the types of workloads, and the constraints of the ap-
plication environment. Most systems tend to improve 
on an aspect of performance, either read performance, 
updates throughput or memory consumption, and 
to barely achieve the best trade-off between all three 
of these aspects. For instance, the majority of the sys-
tems that we reviewed struggle to support several ver-
sions of the graph because of high memory cost, and 
graph compaction is necessary to reduce the amount 
of space needed for changes, however, this operation 
requires expensive computation and slows down the 
performance of the system.

d)  Overlooked metrics and benchmarks

While memory layout techniques typically concentrate 
on graph topology, we stress the importance of align-
ing memory layout with the storage of additional graph 
data, such as user keys and properties. This alignment 
becomes particularly critical due to the widespread use 
of graph algorithms dealing with weighted graphs.

Furthermore, there is a notable emphasis on proto-
cols for updating graph topology. However, it is infre-
quent to find comprehensive implementations and 
evaluations of performance when considering other 

graph data elements, such as graph properties, reverse 
edges, or intermediary results in graph algorithms. 

7. RELATED wORK

The prevalence of graph processing and streaming in 
various domains has prompted researchers to conduct 
reviews to understand how graphs are used in practice 
[5], [35]. 

Graph Systems and Databases. Angles et al. [46] 
provide a comprehensive survey of graph database 
models, focusing on data structures, query languages, 
and integrity constraints. [5] review graph systems and 
classifies them based on their infrastructure. Further-
more, Besta et. al. [35] provide descriptions and analy-
sis of different approaches for representing graphs in a 
streaming context. However, they do not analyze the 
performance trade-offs of different approaches for 
graph storage and mutation. 

High-Performance Graph Representations. [47] 
propose theoretical frameworks for the study of data 
structure designs and the generation of new structures 
to better serve specific types of workloads. They high-
light the applicability of their abstractions for key-value 
stores, however, they do not study the compositions 
for the graph model.

Moreover, Wheatman et al. [42] review existing graph 
representations such as CSR and adjacency lists. They 
provide a theoretical study of the time complexity of 
graph access operations as well as update operations 
on such data structures. However, they do not review 
how systems in the literature aim to optimize the per-
formance of these graph data structures.

8. CONCLUSION

In this paper, we discuss the increasing focus within 
the literature on optimizing classical graph data struc-
tures to achieve high analytical and update perfor-
mance while minimising memory usage. We provide 
an overview of techniques available to researchers and 
developers, highlighting their roles in enhancing graph 
processing and streaming. Additionally, we examine 
update protocols and the performance implications of 
different designs. Our main findings reveal challenges 
faced by systems offering multi-versioning in terms of 
compaction costs, the inadequate evaluation of aux-
iliary data structures like reverse edges and multiple 
graph properties, and the need for more advanced 
partitioning and compression algorithms for dynamic 
graph data structures. Furthermore, our survey leads 
us to suggest that systems cannot provide high perfor-
mance for scans, updates and memory consumption 
simultaneously. As a future scope, we aim to develop 
a framework for graph processing and streaming that 
would address the gaps in the research literature, es-
pecially tackling the expensive cost of compaction for 
multi-versioning. Furthermore, we aim to extend our 
study by delving into algorithmic details of compres-
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sion and partitioning for graph mutations and, per-
forming quantitative analysis and benchmarks.
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