
A Framework for 5G Network Slicing 
Optimization using 2-Edge-Connected 
Subgraphs for Path Protection

675

Original Scientific Paper

Abstract – Emerging telecommunications technologies require robust frameworks for efficient network slicing. We propose a 
network-slicing model that aims to optimize the deployment of virtual networks on a physical network topology. Our model ensures 
compliance with 5G requirements, incorporating latency and capacity constraints on virtual links. Selecting slices with cost and 
resource requirements on the computing nodes is optimized using a Knapsack problem with revenue maximization. We propose 
a path protection algorithm to deal with link failures by constructing a 2-edge-connected subgraph (or two link-disjoint Steiner 
trees) for each slice to provide both primary and backup paths. Simulation results include comparison with existing solutions by 
metrics such as latency, revenue, resource utilization, number of protected slices, and computation time, providing valuable insights 
for network planners operating in diverse and dynamic environments. Key contributions include efficient resource allocation using 
the Knapsack problem, enhanced network resilience via 2-edge-connected subgraphs for path protection, and realistic simulation 
experiments on SNDlib dataset topologies. The simulation results show that the proposed framework improves computational 
efficiency compared to the recent related solutions, particularly in large network topologies where k-connected function slicing  (KC-
FS) subgraph embeddings take approximately 3.5 times more computation time.

Keywords:	 network slicing, resource allocation, virtual networks, optimization model, 5G networks, path protection

1.		 INTRODUCTION

5G technology has ushered in unprecedented chal-
lenges and opportunities in the rapidly evolving tele-
communications landscape. As the demand for diverse 
and high-performance services intensifies, robust 

frameworks to efficiently manage network resources 
become crucial. Network slicing, a pivotal concept in 
the realm of 5G, offers a promising avenue for achiev-
ing this efficiency by allowing the creation of virtual 
networks tailored to specific service requirements [1].

Volume 15, Number 8, 2024

Igor Begić*
JP ELEKTROPRIVREDA HZ HB d. d. Mostar,
Development Division, Department of Telecommunications
Ulica kralja Petra Krešimira IV, 6-A, Mostar, Bosnia and Herzegovina
igor.begic@ephzhb.ba 

Adrian Satja Kurdija
University of Zagreb,
Faculty of Electrical Engineering and Computing,  
Department of Electronics, Microelectronics, Computer and Intelligent Systems 
Unska 3, Zagreb, Croatia
adrian.kurdija@fer.hr

Željko Ilić
University of Zagreb,
Faculty of Electrical Engineering and Computing,  
Department of Telecommunications
Unska 3, Zagreb, Croatia
zeljko.ilic@fer.hr

Received: April 15, 2024; Received in revised form: July 4, 2024; Accepted: July 4, 2024

*Corresponding author



676 International Journal of Electrical and Computer Engineering Systems

Ensuring compliance with 5G requirements, particu-
larly regarding latency and capacity constraints on vir-
tual links, becomes critical. The telecommunications 
industry is actively developing models and frameworks 
that address these challenges. Solutions that optimize 
the deployment of virtual networks contribute to the 
overall efficiency and effectiveness of 5G networks [2, 3].

As the demand for 5G services continues to escalate, 
network operators are confronted with strategically se-
lecting and deploying network slices that comply with 
stringent cost and resource constraints on computing 
nodes and maximize revenue potential [4]. The cost-
effective utilization of resources is pivotal to ensuring 
the economic viability of 5G networks, making optimi-
zation strategies a focal point in current research and 
development efforts [5].

Furthermore, in the 5G networks, the seamless and 
uninterrupted connectivity with  this advanced tech-
nology promises is contingent upon robust mecha-
nisms for handling network link failures. As 5G net-
works evolve to support diverse services (e.g., eMBB, 
uRLLC, and mMTC) and applications with stringent reli-
ability requirements, the industry has recognized the 
imperative of implementing protection algorithms to 
safeguard against disruptions caused by link failures. 
The telecommunications industry has turned to solu-
tions such as dedicated path protection algorithms to 
mitigate this impact. This approach involves construct-
ing both primary and backup paths, ensuring that 
communication is seamlessly transmitted to the pre-
established backup path in case of a link failure on the 
primary path [6, 7].

This paper proposes a network-slicing model de-
signed to optimize the deployment of virtual networks 
on a physical network topology. Our model is crafted to 
ensure compliance with 5G requirements, addressing 
crucial aspects such as latency and capacity constraints 
on virtual links. The model integrates latency con-
straints on virtual links, ensuring that the constructed 
subgraphs and selected paths minimize latency, which 
is essential for meeting the low latency requirements of 
5G real-time communications. It enhances network re-
liability by constructing 2-edge-connected subgraphs, 
ensuring that an alternative path remains available be-
tween any pair of nodes even if a single link fails, thus 
maintaining uninterrupted service. 

By integrating cost and resource requirements con-
siderations on computing nodes, we employ a Knap-
sack problem with revenue maximization to optimize 
the selection of slices, striking a balance between re-
source utilization and service quality. By formulating 
the slice selection problem as a Knapsack problem, 
the framework optimizes the allocation of resources 
(CPU units, memory, etc.) on computing nodes, maxi-
mizing revenue while adhering to the nodes' capacity 
constraints, thereby ensuring efficient use of available 
resources. 

Recognizing the dynamic nature of telecommunica-
tions environments, our proposed model employs two 
variants of path protection. Our primary proposed ap-
proach for each slice constructs a subgraph with the 
2-edge-connectivity property, which means that at 
least two distinct paths exist between each pair of slice’s 
nodes. The alternative approach leverages the construc-
tion of two link-disjoint Steiner trees for each slice: one 
for primary paths and the second for backup paths. Both 
methods are tailored to handle link failures efficiently, 
providing a robust mechanism for ensuring continuous 
service availability and mitigating potential disruptions.

We comprehensively evaluated the proposed mod-
els through extensive simulations using network topol-
ogies from the SNDlib dataset [8]. Metrics such as cost, 
latency, accepted slices, and resource utilization are 
systematically analyzed to provide network planners 
with valuable insights into the performance and resil-
ience of the network slicing framework. These insights 
are crucial in diverse and dynamic environments where 
telecommunication networks must adapt to varying 
demands and unexpected challenges.

This paper aims to contribute to the scientific dis-
course surrounding optimizing 5G networks, grappling 
with the complexity of modern and evolving network 
landscapes. By addressing deployment efficiency, com-
pliance with stringent requirements, and resilience in 
the face of failures, our model seeks to advance state-
of-the-art telecommunications technologies, offering 
tangible solutions for network planners.

The primary contributions of this paper encompass 
the following:

•	 The paper introduces a novel framework for effi-
cient resource allocation and path protection in 5G 
network slicing deployment using the Knapsack 
problem and 2-edge-connected subgraphs.

•	 The paper shows the proposed framework's com-
putational efficiency compared to the recent re-
lated solutions through extensive simulations with 
realistic network topologies.

The paper is organized as follows: Section II discuss-
es the related works; Section III presents our system 
model and defines the problem in mathematical terms; 
Section IV presents the proposed algorithms; Section 
V presents simulation results. Finally, the conclusion of 
the paper is presented is Section VI.

2.	 RELATED WORK

Many papers considered 5G network slicing aspects, 
attempting to solve optimization problems based on 
the system model and the assumed constraints and re-
quirements.

To name a few related approaches,the authors in [9] 
used the Mul tiple Choice Knapsack Problem to address 
the problem of maximizing the slice allocation in the 



677Volume 15, Number 8, 2024

access network, i.e., a macro cell. In our paper, the 0-1 
Knapsack Problem is adapted to find an optimal subset 
of network slices in each computing node, balancing 
the trade-off between revenue maximization and ad-
herence to resource constraints.

Recently, the authors in [5] proposed a nested decom-
position model for reliable slicing of Virtualized Network 
Functions (VNFs) running on virtual computing nodes, 
providing dedicated path protection with primary and 
backup paths being link-disjoint. Because of the enor-
mous problem size, their solution used integer linear pro-
gramming (ILP) with heuristic column generation. In [7], 
the authors employ a heuristic to solve a path-based ILP 
with bandwidth squeezing and multi-path provisioning. 
In another recent approach [6], latency-constrained paths 
between source and target nodes are considered and se-
lected from the shortest to the longest in terms of hops.

In [10], the authors proposed a model that integrates 
computing and networking resources to minimize 
costs for the Slice Broker (SB) when purchasing re-
sources from Infrastructure Providers (InPs). In [11], the 
authors introduce the Topology-Level Based Protection 
Scheme (TLPS) as an innovative method to improve 
reliability and minimize redundancy in multi-domain 
networks. TLPS customizes virtual networks (VNs) to 
meet precise reliability needs while reducing backup 
redundancy. It accomplishes this by crafting tailored 
VNs and deploying them onto the substrate network 
through a mixed integer linear programming (MILP) 
model and heuristic approach. In [12], the authors pro-
posed an advanced approach for optimizing VNF allo-
cation within dynamic network slices. By introducing 
a multilayered Service Function Chain (SFC) formation 
and utilizing an ILP model, the research addresses the 
VNF-embedding and allocation problem (VNF-EAP) on 
a real-world AT&T network topology. 

In [13], the authors presented a hierarchical identi-
fier (HID) 5G architecture that simultaneously supports 
network slicing and SFC. The HID incorporates network 
slice selection assistance information (NSSAI) and ser-
vice path ID (SPI), allowing users to attach to specific 
network slices and enabling the sequential processing 
of flows by service functions (SFs). To mitigate degrada-
tion in quality of service (QoS) caused by unexpected 
increases in flow to a slice, a backup slice shared among 
different services is introduced to utilize network re-
sources efficiently. In [14], the authors examined the 
reliability of 5G transport network slices within elastic 
optical networks (EON). The primary focus is slicing 5G 
transport networks, which involves setting up virtual 
networks on 5G transport infrastructure while ensuring 
dedicated protection.

Most existing methods solve the Virtual Network Em-
bedding (VNE) problem by first embedding all nodes 
without considering link embedding information. 
However, such approaches can lead to suboptimal link 
embedding due to decisions made without explicitly 
considering the requirements and characteristics of 

the links. This can lead to inefficient resource utilization 
and revenue loss for service providers. 

Our approach differs from the conventional approach-
es that model each slice as a chain of virtual network func-
tions (VNFs) implemented by the computing nodes (e.g., 
[5, 12]). Instead of assuming a fixed order of VNFs within 
a slice, our approach is more flexible: it only requires that 
all corresponding computing nodes are connected by 
paths, allowing for different orderings (chains) of VNFs 
within the slice. Therefore, instead of constructing sepa-
rate paths for each pair of consecutive computing nodes 
in a slice, we build a 2-edge-connected subgraph span-
ning all computing nodes with minimal total latency of 
the used links. Path protection results from the 2-edge-
connectivity property: the subgraph remains connected 
whenever an edge is removed, corresponding to a failed 
link. This approach is compared to our proposal [15], 
where two link-disjoint Steiner trees spanning all comput-
ing nodes are constructed, one for primary paths and the 
other for backup paths. It is also compared to an approach 
recently proposed in [16], where each service function 
(SF) is embedded as a k-edge-connected subgraph using 
the k-connected function slicing (KC-FS) algorithm. When 
k = 2, the KC-FS algorithm can be used for slice subgraph 
construction in the scenario presented here. However, the 
simulation results demonstrate that it is computationally 
much more demanding. Also, in [16] the authors do not 
consider selecting nodes for an SF: it assumes that the set 
of node instances (Nf i) for the ith SF is given as part of the 
input. The two link-disjoint trees might not exist for net-
work topologies with low redundancy, so the present ap-
proach is more suitable, as we will demonstrate. Another 
key difference from conventional approaches is that in-
stead of using ILP formulations, which can be inefficient 
for large problem sizes, we use the classical algorithms for 
Knapsack and Steiner Tree problems, making the algo-
rithm more straightforward to implement and guarantee-
ing its polynomial time complexity.

In [17], the authors highlighted the importance of vir-
tualization in modern computing and its pervasive pres-
ence across various computing domains, emphasizing 
the need for efficient management of physical resourc-
es. The paper introduced the Virtual Network Embed-
ding (VNE) problem, which entailed allocating physical 
resources to meet virtual resource requests while adher-
ing to constraints and maximizing resource utilization. 
It presented the Improved Virtual Network Embedding 
using Conflict-Based Search (iVNE-CBS) as an improved 
algorithm for addressing the VNE problem.

In [18], the authors formulated the problem of Ser-
vice Function Chain (SFC) scheduling in NFV-enabled 
5G networks as a mixed integer non-linear program-
ming challenge. They aimed to maximize the number 
of requests meeting latency and reliability constraints 
in a dynamic network environment where SFC requests 
arrive randomly. Additionally, the authors proposed an 
efficient algorithm to decide VNF redundancy while 
minimizing delay.



678 International Journal of Electrical and Computer Engineering Systems

In [19], the authors tackled the challenge of optimal-
ly placing SFCs within 5G network slices, considering 
resource distribution across Edge and Cloud sites. They 
introduced solutions for the Virtual Network Functions 
Chain Placement Problem (VNF-CPP) using integer 
linear programming (ILP) and heuristic algorithms, ad-
dressing constraints like end-to-end delay, processing 
delay, VNF affinity, and traffic requirements between 
VNFs.

In [20], the authors proposed a virtual network em-
bedding algorithm model incorporating a graph at-
tention mechanism and a multi-layer perceptron. This 
model determines the weights between nodes by in-
troducing the attention mechanism to measure the re-
lationships between nodes. The proposed models and 
algorithms effectively reduced resource fragmentation 
and improved the acceptance rate of virtual network 
requests.

In [21], the authors employed a reinforcement learn-
ing (RL) approach to address the embedding problem. 
The approach integrated shareable virtual network 
functions into an existing RL scheme designed for vir-
tual node embedding, achieving this with minimal ad-
ditional computation.

3.	 FRAMEWORK OVERVIEW

In our framework, we focus on virtual computing 
nodes connected by links in the network topology. We 
optimize the slice selection in the computing nodes 
and the construction of slices’ subgraphs in the net-
work topology graph.

As an illustration of our Steiner-tree approach [15], 
Fig. 1 depicts the nodes selected for a specific slice 
(nodes 4, 8, and 9, in red color) along with the primary 
tree (red links) and the backup tree (blue links) con-
necting these selected nodes. Backup links can still 
connect each pair of the selected nodes in case of any 
primary link failure.

Fig. 1. Primary (red) and backup (blue) trees 
spanning the slice embedded in the nodes 4, 8, and 9

However, this paper aims for more efficient path 
protection. Instead of two spanning trees, one being 
able to replace the other, we will construct a single 
spanning subgraph, which is “larger” than one tree 

Fig. 2. A 2-edge-connected subgraph spanning the 
slice embedded in the nodes 4, 8, and 9, serving 

both primary and backup paths

This difference is significant in networks with low 
redundancy, where the number of disjoint paths be-
tween the nodes is small. In such networks, the previ-
ous proposal might not be able to construct two dis-
joint Steiner trees spanning each slice. For instance, 
Fig. 3 depicts the primary tree constructed for a slice 
spanning the nodes 1, 5, 7, and 8 in a topology with 
low redundancy (“abilene” network topology from the 
SNDlib dataset [11]). In this network, there is no way 
to construct a backup tree spanning the same nodes 
while avoiding the links of the primary tree. Therefore, 
this slice would not have path protection. On the other 
hand, the path protection can be achieved if a 2-edge-
connected subgraph is constructed instead of a tree, 
serving both primary and backup paths, as depicted in 
Fig. 4. Such 2-edge-connected subgraph is inherently 
easier to construct than two spanning trees, which in 
most cases require more links and the existence of dis-
joint paths (high redundancy). The evaluation will pres-
ent a numerical comparison (Sect. 5).

but “smaller” than two trees (in terms of the number of 
links). The subgraph must have the following property 
to allow for link failures: whenever a single edge from 
the subgraph is removed, there is still a path between 
any pair of its nodes. Therefore, the subgraph provides 
both primary and backup paths between the nodes. 
The required property of such a graph is called 2-edge-
connectivity.

To illustrate the difference between the two propos-
als, consider Fig. 1 and 2. In Fig. 1, the (red) primary and 
(blue) backup trees contain five edges. In Fig. 2, howev-
er, the single (red) subgraph includes four edges serv-
ing the same slice. The subgraph has the required prop-
erty: if any of its edges is removed, it still contains paths 
between all its slice nodes (4, 8, and 9). For instance, if 
the (primary) link between nodes 4 and 8 fails, there is 
a backup path: 4-6-9-8. In terms of graph theory, the 
subgraph in Fig. 3 is 2-edge-connected. It is more ef-
ficient since it provides both primary and backup paths 
between its nodes and requires fewer resources than 
the two Steiner trees in Fig.1.



679Volume 15, Number 8, 2024

Fig. 3. Primary Steiner tree spanning the slice 
embedded in the nodes 1, 5, 7, and 8.  

A link-disjoint backup tree cannot be constructed  
(no path protection).

Fig. 4. Path protection of the slice 
embedded in the nodes 1, 5, 7, and 8  
using a 2-edge-connected subgraph,  

allowing for a single link failure

To formalize the proposed framework, let N be the 
set of computing nodes, S the set of slices, and E the 
set of bidirectional links between node pairs (i, j). We 
assume that each computing node i has Ri available 
resource elements (representing CPU units, memory 
units, available energy, or any other resource measure). 

We assume that a slice s requires Rs,i resource elements 
when running on node i if those resources are allocated 
to s, in other words, if s is embedded at i. We assume 
that the fixed cost of embedding slice s at node i is Fs,i 
and that revenue generated per unit of resource allo-
cated to slice s equals Us (Table 1).

Table 1. Notation

Symbol Meaning Symbol Meaning

N set of computing nodes E set of bidirectional links (i, j) ∈ N × N

S set of slices Li,j latency of link (i, j)

Ri available resource elements of node i Ci,j capacity of link (i, j)

Rs,i resource requirement of slice s at node i Rs, i, j capacity requirement for slice s on link (i, j)

Fs,i cost of embedding slice s at node i Ns set of nodes selected for slice s

Us revenue per unit of resource of slice s Ps links of the primary tree for slice s

xs,i whether slice s is embedded at node i Bs links of the backup tree for slice s

ys,i,j whether link (i, j) is included in the primary subgraph for slice s zs,i,j whether link (i, j) is included in the backup tree for slice s 

We can now formalize the problem of slice selection 
in each computing node. Let xs,i ∈{0,1} be a binary deci-
sion variable indicating whether slice s is allocated re-
sources at node i.

For each node i∈ N, maximize the total slices' revenue:

With respect to available resources:

(1)

(2)

Where,
xs,i	 Binary decision variable indicating whether 
	 slice s is allocated resources at node i
Rs,i	 Resource requirement of slice s at node i
Us	 Revenue per unit of resource of slice s
Fs,i	 Cost of embedding slice s at node i
S	 Set of slices
Ri	 Available resource elements of node i.

After the slice selection variables xs,i are determined, 
the set of slice nodes is defined as the set of all nodes 
where slice s is embedded:

(3)

Where,

Ns	 Set of nodes selected for slice s
N	 Set of computing nodes.

We assume that each link (i, j) ∈E has known latency Li,j 
and capacity Ci,j. Furthermore, if this link is embedded for 
slice s, each slice has a capacity requirement Rs,i,j.

We now jointly define the problems of path selection 
and path protection. For each slice s, a subgraph Ps(Ps 
⸦ E) should be constructed so that all nodes in Ns are 
connected (directly or indirectly) by links from Ps. This 
subgraph should be 2-edge-connected to enable path 
protection in case of a single link failure. Alternatively, it 
can be a tree, and then it should be augmented with an-
other backup tree Bs ⸦ E, which ensures path protection 
by providing backup paths in case of a single link fail-



680 International Journal of Electrical and Computer Engineering Systems

ure in Ps. While constructing the subgraphs, the capacity 
constraints for each link should be met, and total latency 
should be minimal. We can formalize the path selection 
and path protection problem as follows.

(4a)

(4b)

Where,
Li,j	 Latency of link (i, j)
ys,i,j	 a binary decision variable indicating whether 
	 link (i, j) is included in the primary subgraph 
	 for slice s
Rs,i,j	 The capacity requirement for slice s on link (i, j)

Ci,j	 The capacity of link (i, j).

These equations correspond to a choice of 2-edge-
connected subgraphs for Ps. Therefore, in the rest of the 
paper, Ps is the set of links (i, j) for which ys,i,j= 1. In the 
case of trees, there are two subgraphs, so we modify 
the equations as follows.

Minimize:

(5a)

(5b)

Where zs,i,j is a binary decision variable indicating 
whether link (i, j) is included in the backup tree for slice 
s. Therefore, in the rest of the paper, Bs is the set of links 
(i, j) for which zs,i,j= 1.

4.	 PROPOSED ALGORITHMS

The proposed framework is divided into two steps. 
The first step performs the slice selection in the com-
puting nodes, determining the decision variables xs,i. 
The second step performs the construction of slices' 
subgraphs. In both steps, we consider three variants 
of the proposed framework. Two of them construct 
primary and backup Steiner trees and are included 
mostly for evaluation and comparison purposes, while 
the third variant is our proposed approach based on 
2-edge connectivity. More specifically:

•	 Steiner-balanced algorithm seeks to optimize the 
total revenue, as well as the number of accepted 
slices, i.e., the number of slices for which the pri-
mary tree is successfully constructed.

•	 Steiner-protection algorithm seeks to maximize 
the number of selected slices per node, as well as 
the number of protected slices, i.e., the number 
of slices for which both the primary tree and the 
backup tree are successfully constructed.

•	 Proposed variant constructs a 2-edge-connected 
subgraph for each slice instead of two Steiner 
trees, while also maximizing total revenue.

4.1.	 Selecting Slices 
	on  the Computing Nodes

In the first step, since xs,i ∈{0,1}, we reduce the 
problem to a classical 0-1 Knapsack Problem and 
solve it by the corresponding dynamic programming 
algorithm. 

Namely, for each computing node i, we consider all 
slices as potential items in the Knapsack with weight ca-
pacity Ri. Following Eq. (1), for an item corresponding to 
slice s, its value vs equals the revenue Rs,i Us-Fs,i, while its 
weight ws equals its resource requirement Rs,i. The goal 
of the 0-1 Knapsack Problem is to select items (without 
repetitions) to put in the knapsack to maximize the to-
tal value of selected items without exceeding the knap-
sack's weight capacity. If the corresponding item gets 
selected in the knapsack solution, then xs,i = 1.

We solve the 0-1 Knapsack Problem independently 
for each node using the standard dynamic program-
ming algorithm. The key idea is to build a 2D array dp 
where dp[k][w] represents the maximum value that 
can be achieved with the first k items and a knapsack 
capacity of w. We iterate through the items, updating 
the array based on whether we exclude or include the 
current k-th item with value vs and weight ws (if w≥ws):

(6)

To extend the solution to return which items are se-
lected, we need to modify the algorithm to track the 
decisions made during the construction of the dp table. 
This reconstruction can be done by examining the dp 
table after it has been filled out and tracing back the 
choices that led to the maximum value.

The algorithm complexity is O(|S| · |Ri|) for each of the 
|N| computing nodes. We thus obtain selected slices at 
each node and calculate the sets Ns using Eq. (3).

The described solution is used in the Proposed and 
Steiner-balanced variants. In the Steiner-protection 
variant, the 0-1 Knapsack is solved greedily by repeat-
edly selecting the item with the lowest weight, corre-
sponding to the slice with the lowest resource require-
ment. This approach maximizes the number of slices 
embedded in the node.

After the computing nodes Ns for each slice have 
been determined, they should be connected by 
paths with respect to the latency requirements and 
capacity constraints. Namely, we are searching for a 
set of links Ps ⸦ E spanning all nodes in Ns with mini-
mal total latency, which is the second step of the al-
gorithm. The following two subsections describe the 
considered variants of this step, differing in the cho-
sen structure of Ps .



681Volume 15, Number 8, 2024

4.2.	 Path Construction:  
	 Steiner Tree Approaches

A natural idea is for Ps to be a tree because such a 
subgraph uses the smallest number of edges. In that 
case, however, path protection in case of a link failure 
requires one more tree for each slice – a backup tree Bs, 
which is link-disjoint with Ps (Ps ∩ Bs = Ø).

In a given graph, the construction of a tree that spans 
a given subset of nodes (terminals) is a standard Steiner 
tree problem in graphs. Its optimization variant which 
minimizes the total weight of the selected tree's edges 
(corresponding to link latencies Li,j) can be solved by 
e.g. Kou's algorithm [22] which is implemented in a 
NetworX library [23]. For this algorithm, we consider 
only the links with enough capacity (Ci,j ≥ Rs,i,j). In this 
way, we obtain the primary tree Ps for each slice. Af-
terward, we construct the backup tree Bs in the same 
manner, considering only the links not selected in Ps  to 
ensure link disjointness. The algorithm complexity is 
O(|Ns| · |E|2) for each of the O(|S|) Steiner trees.

Whenever a primary or a backup tree is constructed, 
we must update the total link capacities by deducting 
the occupied capacity of the corresponding slice:

(7)

For this reason, the order in which the Steiner trees 
are constructed is not irrelevant. To maximize the num-
ber of accepted slices, we first sort the slices ascend-
ingly by the number of embedding nodes |Ns|, since it 
is easier to construct a spanning tree for a smaller num-
ber of terminals.

A slice is accepted if its primary tree is successfully 
constructed and protected if its backup tree is success-
fully constructed as well. In the Steiner-balanced vari-
ant, we attempt to construct all primary trees for slices 
in the order described above, and then we attempt to 
construct all backup trees in the same order, optimiz-
ing the number of accepted slices by prioritizing the 
construction of primary trees. In the Protection-based 
variant, instead of constructing the backup trees af-
ter all primary trees, each backup tree is constructed 
immediately after the corresponding primary tree, at-
tempting to maximize the number of protected slices.

4.3.	 Path Construction: 
	 2-edge-connected Subgraph

The subgraph Ps spanning the nodes (terminals) select-
ed for slice s does not have to be a tree. If Ps already con-
tains multiple paths between each pair of terminals, path 
protection is ensured without constructing additional 
backup paths. This is the 2-edge-connectedness property.

To find such a subgraph, the following algorithm is 
applied for each slice:

1.	 We initialize Ps to be maximal, consisting of all edg-
es (i, j) ∈E with enough capacity for slice s (Ci,j  ≥ 
Rs,i,j).

2.	 If this subgraph Ps is not 2-edge-connected, the 
slice is rejected.

3.	 Otherwise, we go over all edges in Ps, sorted by la-
tency in the decreasing order.

1)	 We check if Ps would still be 2-edge-connected 
if the current edge was removed.

2)	 If the answer is yes, we remove the current 
edge and thus reduce the total latency of Ps.

4.	 Return the resulting 2-edge-connected subgraph Ps.

Since edges with higher latency are removed first, 
the subgraph obtained after removing all unnecessary 
edges will have minimal latency. It remains to describe 
how to check if a graph is 2-edge-connected. Verifying 
the 2-edge-connectedness of Ps is done in the follow-
ing way:

1.	 For each pair of terminals u and v in Ps, the function 
edge connectivity from the NetworX library [23] is 
called to compute the minimum number of edges 
that must be removed to break all paths from u to v.

2.	 If the obtained edge connectivity number is great-
er than 1 for all pairs of terminals u and v, the sub-
graph Ps is 2-edge-connected.

After constructing each Ps, link capacities are updat-
ed by Eq. (7). The order in which the slices are processed 
is the same as in the previous variants (increasing |Ns|). 
Since each subgraph provides both primary and back-
up paths for the corresponding slice, the number of ac-
cepted and protected slices is equal in this variant. It 
equals the number of successfully constructed 2-edge-
connected subgraphs.

5.	 EVALUATION

This section describes the simulation results. All ex-
periments were implemented in Python 3 on Intel(R) 
Core(TM) i7-10510U CPU @ 1.80GHz. We used the net-
work topologies from the SNDlib dataset [8]. We note 
that most topologies were not suitable for the Steiner-
based approaches because of their low redundancy 
which disabled the construction of link-disjoint trees. 
The suitable high-redundancy topologies were pdh, 
dfn-bwin, newyork, and pioro40, denoted by T1, T2, T3, 
and T4 in the rest of this section. The link capacity val-
ues (in Mbit/s) by individual topologies are: T1: 30, T2: 
80000, T3: 1000 and T4: 155.

Apart from using realistic network topologies, we 
used the link capacities from the same SNDlib files and 
artificially generated other parameters. We assumed 
|S| = 8 slices, the resource capacity of each node was 
100 elements, while the resource requirement per slice 
was a random integer uniformly chosen from [10, 100]. 
Revenue per resource unit and embedding costs were 
random integers uniformly chosen from [10, 100] and 
[100, 500], respectively. Link latencies were uniformly 
chosen between 1 and 20 ms. Slices’ capacity require-



682 International Journal of Electrical and Computer Engineering Systems

ments were uniformly chosen between 1 and the av-
erage link capacity divided by 2. Each experiment was 
repeated 30 times, and the results were averaged.

Fig. 5 compares the algorithm variants and the KC-FS 
algorithm [16] across several measures. Since the KC-FS 
performs the second step of the present framework and 
not the first, the same knaspack-based selection of slice 
nodes (or SF candidates) is performed as the first step of 
KC-FS. For its second step, the slices are sorted descend-

ingly by the number of embedding nodes, following the 
recommendation from Algorithm 4 in [16] which starts 
from the SF with the most candidates in the embedding 
network. The main KC-FS algorithm is implemented ac-
cording to the pseudocode of Algorithm 3 in [16], in-
cluding Algorithm 1 (k-Connected Network Slicing Tech-
nique) and Algorithm 2 (i-Based Node Degree Balancing) 
as subroutines. The following paragraphs describe the 
obtained results by subfigures of Fig. 5.

The Total Latency for each subgraph was calculated 
by adding up the latencies of its links, and the results 
were averaged for all protected slices. The Proposed 
and KC-FS approaches achieve the best results in terms 
of total latency, with KC-FS giving slightly lower laten-
cies in T1 and T2 and higher latencies in T4. The Steiner-
protection variant achieves higher latencies than the 
Balanced-protection variant because it has the highest 
number of slices per node in all test cases, resulting from 
its approach to 0-1 Knapsack. 

The Steiner-protection algorithm, however, has a 
higher number of Protected Slices in T1 and T2 compared 
to the Steiner-balanced. The Proposed and KC-FS ap-
proaches are the best in this respect, behaving similarly 
and enabling the highest number of protected slices.

Total revenue (of accepted slices) is expectedly lowest 
for the Steiner-protection approach, which does not 
take revenue into account when solving the 0-1 Knap-
sack. The Proposed approach is more successful than 

Fig. 5. Comparison between different approaches

Steiner-balanced, especially in T4, because of the much 
higher number of protected slices. The KC-FS approach 
is even more successful in T4 because it starts from the 
slices with the most nodes.

Node utilization in Fig. 5 was calculated as the average 
percentage of utilized required resource elements by 
the slices embedded in each node i∈N. Link utilization 
was calculated as the average percentage of utilized ca-
pacities by the slices for which a link (i,j)∈ E is chosen for 
the subgraph/tree. Steiner-protection variant achieves 
lower node utilization compared to other approaches 
because of its selection of low-requirement slices when 
solving the 0-1 Knapsack. The opposite is true for link 
utilization since the Protection-based approach con-
structs larger trees because of the higher number of 
nodes per slice. The Proposed variant achieves slightly 
higher results than the Steiner-balanced with respect 
to node and link utilization. The Proposed and KC-FS 
approaches again behave similarly, with KC-FS utilizing 
slightly more nodes because of its slice ordering.



683Volume 15, Number 8, 2024

The most important difference between Proposed 
and KC-FS is depicted in Fig. 6 which shows the average 
execution time per test case. For small networks such 
as T1, T2, and T3 the execution times are negligible, but 
for a larger network such as T4 the KC-FS subgraph em-
beddings take ≈ 3.5× more computation time in com-
parison to Proposed. This is in line with the complexity 
of the procedures in Algorithms 1-3 of [16]. 

The results show the overall dominance of the Pro-
posed approach in terms of execution time, latency, 
number of protected slices, total revenue, and node uti-
lization. In terms of other measures, the Steiner-protec-
tion variant has the highest edge utilization  (except in 
T4), as well as the highest number of slices per node and, 
equivalently, nodes per slice. However, it is dominated 
by the Steiner-balanced approach in terms of total rev-
enue. In cases where execution time is irrelevant, the KC-
FS approach with knapsack-based node selection can be 
the best choice in terms of total revenue (T4).

To visualize the effect of network topology, Fig. 7 de-
picts the resulting subgraphs of specific slices on 12 dif- Fig. 6. Average execution time

ferent low-redundancy topologies. Only the Proposed 
variant achieved path protection on these topologies.

Fig. 7. Slice subgraphs on low-redundancy topologies (row by row: janos-us-ca, zib54, ta2, norway, sun, 
atlanta, giul39, pioro40, france, janos-us, cost266, and ta1 from SNDlib dataset [8]).

6.	 CONCLUSION

In this paper, we presented a framework with sev-
eral variants for slicing optimization and path protec-
tion in 5G networks, focusing on balancing factors like 
execution time, revenue, latency, slice protection, and 
resource utilization.

The proposed approach based on 2-edge-connected 
subgraphs emerged as the most effective, achieving 
the lowest total latency, highest number of protected 

slices, highest node utilization, and highest total rev-
enue along with the existing KC-FS approach which has 
a significantly higher execution time. This shows that 
the proposed algorithm created slice subgraphs more 
efficiently than the recent related approach. The Steiner-
protection approach created larger and more protected 
slices than the Steiner-balanced approach, emphasizing 
the importance of prioritizing network resiliency with 
dedicated path protection. However, this comes at the 
expense of the total revenue, which is dominated by the 



684 International Journal of Electrical and Computer Engineering Systems

Steiner-balanced approach, underscoring the efficacy of 
dynamic programming in optimizing network resources 
and showing a tradeoff between revenue maximization 
and other optimization aspects, such as slice protection 
and the number of nodes per slice.

7.	 REFERENCES

[1]	 D. Irawan, N. R. Syambas, A. A. N. Ananda Ku-

suma, E. Mulyana, "Network Slicing Algorithms 

Case Study: Virtual Network Embedding", Pro-

ceedings of the 14th International Conference 

on Telecommunication Systems, Services, and 

Applications, Bandung, Indonesia, 4-5 Novem-

ber 2020, pp. 1-5.

[2]	 M. Ait aba, M. Elkael, B. Jouaber, H. Castel-Taleb, A. 

Araldo, D. Olivier, "A two-stage algorithm for the 

Virtual Network Embedding problem", Proceed-

ings of the 46th Conference on Local Computer 

Networks, Edmonton, AB, Canada, 4-7 October 

2021, pp. 395-398.

[3]	 M. K. Singh, S. Vittal, A. A. Franklin, "SERENS: Self 

Regulating Network Slicing in 5G for Efficient 

Resource Utilization", Proceedings of the 3rd 5G 

World Forum, Bangalore, India, 10-12 September 

2020, pp. 590-595.

[4]	 V. Balasubramanian, M. Aloqaily, M. Reisslein, 

"Mutes: Multi-Tenant Switching for 5G Network 

Slice Revenue Maximization", Proceedings of the 

International Wireless Communications and Mo-

bile Computing, Dubrovnik, Croatia, 30 May - 3 

June 2022, pp. 590-595.

[5]	 B. Jaumard, Q. H. Duong, "A Nested Decomposi-

tion Model for Reliable NFV 5G Network Slicing", 

IEEE Transactions on Network and Service Man-

agement, Vol. 20, No. 3, 2023, pp. 2186-2200.

[6]	 C. Raffaelli, E. Amato, P. Monti, F. Tonini, "Reliable 

Slicing in Optical Metro Networks with Reconfigu-

rable Backup Resources", Proceedings of the Inter-

national Symposium on Communication Systems, 

Networks and Digital Signal Processing, Porto, 

Portugal, 20-22 July 2022, pp. 863-866.

[7]	 N. Shahriar et al. "Reliable Slicing of 5G Transport 

Networks with Bandwidth Squeezing and Multi-

Path Provisioning", IEEE Transactions on Network 

and Service Management, Vol. 17, No. 3, 2020, pp. 

1418-1431. 

[8]	 S. Orlowski, R. Wessäly, M. Pióro, A. Tomaszewski, 

"SNDlib 1.0—Survivable Network Design Library", 

Networks, Vol. 55, No. 3, 2010, pp. 276-286.

[9]	 M. K. Lee, C. S. Hong, "Efficient Slice Allocation for 

Novel 5G Services", Proceedings of the 10th Inter-

national Conference on Ubiquitous and Future 

Networks, Prague, Czech Republic, 3-6 July 2018, 

pp. 625-629.

[10]	 A. Sarah, G. Nencioni, “Resource allocation for cost 

minimization of a slice broker in a 5G-MEC sce-

nario”, Computer Communications, Vol. 213, No. 3, 

2024, pp. 331-344.

[11]	 Y. Xiao, J. Zhang, P. Zhu, H. Wu, C. Zhang, "Custom-

ized Topology-Level Protection for Reliable Slicing 

in 5G/B5G Metro Access/Aggregation Networks", 

Journal of Lightwave Technology, Vol. 42, No. 9, 

2024, pp. 3068-3080.

[12]	 D. Basu, S. Kal, U. Ghosh, R. Datta, "DRIVE: Dynamic 

Resource Introspection and VNF Embedding for 5G 

Using Machine Learning", IEEE Internet of Things 

Journal, Vol. 10, No. 21, 2023, pp. 18971-18979.

[13]	 H. Ko, J. Lee, H. Choi, S. Pack, "Hierarchical Identifi-

er (HID)-based 5G Architecture with Backup Slice", 

Proceedings of the 21st Asia-Pacific Network Op-

erations and Management Symposium, Daegu, 

Korea, 22-25 September 2020, pp. 291-293.

[14]	 N. Shahriar et al. "Reliable Slicing of 5G Transport 

Networks with Dedicated Protection", Proceed-

ings of the 15th International Conference on 

Network and Service Management, Halifax, NS, 

Canada, 21-25 October 2019, pp. 1-9.

[15]	 I. Begić, A. S. Kurdija, J. Matuško, “A Framework for 

5G Network Slicing Optimization with Path Pro-

tection", Proceedings of the 47th International 

Convention on Information and Communication 

Technology, Electronics and Microelectronics, 

Opatija, Croatia, 22-26 May 2024.

[16]	 D. Zheng, G. Shen, Y. Li, X. Cao, B. Mukherjee, "Ser-

vice Function Chaining and Embedding with Het-

erogeneous Faults Tolerance in Edge Networks", 

IEEE Transactions on Network and Service Man-

agement, Vol. 20, No. 3, 2023, pp. 2157-2171. 

[17]	 Y. Zheng, S. Ravi, E. Kline, L. Thurlow, S. Koenig, T. 

K. S. Kumar, "Improved Conflict-Based Search for 



the Virtual Network Embedding Problem", Pro-
ceedings of the 32nd International Conference on 
Computer Communications and Networks, Hono-
lulu, HI, USA, 24-27 July 2023, pp. 1-10.

[18] L. Yang, J. Jia, H. Lin, J. Cao, "Reliable Dynamic Ser-
vice Chain Scheduling in 5G Networks", IEEE Trans-
actions on Mobile Computing, Vol. 22, No. 8, 2023, 
pp. 4898-4911.

[19] R. Mohamed, A. Leivadeas, I. Lambadaris, T. Mor-
ris, P. Djukic, "Online and Scalable Virtual Network 
Functions Chain Placement for Emerging 5G 
Networks", Proceedings of the IEEE International 
Mediterranean Conference on Communications 
and Networking, Athens, Greece, 5-8 September 
2022, pp. 255-260.

[20] H. Liu, "Research on Virtual Network Embedding 
Model and Algorithm Based on Graph Attention 

Network and Multi-Layer Perceptron", Proceed-
ings of the 5th International Conference on Ar-
tificial Intelligence and Computer Applications, 
Dalian, China, 2023, pp. 812-818.

 [21]	 A. Samar, K. M. Sivalingam, "RL-based Virtual Net-
work Embedding using VNF Sharing for Network 
Slicing in 5G Networks", Proceedings of the IEEE/
IFIP Network Operations and Management Sym-
posium, Miami, FL, USA, 8-12 May 2023, pp. 1-7.

[22] L. Kou, G. Markowsky, L. Berman, “A Fast Algorithm 
for Steiner Trees”, Acta Informatica, Vol. 15, No. 2, 
1981, pp. 141-145.

[23] A. A. Hagberg, D. A. Schult, P. J. Swart, “Exploring 
network structure, dynamics, and function using 
NetworkX”, Proceedings of the 7th Python in Sci-
ence Conference, Pasadena, CA, USA, 19-24 Au-
gust 2008, pp. 11-15.

685Volume 15, Number 8, 2024


