
High-Performance Graph Storage and Mutation
for Graph Processing and Streaming: A Review

19

Review Paper

Abstract – The growing need for managing extensive dynamic datasets has propelled graph processing and streaming to the
forefront of the data processing community. Given the irregularity of graph workloads and the large scale of real-world graphs,
researchers face numerous challenges when designing high-performance graph processing and streaming systems, due to the sheer
volume, intricacy, and continual evolution of graph data. In this paper, we highlight the challenges related to two vital aspects within
Graph Processing Systems that significantly impact the overall system performance: 1) the graph storage, encompassing the data
structures storing vertices and edges, and 2) graph mutation protocols, referring to the ingestion and storage of new graph updates,
such as additions of edges and vertices. Our paper provides a practical taxonomy of techniques designed to improve the efficiency
of graph storage and mutation, by reviewing state-of-the-art systems and highlighting the challenges they face in offering a good
performance tradeoff for read, write, and memory consumption. Consequently, this enables us to highlight overlooked aspects of
performance, that are essential for real-world applications, such as the lack of mutation protocols for graph properties and auxiliary
graph data, lack of configurability and cross-platform evaluation of solutions for graph processing and streaming.

Keywords: Graph Processing; Graph Streaming; Data Structures; Mutation; Performance

Volume 16, Number 1, 2025

Soukaina Firmli*
Mohammed V University in Rabat
Ecole Mohammadia d’Ingénieurs, SIP Research Team
Rabat, Morocco
soukaina.firmli@gmail.com

Dalila Chiadmi
Mohammed V University in Rabat
Ecole Mohammadia d’Ingénieurs, SIP Research Team
Rabat, Morocco
chiadmi@emi.ac.ma

Received: May 9, 2024; Received in revised form: September 13, 2024; Accepted: September 16, 2024

*Corresponding author

1. INTRODUCTION

Graph processing technology is continually advanc-
ing and thriving due to the distinctive capacity of
graphs to model intricate relationships and dependen-
cies within data, making them ideal for various con-
temporary applications. Notable graph applications
include Knowledge Graphs (KG) [1] used in search en-
gines, personal assistants, and recommendation sys-
tems; Graph Neural Networks (GNNs) [2] employed in
AI tasks such as node classification, link prediction, and
graph classification; and real-time graph analysis for
streaming data from platforms like Twitter and finan-
cial transactions.

Given the extensive use of graphs, there is an increas-
ing demand for efficient management and analysis. This
demand has spurred the creation of graph processing

systems and databases like Neo4j [3], which are adept
at storing, analyzing, and streaming large graph datasets
due to their scalability, real-time processing capabilities,
and proficiency in handling complex relationships.

An ideal graph processing system should excel in an-
alytics performance, provide fast mutations, and exhib-
it low memory consumption, regardless of mutation
operations. However, these systems encounter several
challenges inherent to graph processing and stream-
ing. These challenges include the varying graph char-
acteristics, the memory-intensive graph algorithms,
the access patterns that cause latency, and the continu-
ous evolution of graph topology and properties [4].

To understand these challenges, it is important to
recognize that among the crucial software design ele-
ments are the graph data structure, which is responsi-

20 International Journal of Electrical and Computer Engineering Systems

ble for storing vertices and edges, and the graph muta-
tion protocols, such as additions or deletions of vertices
and edges. While most of the optimization techniques
in the literature stem from the data structures research
community, there is a lack of research on their practical
applicability within graph workloads.

Our research contributes by providing a practical tax-
onomy of techniques aimed at enhancing the efficien-
cy of graph storage and mutation. These techniques in-
clude the optimization of the memory layout of graph

data structures, compression, partitioning, batching
techniques, changeset-based updates with delta maps
and multi-versioning to improve the update-friendli-
ness of classic data structures such as the Compressed
Sparse Row (CSR) [5]. Furthermore, our analysis delves
into the performance claims of existing literature on
high performance, unveiling persistent challenges in
read, write, and memory performance. This allows us to
shed light on research gaps and overlooked aspects of
performance crucial for real-world scenarios.

Fig. 1. Conceptual framework of our review

We present the background in Section 2 of our study.
Second, we discuss our research methodology and re-
search questions in Section 3 before presenting our re-
view and analysis in sections 4 and 5. Finally, we discuss
our findings in section 6, present the related work in
section 7, and then present our future work and con-
clude in section 8.

2. BACKGROUND & CONTEXTUALIZATION

A graph is defined as a mathematical representation
comprising vertices (nodes) and edges, which rep-
resent entities and the relationships between them,
respectively. The volume, velocity, and variety of big
data [6-8] that come from storing and processing large
graph data, pose unique challenges in the field of com-
puter science and data processing.

Graph technology, including graph processing sys-
tems and graph databases like Neo4j [3], emerges as a
suitable approach for storing, analyzing and streaming
big graph data, due to its scalability, real-time processing
capabilities, and ability to handle complex relationships.

These GPS store graph data (i.e., graph topology and
properties) in containers using data structures, such
as adjacency lists, edge lists, or matrices [5]. They also
provide algorithms for running analytic workloads and
queries as well as updating graphs. These systems use
combinations of high-performance data structures and
update protocols to achieve their target performance.

They take advantage of hardware resources such as
parallelism and Distributed machines to address the
scalability challenge of processing and streaming large
graphs efficiently.

From our research, it became evident that graph pro-
cessing and streaming systems encounter three major
challenges in efficiently storing and updating graphs
which are as follows.

Challenge 1. Many real-world situations can be un-
derstood via the lens of scale-free networks. These
graphs have a power-law distribution of degrees and
a low density [9], with many vertices having very few
or even zero degrees. The Internet and other social
networks are two common examples of such graphs.

21Volume 16, Number 1, 2025

When designing systems, however, it might be diffi-
cult to account for the skew (degree variation) of these
graphs. In reality, additional memory and processing
power (RAM, CPU) may be needed to process vertices
with higher degrees.

Challenge 2. The large size of graph data and access
patterns of graph algorithms are important factors in
the practical applicability of graph systems in produc-
tion environments. Essentially, the memory-intensive
nature of graph algorithms and their access patterns is
one of the primary causes of the latency in graph com-
putations. For instance, the PageRank algorithm [9] re-
quires a large amount of input/output (I/O) operations
to main memory and random accesses when iterating
over vertices and edges in the graph, causing a lot of
cache misses [10] and more slowdown

Challenge 3. The velocity characteristic of big data
makes processing data more challenging where large
amounts of graph data are generated rapidly and need
to be added to graphs as new relationships in real-time.
This is handled by stream processing systems, closely
associated with real-time processing, involving pro-
cessing data as it is created [11].

In summary, big data’s volume, velocity, and variety
pose challenges for traditional data processing meth-
ods including the storage, mutation and processing of
graph data sets.

3. METHODOLOGY

There is a growing body of literature in the context of
processing and streaming big dynamic graphs. In our
paper, we aim to give a global overview of the different
techniques used by researchers to improve the perfor-
mance of graph processing systems and streaming.

In an attempt to give this overview, we narrowed
the scope of this review to cover literature published
over the past 16 years. We define a set of strings de-
rived from keywords related to our research. The initial
keywords are Graph, Analytics, Processing, Storage,
Streaming and Mutation. We then use combinations
to form strings to search for relevant papers on IEEE
Xplore, ACM Digital Library and Google Scholar. We
compile our database of around 97 prominent publica-
tions, we exclude some papers as they are out of our
scope (e.g., incremental computation and graph data-
base systems [12]).

With the collected papers, we note the following
techniques that are used generally in the literature,
which include:

•	 The optimization of graph data structures for the
storage of dynamic graphs

•	 The design of parallel algorithms to execute graph
analytics and queries efficiently on dynamic graphs

•	 The design of high-level graph languages to ex-
press and execute graph queries

•	 The implementation of algorithms for Distributed
processing of graphs

•	 The design of efficient graph mutation protocols
for fast graph updates

We focus on the graph representation in memory
and the algorithms for graph updates as shown in Fig.
1 and Table 1.

Table 1. Analysis dimensions and their
corresponding sections in this paper

Dimension Description RQ RQ Section

Graph
Representation

The data structures to store
the graphs RQ1 Sec. 4

Memory
Consumption

The memory footprint of
the graph represented in

physical memory

RQ2,
RQ3 Sec. 4 & 5

Graph Mutation
The implementation of graph

mutations: in-place, delta
maps, snapshots

RQ4 Sec. 5

Performance
Optimization

The process of modifying
a system to improve its

functionality, thus making
it more efficient in read and

updating workloads

RQ2,
RQ3, Sec. 4 & 5

Parallelism
& Hardware
Resources

The underlying architecture
of systems such as multi-

core, CPU Cache and
Distributed Systems

RQ2,
RQ3, Sec. 4 & 5

4. TAXONOMY OF TECHNIQUES FOR EFFICIENT
GRAPH REPRESENTATION

In this section, we give an overview of techniques
for optimizing classical graph data structures for high
analytic and update performance as well as minimizing
the memory footprint. We organize this section as the
following. First, we discuss the performance of classi-
cal data structures, to identify their limitations. Then we
analyze the different techniques available for research-
ers to optimize them, namely: optimizing the memory
layout of the data structures (Section 4.2), compression
(Section 4.3), using memory allocator software (Section
4.4) and partitioning (Section 4.5). Finally, we present a
summary in Table 2.

4.1. REPRESENTATIvE GRAPH CONTAINER

In the following, We provide descriptions of classical
graph data structures and we discuss the costs of per-
forming graph mutations on each structure.

Adjacency Matrix

It holds a square matrix M with dimensions VxV,
where V stands for the graph's vertex count. To indicate
a directed edge from a source vertex vs to a destina-
tion vertex vd, the cell M[vs][vd] must be assigned a
non-zero value. While this method simplifies edge ma-
nipulation, it's inefficient for sparse graphs due to high
memory usage and suboptimal analytics performance.
Moreover, adding or removing vertices requires com-
pletely recreating the matrix.

22 International Journal of Electrical and Computer Engineering Systems

Adjacency Lists

This structure stores vertex information within a
node list, with each element pointing to a list of its
neighbours. It consumes less memory compared to an
adjacency matrix because it only stores existing edg-
es. The typical approach involves using linked lists for
these connections, yet there are more efficient alter-
natives designed for better caching. For instance, vari-
ants like Blocked Adjacency Lists use simpler arrays for
representing adjacencies [13] or utilize linked lists with
fixed-size edge-containing buckets.

CSR (Compressed Sparse Row)

This representation, widely used for sparse graphs,
condenses adjacencies into primarily two arrays: an
edge array holding indices of destination vertices from
the node array. The latter contains offsets to identify
the beginning and end of the neighbours' list. To find
the degree of node i, we compute Node_Array[i+1] –
Node_ Array[i]. However, while this format is efficient
in many cases, it still faces limitations, particularly in
contexts where frequent updates occur. Several varia-
tions of CSR (Compressed Sparse Row) have been sug-
gested—such as CSR++ [14-16] —aiming to enhance
support for quicker structural updates. Further details
on this topic are discussed in subsequent sections.

4.2. MEMORY LAYOUT AND CACHE
 AwARENESS

A good memory layout for a graph representation
refers to the optimal way to arrange the graph data
in memory to enhance its performance [10], by using
hardware optimizations such as caching and prefetch-
ing. Moreover, knowing the access patterns of graph
algorithms and storing graph entities in a specific lay-
out can guarantee both spatial and temporal locality
for graph data structures and algorithms [14, 17, 18],
hence better performance.

By considering these factors, researchers in the graph
community propose new variants of data structures by
changing their memory layouts [9, 14, 16, 18, 19] to op-
timize the performance of graph analytics, queries and
streaming, and improve their overall efficiency.

Essentially, to remediate the poor cache locality
of AL, many researchers [13, 20] use bucketing tech-
nique where buckets are used to group edges from
the same source vertex together, or use linked lists to
group edges from different source vertices together
(we elaborate this on Section 5. As we note from the
evaluation results of works in the literature, there are
only a few works that provide a thorough sensitivity
analysis of different variations of their solutions like
[19, 21]. There is a consensus on the size of the buckets
which shouldn't be too huge, as it would slow down
update performance, or too small, as that would cause
cache misses. Apart from [16] as a pioneer solution for
dynamic graph storage, we think there is a lack of con-

figurability in systems in the literature and therefore a
lot of opportunities to tweak existing designs in favour
of new ones and for different types of workloads.

Furthermore, since CSR is known for its high cache
performance and slow update performance, many re-
searchers [15, 16, 19] opt for it as a main data structure
for graph analytics and queries, then use an extra data
structure to store the updates. For instance, to support
fast updates, LLAMA stores multiple versions of the
graph in CSR structures.

Essentially, it implements two variants of CSR, name-
ly performance-optimized (PO) and space-optimized
(SO), where the former keeps a complete list of edges
of the same vertex in each version of the graph, and the
latter only stores fragments of the edge lists for every
vertex in different snapshots. As the names suggest,
the PO provides high performance since all the edges
are stored contiguously but the memory suffers from
multiple copies of the edge list.

The SO saves on memory; however, it is slower since
the edge lists are not stored contiguously, and the sys-
tem needs to reconstruct the full adjacency of a vertex
for read queries.

Finally, while memory layout techniques predomi-
nantly focus on graph topology, we emphasise the
criticality of aligning memory layout with storing graph
properties and auxiliary graph data (e.g., user keys), es-
pecially given the prevalence of graph algorithms deal-
ing with weighted graphs.

4.3. COMPRESSION FOR DYNAMIC GRAPHS

Compression allows for a reduction of the memory
needed to store data while maintaining its essential
properties and functionality [22]. It is more efficient in
graph representation since it allows for better cache
performance since more data can be loaded in the
cache and accessed at once by the CPU.

However, despite being a classic technique, there
appears to be a scarcity of research exploring the ap-
plication of compression techniques within the realm
of graph updates. Notably, we observed a prevailing re-
liance on Ligra+ [23] within existing systems, attribut-
able to its user-friendly interfaces. Among the notable
systems claiming high performance in this context are
Aspen [18], and SSTGraph [24], suggesting a potential
avenue for further investigation into optimizing graph
update procedures.

Aspen stores graph data in compressed purely func-
tional trees, a form of persistent data structure for stor-
ing large graphs. By compressing trees, Aspen solves
the issue of storing massive graphs (up to 200B edges)
in machines with just 1TB of RAM by using compres-
sion. Given that Aspen stores edges as integers, it uses
difference encoding to reduce the size of the edge ar-
rays. However, while this method can significantly re-
duce memory consumption, it still increases the price

23Volume 16, Number 1, 2025

of encoding and decoding processes, and a penalty
may be incurred when executing queries or updating
the graph.

To remediate this cost, SSTGraph a parallel framework
designed for the storage and analysis of dynamic graphs,
is based on the tinyset parallel dynamic set data struc-
ture, which implements set membership using sorted
packed memory arrays. This allows for logarithmic time
access and updates, as well as optimal linear time scan-
ning. Compared to systems that use data compression,
tinyset achieves comparable space efficiency without
the computational and serialization overhead.

Finally, there is a notable absence of exploration
into advanced compression algorithms within this do-
main. We propose that the graph processing commu-
nity delve deeper into the challenges associated with
graph workloads to assess the feasibility and potential
benefits of implementing sophisticated compression
algorithms.

4.4. MEMORY ALLOCATORS IN GRAPH
 STREAMING

A memory allocator is a software component that
manages the allocation and deallocation of memory
in a computer program [25]. GPS either develop their
memory allocators or use out-of-the-box allocator
libraries to manage their memory allocations and re-
duce memory fragmentation [26].

The first approach is used by some systems [20, 21,
27] where they develop built-in memory managers
that facilitate the speedy allocation of memory needed
for applying mutations. For instance, to efficiently per-
form memory reclamation and manage space, Hornet's
[27] internal memory management uses a B+ tree for
insertions and deletions to keep track of the available
blocks of edges. Moreover, when data is duplicated, the
system uses a load-balancing mechanism to locate the
freed memory for later usage.

However, our findings underscore both the lack and
the potential for smart predictive allocation techniques
[28], particularly concerning updates within graph pro-
cessing systems. Notably, while reallocation of edges
commonly employs a predefined factor in existing
systems, this often results in unnecessary allocation of
extra space. We posit the feasibility of implementing
smarter allocators leveraging machine learning meth-
odologies to predict the optimal reallocation factor,
thus enhancing memory utilization efficiency within
graph processing frameworks.

The second approach uses memory allocators such
as Jemalloc [29] and TCMalloc [30], which are widely
used for their parallel support of memory allocation
which helps with providing high update throughput.
Moreover, these allocators use highly efficient algo-
rithms to limit memory fragmentation, which leads to
better cache locality and lower memory footprint.

We note a particular system called Metall [31] which
is a persistent memory allocator that uses the copy-
on-write technique for graph workloads, stores and
manipulates large graphs at the exascale (billions of
billions of operations per second), by employing smart
allocation algorithms like those found in TCMalloc [30].
Essentially, Metall employs the use of mmap system
calls to create memory-mapped files. With mmap, one
may essentially access the files as if they were RAM,
since it redirects the data to a virtual memory region.
Therefore, to offer lightweight multi-versioning, Metall
makes use of copy-on-write by taking snapshots of the
graph after ingesting a batch of updates and employ-
ing a file copy method in the filesystems called reflink,
which permits copy-on-write of data.

4.5. DYNAMIC DATA STRUCTURE
 PARTITIONING

Graph data partitioning is the process of dividing
a large graph into smaller subgraphs [7], called parti-
tions, to enable parallel processing of the graph on
multiple machines or processors [8].

Some GPS systems [32, 33] use partitioning to opti-
mize their performance by introducing several novel
techniques to scale graph processing on a distributed
cluster, including partitioning for sequential storage ac-
cess, random distribution of data across the cluster, and
work stealing for load balancing. These techniques en-
able GPS to handle graphs with trillions of edges, repre-
senting up to 16 TB of input data. However, the research
on graph mutations using partitioning in a distributed
system is still premature, and a very small number of ar-
ticles address the challenges that come with it.

Finally, a single previous study provided an overview
of graph update types, dynamic graph partitioning, and
associated challenges [34]. Additionally, [35] did not ad-
dress the performance consequences of partitioning on
updates, memory, and read operations. Hence, it could
be beneficial to investigate this aspect further.

Table 2. Summary of the characterization of
systems included in this study based on their

techniques for efficient graph storage

Dimension Impact
on Perf. Implementations

Graph
Processing

&
Streaming

Systems

Memory
Layout

Cache-friendly data
structures

Blocking, CSR,
PMA

[15, 17, 19,
27, 36]

Data
Compression

 Small memory
footprint and better

cache locality

Difference
Encoding, Bit

Indexing
[18, 24, 33]

Partitioning
Distributed

processing and load
balancing

Edge-cut, Vertex-
cut [32, 37]

Memory
Allocators

 Parallel allocation,
low memory

fragmentation, high
cache performance

Jemalloc,
TCMalloc, B+ Trees

[14, 16, 20,
27, 31]

24 International Journal of Electrical and Computer Engineering Systems

5. TAXONOMY OF UPDATE PROTOCOLS FOR
EFFICIENT GRAPH MUTATION

In addition to the representation of graphs in mem-
ory for graph queries and analytics, a wide range of
GPS [16, 18, 20, 38] support graph mutation by allow-
ing modifications to the graph's topology by adding or
removing edges and vertices, as well as modification to
the graph properties.

Essentially, to achieve that, we identify emerging pat-
terns in the literature where GPS implement different
techniques that we refer to as update protocols, which
are different approaches for the ingestion and storage
of new incoming graph data.

In the following, and in an attempt to answer our re-
search question, we define the update protocols and
analyze the different techniques in the literature for
implementing graph updates and discuss their perfor-
mance implications and limitations. Finally, we present
a summary in Table 3.

5.1. OvERvIEw OF UPDATE PROTOCOLS

a) Update Ingestion

We categorize the update ingestions depending on
two criteria: i) How a stream of incoming updates is
handled right before storing them in the system? (Sec-
tion 5.2), and ii) how a stream of incoming updates is
handled in the presence of analytical queries (e.g., al-
gorithms, pattern matching, scans ...) (Section 5.3).

First, there are two approaches to ingesting the up-
dates in the GPS: i) Single update queries refer to the
insertion or removal of a single edge or vertex at a time,
while ii) batch updates refer to the grouping of the up-
dates in a batch before applying them all at once. More-
over, we extrapolated two modes researchers are explor-
ing for ingesting updates depending on how the graph
analytics and queries are executed: in bulk or concur-
rently. Essentially, in the bulk mode, updates and graph
algorithms are executed sequentially “in phases”. On the
other hand, in the concurrent mode, updates and graph
analytics are processed simultaneously [13, 20, 27].

b) Update Storage

When applying the mutations, changes can be applied
1) in-place (i.e., incorporated into the main structure) or
2) stored in additional data structures called deltas [16].
In-place update is a technique where systems augment
the traditional graph data structures, by permitting in-
place storage of updates without the costly rebuilding
of the whole graph data structure. As for the Delta ap-
proach, GPS use update-friendly data structures such as
Adjacency List or Edge List to quickly store the updates,
with the additional cost of merging these updates into
the main read-friendly structure such as CSR. We elabo-
rate on these techniques in Sections 5.4 and 5.5.

5.2. UPDATE INGESTION: SINGLE
 vS BATCH UPDATES

First, single updates are challenging to support for
two main reasons. First, in most cases [14, 19, 20] and
especially in deletion workloads, the system needs to
perform a search over the neighbours of a vertex upon
every edge insertion, which is not possible to do in par-
allel. This makes the system's performance very slow.

Fig. 2. Dynamic graph data structures. A) CSR representation of a graph using PMA to store the edge array.
B) Adjacencies of a graph are stored in growable arrays with factor x2. C) Adjacencies of a graph are stored

in a linked list of blocks

Second, depending on the availability of memory,
systems need to allocate more memory to store the
new edges [14]. Consequently, the frequent checks
for memory availability and reallocations cause a large
overhead, making the single updates very slow.

To remediate the slow single update performance,
systems [14, 16, 18, 38] opt for batch updates where the
batch of edge updates is pre-processed.

For instance, the sorting allows grouping all the
edge updates of a specific vertex, separating deletions
from insertions, which allows running edge updates in
parallel for separate vertices. This improves the rate of
update ingestions. This finding is supported by prior
research [9, 17, 20] highlighting the effectiveness of
sorting in optimizing the processing of edge updates.

Moreover, another technique used in batch updates is
partitioning, which refers to splitting the updates into par-
titions that can be handled in parallel by multiple threads
simultaneously [32]. This allows for better load balancing
between parallel threads, especially for skewed graphs.

Unfortunately, the techniques mentioned above still
incur large latency overhead as measured by GPS in litera-

25Volume 16, Number 1, 2025

ture [14, 16, 19], and most systems do not offer both single
updates and batch updates, which is necessary for some
real-world scenarios where updates are not frequent.

5.3. UPDATE INGESTION &
 MULTI-vERSIONING: BULK vS
 CONCURRENT UPDATES

The approach used by systems [13, 20, 27], to imple-
ment updates using the bulk mode, is a sequential
approach where updates are held back until queries
are completed, allowing updates to modify the graph
while keeping data consistency [39], which ensures
that the returned results accurately represent the cur-
rent state of the data.

On the other hand, in the concurrent mode, systems
may process updates and queries simultaneously. In this
case, maintaining query consistency can be challenging.

Systems [14, 17, 20] in the bulk mode, mostly focus
on supporting high update rates since updates don’t
have to be delayed by the queries. For instance, STING-
ER achieves an update rate of over 1.8 million updates
per second on single multi-core machines, by execut-
ing updates in batches and running them in parallel
without being concerned about concurrent reads.

Despite the high update throughput, research [18]
shows that systems that employ the bulk mode have
limited usage, since in real-world scenarios, graph us-
ers are constantly updating and running analytic que-
ries concurrently. In the case where update/read hap-
pens in phases, this can introduce delays and decrease
the system's overall performance.

On the other hand, in the concurrent mode, systems
may process updates and queries simultaneously. In
this case, maintaining query consistency can be chal-
lenging . In the following, we review different ap-
proaches used in practice, to allow concurrent updates
and queries and discuss the challenges researchers
face and potential research areas for the future.

Hybrid Store

A lot of systems [16, 18, 19, 40] implement protocols
to maintain data coherence and consistency between
multiple readers and writers through different isolation
levels, which is similar to traditional database systems.

One way to achieve concurrent analytic workloads
and update workloads is by creating a hybrid graph
representation that uses separate data structures [16],
[19]: one usually referred to as the write-optimised (WO
Storage) data structure for the incoming updates and
another read-optimised (RO Storage) structure for stor-
ing the main graph and can be accessed concurrently.
This way, updates and read workloads would operate
in parallel on different structures.

In this category, we cite a notable system LLAMA [16],
which creates a new delta, a.k.a., snapshot, every time
the user runs a batch of updates as shown in Fig. 4 B).

This technique enables readers to have parallel access
to the previously created snapshots and run analytics
and queries on the RO store without interfering with the
newer update queries performed on the WO store. An-
other example is GraphOne [40], which implements a
hybrid store for snapshots using an adjacency lists (AL)
store and an edge list (EL) as shown in Fig. 3 A). The AL
keeps track of a linked list of vertex degrees at various
points in time using timestamps.

Concurrency Control

Concurrency Control (CC) is a notable approach we
extracted from the literature for processing concur-
rent reads and writes in GPS literature. For instance, a
popular model is the Multiversion Concurrency Con-
trol (MVCC) [19] used by transactional systems such
as Teseo [19] to achieve Snapshot Isolation. Teseo uses
timestamps and a reversed chain of images to store the
original copies of data, showing the items as they were
before any changes were made (from newest to old-
est). These versions are temporarily kept in the transac-
tion's undo buffers whilst they are being rolled back,
and then they are garbage collected as soon as the
transaction is no longer valid (i.e. version pruning).

However, Teseo and many other systems face chal-
lenges with garbage collection, necessitating its ex-
ecution without disrupting ongoing queries, thereby
imposing additional costs on performance. We ob-
served the lack of systems addressing the performance
implications of executing compaction. We deem this
a critical performance concern as both the execution
of version pruning and the required resources may be
hindered by the granularity and frequency of updates.

5.4. UPDATE STORAGE: IN-PLACE UPDATES

 Systems [9, 13, 14, 19, 20] implement in-place up-
dates by designing data structures that are suitable
for graph updates, where the new entities (vertices
or edges) can be directly stored in the data structures
without requiring to reallocate the main data structure
or to store them in extra data structures.

The main idea is to leave some space in the data
structure for the new incoming entities, and in case
there is not enough space, the data structure should al-
locate extra space suitable for that new entity as shown
in Fig. 2. In the following, we discuss the popular ap-
proaches to achieve in-place updates.

a) Dynamic Arrays

A lot of systems use growable dynamic [9, 13, 14]
where edge insertions are performed by directly stor-
ing the new edges in dynamic growable edge arrays.
Systems employing Adjacency Lists are more prone to
use this technique as shown in Figs. 2 B) and C).

NetworKit [13] performs edge insertions by directly
storing the new edges in dynamic growable edge ar-
rays and reallocating twice the initial array size when

26 International Journal of Electrical and Computer Engineering Systems

there is no memory space available. The same method
is employed by Madduri et. al. [9] except that the size
of the new edge array is defined in terms of a customiz-
able factor rather than a fixed factor of 2.

Subsequently, when employing dynamic arrays, the
amortised cost for updates is O(1) for insertions and
O(deg V) for deletions. However, the memory footprint
can be quite substantial as the reallocations leave un-
used space, when there are no updates. As mentioned
above, using smart memory managers can help keep
track of unused space and perform a better strategy
for pre-allocation while maintaining a memory foot-
print comparable to static graph data structures. We
also highlight the importance of knowing the pattern
of the streams, to estimate the size of the reallocation.
We predict that machine learning techniques are a pos-
sible venue for research that the community of graph
processing and streaming should explore to propose
innovative mechanisms to tackle these challenges in
real-world graphs. For instance, by learning the pat-
terns of the creation of relationships in social networks,
e.g., a post that goes viral on social media might bring
many followers in a short amount of time.

b) PMAs

Packed Memory Arrays (PMAs) are another classic
technique in data structures that allows in-place up-
dates by maintaining dynamic sets of sorted elements.
It is based on storing an array of sizes larger than the
number of elements N and leaving gaps between the
elements to allow for new insertions with a moderate
cost of O(lg²(N)). However, PMA relies on extra compu-
tation using an implicit balanced tree that keeps track
of gaps within regions of the array as shown in Fig. 2 A).
Essentially, when the number of gaps is too small or too
large, systems are required to perform a re-balancing
of the tree to rearrange the gaps in the array. This may
slow down the update performance and delay the ana-
lytic workloads.

For instance, [17] developed a variant of CSR based
on PMAs called PCSR, which provides efficient single-
threaded mutations by leaving space at the end of
each adjacency list. Moreover, multi-versioning sys-
tems like Teseo use PMAs to store multiple versions of
the graph. By using PMAs, Teseo updates graph data in
place, hence preserving the contiguous memory place-
ment of the data. Ultimately, PMAs have gained trac-
tion within dynamic graph representations [19, 41, 42].
However, the expected improvement in read perfor-
mance associated with PMAs does not justify the over-
head incurred by tree rebalancing. Systems employing
dynamic arrays [21] outperform PMAs in terms of up-
date performance while supporting in-place updates.

c) Deletions

Regarding the deletions of graph entities, there are
two main approaches: physical deletions and logical
deletions. In the latter, systems [14, 16] enhance ver-
tex and edge data with flags that can be set if they are

removed, which allows for logical deletions of entities.
The disadvantage of this method is that it requires
changing the graph algorithms to account for deleted
entities during traversals, which can make them slower,
due to extra branches in the algorithm.

On the other hand, when entities are deleted physi-
cally from memory, the corresponding slots in the data
structure are left unfilled, which results in a higher
storage cost than logical deletion. Systems [16, 19, 40]
employ compaction, which means reconstructing the
graph without assigning space for the removed enti-
ties, to decrease unnecessary space after numerous
physical deletions. This operation is very costly as it re-
quires a whole rebuild of the graph, however, it helps
reduce memory fragmentation and, therefore better
read performance.

5.5. UPDATE STORAGE: DELTA UPDATES

One way to extend CSR to support fast updates is
by employing deltas, which are separate structures to
store only the new changes in vertex/edge logs. For in-
stance, edge lists [16, 40] are particularly well suited for
storing updates as deltas, as we can append new edges
in O(1) time and space. They also help to maintain the
temporality/history of updates, since the edges are
stored in the order they arrive.

In practice, to support deltas, systems [16, 18, 19, 40]
tend to design separate structures as read-optimized
stores (usually CSR-based) and write-optimized stores
which practically refer to a delta. However, the down-
side of storing updates in delta maps or edge lists is
two-fold. First, maintaining separate structures for
each batch of updates increases the system’s memory
requirements, as a frequent stream of graph updates
results in many deltas. Second, analytics performance
is degraded because they need to read from both the
original structure and the deltas and reconcile them.

For example, LLAMA creates a new delta (i.e., snap-
shot) once the write-optimized store has been “flushed”
into the read-optimized store. This might be practical
for multi-versioning, but creating new deltas too fre-
quently often results in out-of-memory errors as shown
in [21] which can be fatal for real-time systems.

Finally, to remediate this problem, these systems per-
form compaction on the frequently created data struc-
ture into one main structure. For this purpose, several
authors [16, 19, 40] have attempted to design their ver-
sion of compaction. Throughout our research, we came
across a multitude of references to the same operation,
such as “archiving,” “merging,” and “building.”

GraphOne [40] stores newly added edges in a circu-
lar log and uses adjacency lists as the main read-opti-
mized store, which provides a coarse-grained snapshot
method as shown in Fig. 3 A). First, GraphOne estab-
lishes an edge log cutoff for the "transfer" of the edges
from the buffer to the base structure to preserve the

27Volume 16, Number 1, 2025

separate store for the update operations and achieve
good analytic performance. Second, in some cases,
some data may be kept in both stores for a predeter-
mined amount of time to maximize efficiency, this is
known as data overlap. However, when there is a lot of
duplication, it may use more RAM than usual.

It is shown in [19] that GraphOne's iterator architec-
ture is to blame for its subpar performance in reading
workloads. Point lookups are not possible because of
the high space and time costs associated with analytic

performance, which are incurred whenever the system
iterates over vertices or edges and copies neighbours
into an intermediate buffer.

In summary, compaction is computationally demand-
ing, often zeroing the mutability performance benefits
of these structures. For users who wish to operate on the
most up-to-date version of the graph data, we believe
that designing a system for in-place graph mutations is
a better option to achieve higher analytics and update
performance with lower memory requirements.

Fig. 3. Delta Updates, A) Hybrid storage using AL main storage and Edge List as delta. B) Snapshot
mechanism as seen in LLAMA to access multiple versions of the graph. C) Delta structures stored in PMAs

used in Teseo to support concurrent read and writes

Table 3. Summary of the characterization of
systems included in this study based on their

techniques for efficient graph updates

Technique Category Advantages Systems

Single Upd. Ingestion
Fine granularity of updates
& Requires more CPU and

memory
[14, 17, 20]

Batch Upd. Ingestion
 Fast update, load

balancing Requires extra
pre-processing

[14, 16, 18,
40]

Upd. in Bulk Ingestion
Fast update throughput,

fast analytics & No
concurrency

[9, 14, 17,
20, 27]

Concurrent
Upd. Ingestion

Parallel updates and
reads& High memory

footprint, slow updates

[16, 18, 19,
40]

In-place
Upd. Storage Low memory footprint, fast

analytics & Slow updates
[9, 13, 14,
17, 19, 42]

Delta Upd. Storage

Multi-versioning, fewer
resources & Slow analytics,

high memory footprint
slow updates

[16, 18, 40]

6. RESULTS & DISCUSSION

In the following, we summarize key insights about the
50 research on high-efficiency graph representation and
51 update protocols. Table 4 presents a classification of
the most popular graph systems reviewed in our paper,
based on the dimensions discussed previously.

a) Configurations and Hybrid Representations

Based on the findings presented in Table 4, it is evi-
dent that numerous systems heavily rely on the Com-
pressed Sparse Row (CSR) format due to its cache-
friendly nature and reduced memory footprint. Howev-
er, these systems often incorporate optimizations such
as hardware enhancements or distributed computing

frameworks [37], and supplementary data structures to
manage updates efficiently, but there are limited de-
signs for inherently fast data structures that support
fast in-place and single updates while maintaining low
memory footprint and high read performance.

Researchers can take advantage of the power of ma-
chine learning, to have more adaptable configurations
depending on the workload. For instance, in the case
of social networks, we can use learning algorithms to
estimate the factor by which we can grow our dynamic
arrays. This means that for a celebrity account, there are
higher chances of gaining more followers than a nor-
mal account, therefore we can choose a higher factor
(x4, x5) to pre-allocate the edge lists while keeping an
x2 factor for normal accounts to maintain a low memo-
ry footprint of our dynamic graph.

b) Cross-platform implementation
 and evaluation

We highlight the prevalence of shared-memory sys-
tems, underscoring the ongoing necessity for advance-
ments in this domain to attain comparable perfor-
mance levels to distributed systems. Moreover, within
the realm of distributed systems, there exists a notable
lack of research on graph streaming, particularly con-
cerning protocols tailored for update ingestion and
storage in distributed infrastructures, or at least evalua-
tion of the data structures in Distributed environments
to showcase the advances in that area.

This observation implies that while the examined
systems may ensure performance within specific hard-
ware configurations, they lack assurance regarding the
portability of their data structures across different in-
frastructures. Thus, there arises a demand for solutions
which can seamlessly transition between single-ma-
chine and distributed environments.

Table 4. Summary of reviewed systems. Infra.:
the supported architecture either Single Machine
(SM) or Distributed (Dist); DS: data structures (CSR,

Adjacency List, Tree); SU: support for single updates;
Batch: support for batch updates; MV: support for

multi-versioning; Compact: support for compaction;
Up. Store: the update storage, either In-place (IP)

or Delta (D); Scans: performance in read workloads;
Mem: memory consumption; Up. Perf.: performance

in mutation

Systems

In
fr

a.

D
at

a
St

ru
ct

ur
e

SU

Ba
tc

h

M
v

Co
m

pa
ct

.

U
p.

 S
to

re

Sc
an

s

M
em

U
p.

Pe
rf

.

BGL[43] SM AL + - - + IP - - +

PGX.SM[36] SM CSR - + + - D + + -

Ligra[44] SM CSR - - - - X + + -

GraphLab[45] Dist CSR - - - - X - + -

PGX.D[37] Dist CSR - + + - D + + -

STINGER[20] SM
Dist AL + + - - IP - - +

Hornet[27] GPU AL + + - - IP - + +

Madduri et.
Al. [9] SM AL - + - + IP - - +

PCSR[42] SM CSR + - - + IP + - +

LLAMA[16] SM CSR - - + + D + - -

Metall[31] SM AL - + + + D - + +

GraphOne[40] SM AL+EL + + + + D - + +

Aspen[18] SM Tree - + + + IP - + +

Teseo[19] SM Tree + + + + IP + - +

c) Achieving optimal performance trade-offs

We have shown that the choice of the optimization
techniques, in either graph representation or updates
depends on the specific characteristics of the graphs,
the types of workloads, and the constraints of the ap-
plication environment. Most systems tend to improve
on an aspect of performance, either read performance,
updates throughput or memory consumption, and
to barely achieve the best trade-off between all three
of these aspects. For instance, the majority of the sys-
tems that we reviewed struggle to support several ver-
sions of the graph because of high memory cost, and
graph compaction is necessary to reduce the amount
of space needed for changes, however, this operation
requires expensive computation and slows down the
performance of the system.

d) Overlooked metrics and benchmarks

While memory layout techniques typically concentrate
on graph topology, we stress the importance of align-
ing memory layout with the storage of additional graph
data, such as user keys and properties. This alignment
becomes particularly critical due to the widespread use
of graph algorithms dealing with weighted graphs.

Furthermore, there is a notable emphasis on proto-
cols for updating graph topology. However, it is infre-
quent to find comprehensive implementations and
evaluations of performance when considering other

graph data elements, such as graph properties, reverse
edges, or intermediary results in graph algorithms.

7. RELATED wORK

The prevalence of graph processing and streaming in
various domains has prompted researchers to conduct
reviews to understand how graphs are used in practice
[5], [35].

Graph Systems and Databases. Angles et al. [46]
provide a comprehensive survey of graph database
models, focusing on data structures, query languages,
and integrity constraints. [5] review graph systems and
classifies them based on their infrastructure. Further-
more, Besta et. al. [35] provide descriptions and analy-
sis of different approaches for representing graphs in a
streaming context. However, they do not analyze the
performance trade-offs of different approaches for
graph storage and mutation.

High-Performance Graph Representations. [47]
propose theoretical frameworks for the study of data
structure designs and the generation of new structures
to better serve specific types of workloads. They high-
light the applicability of their abstractions for key-value
stores, however, they do not study the compositions
for the graph model.

Moreover, Wheatman et al. [42] review existing graph
representations such as CSR and adjacency lists. They
provide a theoretical study of the time complexity of
graph access operations as well as update operations
on such data structures. However, they do not review
how systems in the literature aim to optimize the per-
formance of these graph data structures.

8. CONCLUSION

In this paper, we discuss the increasing focus within
the literature on optimizing classical graph data struc-
tures to achieve high analytical and update perfor-
mance while minimising memory usage. We provide
an overview of techniques available to researchers and
developers, highlighting their roles in enhancing graph
processing and streaming. Additionally, we examine
update protocols and the performance implications of
different designs. Our main findings reveal challenges
faced by systems offering multi-versioning in terms of
compaction costs, the inadequate evaluation of aux-
iliary data structures like reverse edges and multiple
graph properties, and the need for more advanced
partitioning and compression algorithms for dynamic
graph data structures. Furthermore, our survey leads
us to suggest that systems cannot provide high perfor-
mance for scans, updates and memory consumption
simultaneously. As a future scope, we aim to develop
a framework for graph processing and streaming that
would address the gaps in the research literature, es-
pecially tackling the expensive cost of compaction for
multi-versioning. Furthermore, we aim to extend our
study by delving into algorithmic details of compres-

28 International Journal of Electrical and Computer Engineering Systems

sion and partitioning for graph mutations and, per-
forming quantitative analysis and benchmarks.

9. REFERENCES:

[1] C. Peng, F. Xia, M. Naseriparsa, F. Osborne, “Knowledge

graphs: Opportunities and challenges”, Artificial Intelli-

gence Review, Vol. 56, No. 11, 2023, pp. 13071-13102.

[2] C. Gao et al., “A survey of graph neural networks for

recommender systems: Challenges, methods, and di-

rections”, ACM Transactions on Recommender Systems,

Vol. 1, No. 1, 2023, pp. 1-51.

[3] M. Saad, Y. Zhang, J. Tian, J. Jia, “A graph database for life

cycle inventory using Neo4j”, Journal of Cleaner Produc-

tion, Vol. 393, 2023, p. 136344.

[4] S. Firmli et al. “CSR++: a Fast, Scalable, Update-Friendly

Graph Data Structure”, Proceedings of the 24th Interna-

tional Conference on Principles of Distributed Systems,

Leibniz, Germany, 2021, pp. 1-16.

[5] S. Firmli, D. Chiadmi, “A Review of Engines for Graph

Storage and Mutations”, Innovation in Information Sys-

tems and Technologies to Support Learning Research:

Proceedings of EMENA-ISTL 2019, 2020, pp. 214-223.

[6] Y. Cui, S. Kara, K. C. Chan, “Manufacturing big data eco-

system: A systematic literature review”, Robotics and

Computer-Integrated Manufacturing, Vol. 62, 2020, p.

101861.

[7] S. Phansalkar and S. Ahirrao, “Survey of data partition-

ing algorithms for big data stores”, Proceedings of the

Fourth International Conference on Parallel, Distributed

and Grid Computing, Waknaghat, India, 22-24 Decem-

ber 2016, pp. 163-168.

[8] R. Dindokar, N. Choudhury, Y. Simmhan, “A meta-graph

approach to analyze subgraph-centric distributed pro-

gramming models”, Proceedings of the IEEE Interna-

tional Conference on Big Data, Washington, DC, USA,

5-8 December 2016, pp. 37-47.

[9] K. Madduri, D. A. Bader, “Compact Graph Representa-

tions And Parallel Connectivity Algorithms For Massive

Dynamic Network Analysis”, Proceedings of the IEEE

International Symposium on Parallel & Distributed Pro-

cessing, Rome, Italy, 23-29 May 2009.

[10] U. Drepper, “What every programmer should know

about memory”, Red Hat, Inc, Vol. 11, No. 2007, 2007.

[11] A. Bifet, R. Gavalda, G. Holmes, B. Pfahringer, "Machine

learning for data streams: with practical examples in

MOA", MIT press, 2023.

[12] W. Ju, J. Li, W. Yu, R. Zhang, “iGraph: an incremental data

processing system for dynamic graph”, Frontiers of

Computer Science, Vol. 10, No. 3, 2016, pp. 462-476.

[13] C. L. Staudt, A. Sazonovs, H. Meyerhenke, “NetworKit: a

Tool Suite For Large-Scale Complex Network Analysis”,

Network Science, Vol. 4, No. 4, 2016, pp. 508-530.

[14] S. Firmli et al. “CSR++: A Fast, Scalable, Update-Friendly

Graph Data Structure”, Proceedings of the 24th Interna-

tional Conference on Principles of Distributed Systems,

2020.

[15] R. Raman, O. van Rest, S. Hong, Z. Wu, H. Chafi, J. Baner-

jee, “PGX.ISO: parallel And Efficient In-memory Engine

For Subgraph Isomorphism”, Proceedings of Workshop

on GRAph Data management Experiences and Systems,

Snowbird, UT, USA, 22-27 June 2014.

[16] P. Macko, V. J. Marathe, D. W. Margo, M. I. Seltzer, “Llama:

Efficient graph analytics using large multiversioned

arrays”, Proceedings of the IEEE 31st International Con-

ference on Data Engineering, Seoul, Korea, 13-17 April

2015, pp. 363-374.

[17] B. Wheatman, H. Xu, “A Parallel Packed Memory Array

to Store Dynamic Graphs”, Proceedings of the Proceed-

ings of the Symposium on Algorithm Engineering and

Experiments, pp. 31-45.

[18] L. Dhulipala, G. E. Blelloch, J. Shun, “Low-Latency Graph

Streaming Using Compressed Purely-Functional Trees”,

Proceedings of the 40th ACM SIGPLAN Conference on

Programming Language Design and Implementation,

New York, NY, USA, 2019, pp. 918-934.

[19] D. De Leo, P. Boncz, “Teseo and the Analysis of Structural

Dynamic Graphs”, Proceedings of the VLDB Endow-

ment, Vol. 14, No. 6, 2021, pp. 1053-1066.

[20] D. Ediger, R. McColl, J. Riedy, D. A. Bader, “Stinger: High

performance data structure for streaming graphs”, Pro-

ceedings of the IEEE Conference on High Performance

Extreme Computing, Waltham, MA, USA, 10-12 Septem-

ber 2012, pp. 1-5.

[21] S. Firmli, D. Chiadmi, “A Scalable Data Structure for Effi-

cient Graph Analytics and In-Place Mutations”, Data, Vol.

8, No. 11, 2023.

[22] P. Boldi, S. Vigna, “The Webgraph Framework I: Com-

pression Techniques”, Proceedings of the 13th Interna-

tional Conference on World Wide Web, New York, NY,

USA, 2004, pp. 595-602.

[23] J. Shun, L. Dhulipala, G. E. Blelloch, “Smaller and Faster:

Parallel Processing of Compressed Graphs with Ligra+”,

Proceedings of the Data Compression Conference,

2015, pp. 403-412.

[24] B. Wheatman, R. Burns, “Streaming sparse graphs using

efficient dynamic sets”, Proceedings of the IEEE Interna-

29Volume 16, Number 1, 2025

tional Conference on Big Data, Orlando, FL, USA, 15-18
December 2021, pp. 284-294.

[25] E. D. Berger, K. S. McKinley, R. D. Blumofe, P. R. Wilson,
“Hoard: A scalable memory allocator for multithreaded
applications”, ACM Sigplan Notices, Vol. 35, No. 11, 2000,
pp. 117-128.

[26] M. S. Johnstone, P. R. Wilson, “The memory fragmenta-
tion problem: Solved?”, ACM Sigplan Notices, Vol. 34,
No. 3, 1998, pp. 26-36.

[27] F. Busato, O. Green, N. Bombieri, D. A. Bader, “Hornet: An
Efficient Data Structure for Dynamic Sparse Graphs and
Matrices on GPUs”, Proceedings of hte IEEE High Perfor-
mance extreme Computing Conference, Waltham, MA,
USA, 25-27 September 2018, pp. 1-7.

[28] I. U. Akgun, A. S. Aydin, A. Shaikh, L. Velikov, E. Zadok,
“A machine learning framework to improve storage sys-
tem performance”, Proceedings of the 13th ACM Work-
shop on Hot Topics in Storage and File Systems, 2021,
pp. 94-102.

[29] D. Durner, V. Leis, T. Neumann, “On the Impact of Mem-
ory Allocation on High-Performance Query Processing”,
Proceedings of the 15th International Workshop on Data
Management on New Hardware, New York, NY, USA,
July 2019, pp. 1-3.

[30] S. Lee, T. Johnson, E. Raman, “Feedback directed opti-
mization of TCMalloc”, Proceedings of the workshop on
Memory Systems Performance and Correctness, New
York, NY, USA, June 2014, pp. 1-8.

[31] K. Iwabuchi, K. Youssef, K. Velusamy, M. Gokhale, R.
Pearce, “Metall: A persistent memory allocator for data-
centric analytics”, Parallel Computing, Vol. 111, 2022, p.
102905.

[32] A. Kyrola, G. Blelloch, C. Guestrin, “GraphChi: large-Scale
Graph Computation on Just a PC”, Proceedings of the
10th USENIX Symposium on Operating Systems Design
and Implementation, 2012.

[33] A. Roy, L. Bindschaedler, J. Malicevic, W. Zwaenepoel,
“Chaos: Scale-out graph processing from secondary
storage”, Proceedings of the 25th Symposium on Oper-
ating Systems Principles, 2015, pp. 410-424.

[34] L. M. Vaquero, F. Cuadrado, M. Ripeanu, “Systems for
near real-time analysis of large-scale dynamic graphs”,
arXiv:1410.1903, 2014.

[35] M. Besta, M. Fischer, V. Kalavri, M. Kapralov, T. Hoefler, “Prac-
tice of streaming and dynamic graphs: Concepts, models,
systems, and parallelism”, arXiv:1912.12740, 2020.

[36] S. Hong, H. Chafi, E. Sedlar, K. Olukotun, “Green-Marl:

a DSL For Easy And Efficient Graph Analysis”, ACM SIG-

PLAN Notices, Vol. 47, No. 4, 2012, pp. 349-362.

[37] N. P. Roth et al. “PGX.D/Async: a Scalable Distributed

Graph Pattern Matching Engine”, Proceedings of the

Fifth International Workshop on Graph Data-manage-

ment Experiences & Systems, Chicago, IL, USA, 19 May

2017.

[38] M. Haubenschild, M. Then, S. Hong, H. Chafi, “Asgraph:

a mutable multi-versioned graph container with high

analytical performance”, Proceedings of the Fourth In-

ternational Workshop on Graph Data Management Ex-

periences and Systems, Redwood Shores, CA, USA, 24

June 2016, pp. 1-6.

[39] A. Adya, B. Liskov, P. O’Neil, “Generalized isolation level

definitions”, Proceedings of 16th International Confer-

ence on Data Engineering, San Diego, CA, USA, 29 Feb-

ruary - 3 March 2000, pp. 67-78.

[40] P. Kumar, H. H. Huang, “GraphOne: a Data Store for Real-

Time Analytics on Evolving Graphs”, ACM Transactions

on Storage, Vol. 15, No. 4, 2020.

[41] M. A. Bender, H. Hu, “An Adaptive Packed-Memory Ar-

ray”, ACM Transactions on Database Systems, Vol. 32,

No. 4, 2007, pp. 26-es.

[42] B. Wheatman, H. Xu, “Packed Compressed Sparse Row:

a Dynamic Graph Representation”, Proceedings of the

IEEE High Performance extreme Computing Confer-

ence, Waltham, MA, USA, 25-27 September 2018.

[43] “The Boost Graph Library - 1.75.0.”, https://www.boost.

org/doc/libs/1_75_0/libs/graph/doc/index.html (ac-

cessed: 2024)

[44] J. Shun, G. E. Blelloch, “Ligra: a lightweight graph pro-

cessing framework for shared memory”, Proceedings

of the 18th ACM SIGPLAN symposium on Principles and

practice of parallel programming, 2013, pp. 135-146.

[45] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin,

J. Hellerstein, “Graphlab: A new framework for parallel

machine learning”, arXiv:1408.2041, 2014.

[46] R. Angles, C. Gutierrez, “An Introduction to Graph Data

Management”, Data-Centric Systems and Applications,

Springer International Publishing, 2018, pp. 1-32.

[47] S. Idreos et al. “The Periodic Table of Data Structures”,

Bulletin of the IEEE Computer Society Technical Com-

mittee on Data Engineering, Vol. 41, No. 3, 2018, pp. 64-

75.

30 International Journal of Electrical and Computer Engineering Systems

