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Abstract – Epilepsy is considered the second neurological disease in a coma after stroke. Famous markers of epilepsy are repetitive 
seizures, their origin is stroma and cortical deformation. A neurologist would be assisted by identifying Epileptogenic Zones EZ when 
diagnosing epilepsy.. Source localization is utilized to identify regions known as EZ, which are of excessive discharges. It consists 
of both forward and inverse problems. The forward problem models the head through analytical and numerical methods. The 
inverse problem can be resolved using several techniques to locate the cerebral abnormal sources, via the electrophysiological 
recording biomarkers. In our study, we will investigate four distributed inverse problem methods:  minimum norm estimation MNE, 
standardized low-resolution brain electromagnetic tomography sLORETA, maximum entropy on the mean MEM, Dynamic statistical 
parametric maps dSPM,  to define epileptic networks connectivity of spiky and oscillatory events. We will examine the epileptic 
network connectivity using Phase Locking Value (PLV), Phase Transfert Entropy (PTE) for oscillatory events, cross-correlation (CC), 
and Granger Causality (GC) for spiky events applied on 5 pharmaco resistant subjects. We suggest rating the effectiveness of these 
networks in locating EZ through a phase of confrontation within iEEG transitory and oscillatory networks connectivity by exploring 
concordant nodes, their distance, propagation delays connection strength, and their cooperation in recognition of seizure onset 
zone. All studied techniques of the inverse problem, connection metrics, for both biomarkers of the 5 patients succeed in detecting at 
least one part of SOZ. sLORETA provides the highest concordant nodes and the closed one for spiky events using CC and GC. sLORETA 
also depicts the lowest propagation delay for oscillatory events using PTE. Through the 5 patients, MEM, dSPM, and MNE using CC, CG 
for spiky events, and PTE, PLV for oscillatory activities provide about 72 % of concordant nodes between MEG and iEEG.
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1.  INTRODUCTION

Neurologic illness diagnosis is increasingly focusing 
on noninvasive modalities such as electroencephalog-
raphy (EEG) and magnetoencephalography (MEG) ap-
proaches [1, 2]. EEG and MEG recordings provide a high 
temporal and spatial precision in highlighting brain ac-
tivity and malfunction, particularly in epilepsy diagnosis. 
MEG requires less knowledge regarding cerebral tissue 

to distinguish the origins of epileptic seizures. This could 
be a major cause to predispose the benefits of MEG on 
EEG [3, 4]. As a result, despite its cost, neurologists and 
biomedical researchers are exploring MEG as a supple-
mentary method for epilepsy diagnosis. Alternatively, 
numerous brain regions might be involved, either as 
propagation zones or as epileptic discharge generators 
[5-7]. To identify accurate EZ, neurologists depend on 
network connections of MEG characteristic signals [8, 9].
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Examining and assessing the network connection of 
MEG biomarkers (spikes and oscillatory events) [10-12] 
is required, beginning with source localization (forward 
and inverse issue) [13-15] and progressing to calculat-
ing connectivity measures [16]. Four distributed inverse 
methods are proposed to be investigated: minimum 
norm estimation MNE [17], dynamic statistical paramet-
ric maps dSPM [18], standardized low-resolution brain 
electromagnetic tomography sLORETA [19], and Maxi-
mum Entropy on the Mean MEM. To compare connec-
tivity measures of epileptic spiky and gamma oscillatory 
events, two connectivity metrics of each event are used.  
Functional connectivity can be computed using several 
approaches, like phase synchronization measures [14], 
amplitude envelope correlation [20], information theo-
retical approach [21], and other methods.

In this study, the effectiveness of the inverse problem 
approaches is evaluated by exploring different con-
nectivity metrics of two types of biomarkers to define 
seizure on set zones and epileptic network complexity. 
These inverse approaches (MNE, dsPM, sLoreta, MEM) 
are distributed methods that use the same initial as-
sumptions to construct active zones with alternative hy-
potheses. MNE normalizes the current density map and 
Minimum norm estimation (MNE). It has the advantage 
of not requiring a specific number of sources in advance. 
Whereas dsPM uses noise covariance for normalization, 
and substitutes noise covariance with data covariance. 
sLORETA supposes that the entire brain areas are ac-
tive within smoother maps. Finally, MEM is a technique 
for locating dispersed sources originally proposed that 
cortical parcels would be used to organize brain activ-
ity, with each active parcel. Hence, MEM can estimate a 
contrast of current density within each active parcel. 

Connectivity brain measures are intended to look at 
how cortical networks interact with each other.  There 
are three types of connection between regions: structur-
al ("directed functional connectivity"), functional ("non-
directed statistical associations"), and effective ("causal 
interactions"). Using Brainstorm, multiple connection 
measures are computed for directed and non-directed 
functional connectivity investigations. 

 Functional connectivity is estimated using Phase 
Locking Value (PLV) which is an alternative class of mea-
sures that considers only the relative phase of two sig-
nals by computing a phase locking value between them 
[22, 23]. The concept of phase locking is fundamental 
in dynamical systems and has been used in control sys-
tems (the phase-locked loop) as well as in the analysis 
of nonlinear, chaotic, and non-stationary systems. Since 
the brain is a nonlinear dynamical system, phase locking 
is a suitable method for quantifying the interaction of 
oscillatory gamma events. Phase Transfer Entropy (PTE) 
is an instantaneous phase time series, quantified by 
phase transfer entropy (PTE) [24]. PTE estimates whether 
the past of both source and target time series influences 
the ability to predict the target time series' future which 
is also suited for studying gamma networks. Correlation 

is a non-directed connectivity metric that measures the 
relationship of two time series. Without further prepro-
cessing of the input time series. Correlation is sensitive 
to volume conduction and is not frequency specific cho-
sen to determine spiky networks. Finally, GC is a func-
tional connectivity [25], developed in economics but re-
cently piqued the interest of the neuroscience commu-
nity since it enabled statistical influence to be estimated 
without the need for direct intervention [26] and also 
chosen to compute spiky networks. 

This preprocessing chain was applied on 5 pharma-
co-resistant epileptic subjects, where neurologists ex-
amined and proved the efficacy of studied biomarkers 
(spiky and gamma oscillatory events).

As a result, MEG concordant nodes were determined, 
and connection strength propagation delays and their 
cooperation in recognition of seizure onset zone SOZ 
were computed. Through 5 patients, sLORETA exhibits 
the highest concordant nodes and the lowest propaga-
tion delays, for both biomarkers. All proposed inverse 
problems within connectivity measures provide at least 
one part of SOZ and about 72% of nodes are detected by 
MEG and seen in iEEG. CG and PTE enhance the connec-
tion strength for spiky events and oscillatory activities 
respectively.

2. MATERIALS AND METHODS

2.1. MATERIALS

EEGLAB and Brainstorm Toolbox (a freely available col-
laborative tool for cerebral signal processing) was used 
for all analysis phases on "MATLAB" Mathwork, Natick, 
MA [27].

The explored signals were both MEG and iEEG for five 
pharmacoresistant subjects [28]. This research involved 
a magnetoencephalography MEG registration for 5 pa-
tients with drug-resistance epilepsy. Acquisition and pre-
processing steps were used in the clinical Neurophysiol-
ogy Department of Marseille's "La Timone" hospital. An 
experienced neurologist (M.G.) validated patients with 
constant and frequent epileptic spiky and gamma activ-
ity. Registration was made with closed eyes and no acti-
vation method or movement, a 151-gradiometer device 
(CTF Systems Inc., Port Coquitlam, Canada) was used to 
capture the MEG signal. 20 epochs of 5 s each of sam-
pling at 1025 Hz were recorded.

Intracerebral EEG signals were gathered as the Talai-
rach stereoscopic method [22], sampled at 512Hz. Clini-
cal, neurophysiological, and anatomical features of each 
patient as in [5] were taken into consideration to desig-
nate cerebral marks. CT scan and MRI examinations were 
detailed in [5]. 

In this study, for each subject, an average of 30 epilep-
tic spikes and gamma oscillations were investigated. In 
total, about 300 spiky events and oscillatory ones were 
studied [5]. 
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Additionally, the Institutional Review Committee of 
the French Institution of Health INSERM gave its approv-

al to our experiment. The clinical data for our patients is 
shown in Table 1 [5].

Patients Gender/ 
age Structural MRI Histological 

diagnosis
MEG spike 
occurrence

MEG: preop 
versus post-op Epilepsy surgery

Surgical outcome. 
Engel class 
(follow up)

1-BeA F17 R lateral 
occipitotemporal FCD FCD Subcontinuous Preoperative R occipitotemporal 

cortectomy Class 3 (8 years)

2-ZC F26 Normal Gliosis Abundant Preoperative L occipitotemporal 
cortectomy Class 3 (5 years)

3-BC F25 L premotor FCD FCD Abundant Preoperative L premotor 
cortectomy Class 3 (6 years)

4-DT M25 R basal 
occipitotemporal FCD FCD Abundant Preoperative R anterior temporal 

lobectomy Class 2 (2 years)

5-BoA F31 R parietal ischemia Gliosis Abundant postoperative R parietal 
cortectomy Class 4 (7 years)

Table 1. The clinical data for our patients

2.2. METHODS

Brainstorm, EEGlab [27], Fieldtrip toolbox, and MAT-
LAB (MathWorks, Inc.) tools were used for all signal pre-
processing. 

As in [5], spiky and oscillatory events were selected 
visually by an expert, and then a filtering step was ap-
plied to eliminate artifacts and overlap between ac-
tivities. Time windows of joined spikes and oscillations 
independently are made. FIR filtering is applied on 
each window: a band-pass filter [10 45] Hz  was used to 
eliminate slow component of spiky windows and [29] 
Hz for oscillatory windows. For both filters, the ripple 
amplitude is equal to Rp = 3 %, and the attenuation in 
the stop band is Rs = 30 dB. 

2.2.1.  Source Localization of MEG Signal

Forward Problem is a way to describe the head using 
analytical and numerical approaches such as bound-
ary element method (BEM), finite element method 
(FEM), and finite difference method (FDM). Since the 
thickness of our skull is not uniform across the head, 
MRI determines local conductivity characteristics. Fur-
thermore, the forward problem is solved as described 
in [13], by creating a multiple spheres head model for 
each patient. BrainVisa software was used to segment 
and mesh the cortex and scalp surfaces. Finally, Mat-
lab's Brainstorm toolbox is used to register the MRI and 
sensors of each analyzed patient [5-24].

Inverse problem is explored to define sources that 
generate scalp measurements (MEG in our case) to 
understand cerebral function and dysfunction [30, 13, 
14]. For epilepsy, the inverse problem of source local-
ization is solved to recognize relative regions of exces-
sive discharges and seizure buildup (damaged cerebral 
tissue [31]. An inverse problem is an underdetermined 
problem (multiple sources can yield the same potential 
field) so there is no unique solution. Therefore, to iden-
tify an effective solution, different hypotheses (neuro-
physiological, biophysical, and anatomical) as well as 
regularization approaches are tested and applied. Di-

polar source localization was investigated as a solution, 
however assumption about employed dipole number 
leads researchers to adopt scattered approaches.

The four proposed inverse problem methods are based 
on a 3D current source solution grid with fixed positions 
configuration that necessitates only regularization pa-
rameters to reduce the noise effect and ensure a stable 
source configuration. These techniques didn’t require a 
prior source number constraint as the dipolar solution 
did. They provide different aspects of source localization: 
from simplicity and computational efficiency of MNE to 
statistical robustness of dSPM, precision localization capa-
bilities of sLORETA, and incorporation of prior information 
in MEM. Moreover, these methods are suitable for analyz-
ing both spiky and oscillatory events, which are crucial for 
understanding the dynamics of epileptic seizures” [32].

In the next section, the explored four distributed in-
verse problem approaches: MNE, dSPM, sLORETA, and 
MEM are briefly described.

Minimum norm estimation (MNE)  

Minimum norm estimation (MNE) has the advantage 
of not requiring a specific number of sources in advance. 
On the other hand, it necessitates a regularization that 
may affect on chronological series estimation: cross-talk 
between sources. As a result, imposing a parsimony con-
straint on sources may be beneficial. An original solution 
of 3D current configuration that matches the analyzed 
signal within a  minimum intensity (smallest L2-norm) is 
offered by the minimum norm estimate (MNE) described 
by [33]. MNE was proposed by [33]. It achieved an ex-
ceptional 3D current configuration solution that fits the 
signal under within the lowest intensity (smallest L2- 277 
norm). This hypothesis can drown deeper sources since 
MNE focuses on superficial sources. The MNE formula is 
shown in Equation 1.

(1)

λ Indicates the regularization parameter, while C repre-
sents the noise covariance matrix.Weighted solutions 
of MNE may be found in dSPM, eLORETA, and cMEM 
(their formula is based on MNE sources, S_MNE).
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(2)

(3)

Standardized LOw Resolution brain electromagnetic 
tomography (sLORETA)

According to Pascual-Marqui RD [29], the entire brain 
regions are activated in sLORETA's smoother maps. 
sLORETA swaps the noise covariance with data covari-
ance, which  accounts for uncertain number of simul-
taneous source activations. The ratio of the covariance 
matrix of sources to the gain matrix is the inverse op-
erator L for the sLORETA technique. 

(4)

R represents the source covariance matrix, assumed 
to be the identity gains matrix.

Maximum Entropy on the Mean (MEM)

MEM is based on a probabilistic (Bayesian) technique 
to estimate current source intensities from the data's 
informative content. MEM explores cortical parcels to 
organize brain activity, with each parcel being active or 
inactive. MEM estimates the contrast of current density 
inside each active parcel. The MEM's primary premise is 
that brain activity is segmented into discrete units. As 
a result, a source's activity inside a patch is correlated 
with its neighboring sources. An essential notion that 
allows MEM to be sensitive to the geographic extent 
of sources on cortical surfaces is using a spatial model 
in the MEM framework [37]. Recently, MEM has been 
expanded to temporal frequency to locate oscillatory 
and synchronous generators.

2.2.2. Functional connectivity metrics

Measures of brain connectivity enable to define inter-
action of cortical network. There are three types of con-
nection between regions: structural ("directed function-
al connectivity"), functional ("non-directed statistical as-
sociations"), and effective ("causal interactions"). 

Multiple connection measures (for directed and non-
directed functional connectivity investigations) were 
determined using Brainstorm. Computing a bivariate 
measure between two interested geographic time se-
ries pairs is a standard method of performing connec-
tivity analysis. 

Each brain region can be seen as a node on a con-
nectivity graph representing resulting the connec-

tome, with connectivity metrics displayed above each 
graph edge. Functional connectivity was estimated us-
ing Phase Locking Value (PLV), Phase Transfer Entropy 
(PTE) for oscillatory gamma activities, and Correlation 
and Granger causality for spiky events. This choice was 
justified by the importance and the effect of the fre-
quency factor and the directionality (directed versus 
non directed). In Table 2, a summary of these functional 
connectivity metrics was gathered.

Table 2. Functional connectivity metrics

Metrics Domain Directionality Static(s) 
Dynamic(s)

Correlation Time Non directed S

Granger Causality Time Directed S

Phase Locking Value 
(PLV) Phase Non directed S

Phase Transfer 
Entropy(PTE) Phase Directed D

Phase Locking Value (PLV)

An alternative class of measures considers only the  
relative phase of two signals by computing a phase 
locking value between them [38, 22]. The concept of 
phase locking is fundamental in dynamical systems 
and has been used in control systems (the phase-
locked loop) as well as in the analysis of nonlinear, cha-
otic, and non-stationary systems. Since our brain is a 
nonlinear dynamical system, phase locking is a suitable 
method for quantifying cortical interactions. 

A more pragmatic reason for using PLV in studies of 
LFPs, EEG, and MEG is its resistance to amplitude fluctu-
ations (which may contain less information about inter-
actions) [39, 40]. PLV is an absolute value of the mean 
phase difference between two signals expressed as a 
complex unit-length vector [37-40]. If marginal distri-
butions of two signals are uniform and signals are inde-
pendent, the relative phase will be uniform and equal 
to zero, otherwise, (for strongly coupled signals), PLV 
approaches unity. PLV is frequently used to describe 
phase synchronization between two narrow-band sig-
nals. Consider a pair of real signals, S1(t) and S2(t), which 
have been band-pass filtered to a desired frequency 
range. The Hilbert transform can be used to obtain ana-
lytical signals from S1(t) and S2(t):

(5)

Using analytical signals, relative phase between z1(t) 
and z2(t) can be computed as,

(6)

Phase Transfer Entropy (PTE)

PTE is a directed connectivity measure that evalu-
ates transfer entropy (TE) between two instantaneous 

Dynamical Statistical Parametric Mapping (dSPM)

Dale et al. Suggest Dynamical Statistical Parametric 
Mapping (dSPM) as a different inverse problem solu-
tion. Dale et al. recommend a normalization based on 
a minimum norm estimate of each source noise (ob-
tained from the MNE noise covariance matrix) as an 
inspiration from MNE [34-36]. 

Equation 2 describes dSPM as a least-squares or 
weighted minimal norm solution.
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(7)

Where r is the correlation coefficient derived be-
tween two signals (two cortical areas), cov is the covari-
ance, var is the variance, and τ is the offset considered 
between studied signals.

Granger causality (GC) 

Granger causality (GC) is a technique of functional 
connectivity created by Clive Granger in the 1960s [25] 
and improved by John Geweke into its current form 
[41]. GC specializes in economics, but has lately attract-
ed the interest of the neuroscience community. 

Previously, neuroscience depended on lesions and 
stimuli applied to the nervous system portion to inves-
tigate their influence on others. However, GC offered 
statistical measures without requiring direct interven-
tion [26]. Even though GC has been extended to non-
linear, multivariate, and time-varying conditions.

In the time domain, this may be shown as follows: if X 
represents a signal, it may be represented using a linear 
autoregressive model estimate (AR model) in two ways:

(7)

(8)

p is the quantity of previous knowledge that will be 
used to forecast future samples, also known as model 
order. In both expressions, the first model X uses only 
its history (and present), but the second includes the 
past (and present) of a second signal y. The model con-
siders just past signals (k≥1) and ignores the current 
connection, making it less vulnerable to volume condi-
tions.

The measure of GC is defined as follows:

(9)

0 if var(e1)=var(2) and a non negative ifvar(e1)> var(2). 

var(e1)≥var(2) Always holds, as the model can only im-
prove when adding new.

3. RESULTS

In Fig. 1, active areas of selected epileptic spiky MEG 
data using MNE, dSPM, sLORETA, and MEM are depict-
ed. MNE, dSPM, and sLORETA methods produced nu-
merous active regions ROI (Region Of Interest), while 
MEM produced noticeably fewer active regions.

 The four distributed inverse problem methods are ex-
plored to evaluate the coupling rate between active 
regions of the subject using 20 scouts in each hemi-
sphere. For each Region of Interest (ROI), time series for 
both spiky and gamma oscillatory activities have been 
reconstructed.

Fig.1. Active regions using 4 inverse problem 
methods (MNE,dSPM,sLORETA, and MEM) of spiky 

events

The proposed connectivity metrics are computed: 
Phase Transfer Entropy (PTE), Phase Locking Value (PLV) 
for oscillatory events, cross- correlation (CC), and Granger 
Causality (GC) for spiky events, as non-directed and di-
rected functional connectivity analyses using Brainstorm.

 Connectivity scores are shown as links drawn be-
tween regions of interest. These ROI are displayed as 
nodes labeled along graph circumference with Inten-
sity threshold, (minimum or maximum connectivity. 

In Fig. 2, GC is presented as a timing directed static 
measure of patient 1 spiky connectivity networks ob-
tained by MNE, sLORETA, MEM, and dSPM.

phase time series [24]. TE calculates whether the his-
tory of both the source and target time series can affect 
the ability to forecast the target time series' future. 

In PTE, if a phase signal ∅x̃(t) causes the signal ∅ỹ(t), 
the mutual information between ∅ỹ(t) and the past of 
∅x̃(t) is computed.

Cross- Correlation (CC)

Correlation is a non-directed connectivity metric that 
measures the relationship of two time series, without 
further preprocessing of input time series. Correlation 
is sensitive to volume conduction and has no frequency 
specification. CC of signals gathered from active regions 
(showing a local energy peak) consists of estimating the 
degree of similarity between these locations using the 
correlation coefficient r presented in equation 6.
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Fig. 2. Epileptic spiky network connectivity for 
patient 1 using Granger Causality obtained by:MNE, 

sLORETA, MEM, and dsPM

For the following figure, lags are imposed in the 
range [-149, 150] ms, the maximum threshold in each 
method is set to 2.00, and distance filtering to 0 mm. 
Connectivity is depicted by a link with direction “in” 
or “out” thanks to this metric specification, a measure 
of directed functional connectivity is obtained.  dsPM 
shows a strong connection between ROI and MEM rep-
resents a weak connection.

Fig. 3 depicts the gamma oscillatory connectivity 
networks of patient 1 obtained by MNE, sLORETA, MEM, 
and dsPM using PLV as a phase non directed, static con-
nectivity metric.

Fig. 3. Patient 1 gamma network connectivity 
obtained by: MNE, sLORETA, MEM, and dsPM using 

PLV

Fig.4. Patient 1 nodes in common and several links 
for spiky events using 4 inverse problem techniques 

and two metrics (CC and GC)

Fig. 5. Patient 1 nodes in common and several 
links for gamma events using 4 inverse problem 

techniques and two metrics (CC and GC)

For both PLV and PTE, MEM depicts the lowest num-
ber of connections and nodes in common, hence the 
lowest complexity of epileptic oscillatory networks. 
Nevertheless, MEM was able to detect parts of SOZ. 

The connectivity strength of each metric of studied 
methods is computed, in which maximum, mean, and 
minimum values are applied, and depicted in Fig. 6.

GC as a functional connectivity metric provides high-

In Figure 3 lags in the range [-149, 150] ms are im-
posed. The maximum threshold in each method was 
set to 0.99 and distance filtering to 0 mm. A frequency 
band between 15 and 45 Hz (that admits the gamma 
band) was chosen.  MNE shows a strong connection 
between ROI and dsPM represents a weak connection. 

In Figure 4, we gathered nodes in common and a 
number of links between active regions for patient 1 
spiky events using 4 inverse problem techniques and 
two metrics (CC and GC) for each one.

For both CC and GC, MEM depicts the lowest number 
of connections and nodes in common, hence MEM pres-
ents the lowest complexity for epileptic spiky networks. 

In Fig. 5, nodes in common and several links between 
active regions for patient 1 gamma oscillatory events 
using 4 inverse problem techniques and two metrics 
(PLV and PTE) for each one are depicted.
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Fig. 6. Connection strength, by: MNE, sLORETA, MEM 
and, dsPM using CC, and GC for epileptic spiky events

Fig. 7. Maximum, median, and minimum distance 
between nodes of interest obtained for gamma 

oscillations networks by PTE and PLV

For both connectivity measures, MNE depicts the 
closest nodes of interest within an average distance of 
0.6 mm.

In Table 3, the study conducted on spiky and gamma 
events (using 4 distributed inverse problem techniques 
and 2 connectivity metrics) applied on patients in rec-
ognition of SOZ and propagation delays is gathered.

For the entire sets of patients that were investigated 
in this work, we noticed that the obtained network 
connectivity for both biomarkers and different inverse 
problems and metrics provide the same highlighted 
results (detection of SOZ, nodes in common between 
depth and surface , propagation delays and distance), 
within slight differences for patient 4.

Table 3. Recognition of SOZ per patient and 
Propagation delays

Spiky events Oscillatory events

Methods SOZ 
recognition

Average 
propagation 
Delays in ms

SOZ 
recognition

Average 
propagation 
Delays in ms

Non-
directed 

MNE
yes 22 yes 24

directed 
MNE yes 21 No 23

Non-
directed 
sLORETA

yes 18 yes 20

directed 
sLORETA yes 19 yes 19

Non-
directed 

dSPM
yes 22 yes 23

directed 
dSPM yes 22 yes 24

Non-
directed 

MEM
No 24 yes 25

directed 
MEM yes 23 no 23

er connection strength for entire investigated inverse 
problem techniques with a slightly important value for 
sLORETA

In Fig. 7, the maximum, median and, minimum dis-
tance between common MEG nodes for the distributed 
methods applied to epileptic oscillatory events of pa-
tient 1 are depicted.
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4. DISSCUSION AND CONCLUSION

In this study, the relationship between epileptic 
spiky, and oscillatory events for 5 pharmaco-resistant 
patients [5] was established. Rating the effectiveness of 
a given inverse problem combining two connectivity 
metrics (directed and non-directed one) in locating ep-
ileptic zones was suggested. To explain cortical regions 
and neuronal generators of excessive discharges , we 
first applied four inverse problem approaches: MNE, 
sLORETA, dSPM, and MEM. Each technique's network 
connectivity using two types of connectivity metrics 
was computed. We investigated CC and GC for spiky ac-
tivity to explore the causality effects on epileptic spiky 
events. Then, PLV & PTE for gamma oscillatory events 
were proposed to evaluate the phase synchronization 
effects on epileptic oscillatory networks. For both bio-
marker sLORETA depicts the highest number of nodes 
in common for directed and non directed functional 
connectivity; also it presents the closet nodes and the 
lowest delay propagation. The entire investigated in-
verse problem techniques and for directed and non di-
rected functional connectivity were able to recognize 
parts of SOZ. CG enhances the strength of connectivity 
for spiky networks and PTE for oscillatory events.

This proves the effect of causality on networks’ spiky 
topology. In this work, the distributed inverse tech-
niques depict different topologies of networks. Howev-
er, their results concerning nodes in the common delay 
of propagation and mutual between invasive and non 
invasive networks are quite close. Also, we noticed that 
directed and non directed metrics of connectivity did 
impact the complexity of networks for both biomark-
ers; but it doesn’t change radically the studied net-
works.  The techniques investigated could be consid-
ered as a prognosis tool for studying epileptic network 
connectivity. 

In this study, four distributed inverse methods were 
investigated in the context of defining epileptic net-
work connectivity tested on 2 types of biomarkers. 
A robust comparative analysis that enhances the ro-
bustness of each method in real clinical scenarios was 
proved. Moreover, advanced connectivity metrics di-
rected and non-directed are explored to test the to-
pology of network connectivity, then confronted with 
IEEG network connectivity. This dual approach gave a 
further level of analysis of epileptic network connectiv-
ity, addressing a gap in previous research which often 
focused on a single type of event, method, or metric. 
Our findings have significant implications for the pre-
surgical evaluation of epilepsy patients, by demon-
strating that all studied techniques successfully detect 
at least one part of the seizure onset zone (SOZ)

Hence to further examine and assess tools for the 
definition of exact cerebral generators responsible for 
excessive discharges and build-up of seizure using 
MEG signal, testing additional sets of patients as a fu-
ture work is suggested. A second track that could be 

also interesting is to compare outcomes of other dis-
tributed techniques, including ST-MAP (SpatioTempo-
ral-Maximum A Posteriori), MCE (minimum current es-
timates), and Eloreta (exact low-resolution brain elec-
tromagnetic tomography) applied on a combination of 
several registration techniques. 

5. REFERENCE

[1] D. Cohen, “Magnetoencephalography: evidence 

of magnetic fields produced by alpha-rhythm cur-

rents”, Science, Vol. 161, No. 3843, 1968, pp. 784-

786.

[2] O. Hauk, M. Stenroos, Matthias S. Treder, “Towards 

an objective evaluation of EEG/MEG source esti-

mation methods: the linear approach”, NeuroIm-

age, Vol. 255, 2022, pp. 1053-1119.

[3] R. Srinivasan, “Anatomical constraints on source 

models for high-resolution EEG and MEG derived 

from MR”, Technology in Cancer Research & Treat-

ment, Vol. 5, No. 4, 2006, pp. 389-399.

[4] A. Hadriche, N. Jmail, J. L. Blanc, L. Pezard, “Us-

ing centrality measures to extract core pattern of 

brain dynamic during the resting state”, Computer 

Methods and Programs in Biomedicine, Vol. 179, 

2019, pp. 104-985.

[5] N. Jmail, M. Gavaret, F. Bartolomei, P. Chauvel, J. M. 

Badier, C. G. Bénar, “Comparison of brain networks 

during interictal oscillations and spikes on mag-

netoencephalography and intracerebral EEG”, 

Brain Topography, Vol. 29, No. 5, 2016, pp. 752-

765.

[6] A. Necibi, A. Hadriche, N. Jmail, “Assessment of Ep-

ileptic Gamma Oscillations’ Networks Connectiv-

ity“, Proceedings of the International Conference 

on Intelligent Systems Design and Applications, 

12-14 December 2022, pp. 91-99.

[7] R. Jarray, N. Jmail, A. Hadriche, T. Frikha, “A Com-

parison between modeling a normal and an epi-

leptic state using the FHN and the epileptor mod-

el“, Innovations in Bio-Inspired Computing and 

Applications: Proceedings of the 8th International 

Conference on Innovations in Bio-Inspired Com-

puting and Applications, Marrakech, Morocco, 11-

13 December 2017, pp. 245-254.

[8] C. G. Bénar, L. Chauvière, F. Bartolomei, F. Wendling, 

“Pitfalls of high-pass filtering for detecting epilep-



883Volume 15, Number 10, 2024

tic oscillations: a technical note on "false" ripples”, 

Clinical Neurophysiology, Vol. 121, No. 3, 2010, pp. 

301-310.

[9] N. Jmail, R. Jarray, A. Hadrich, T. Frikha, C. Benar, 

“Separation between spikes and oscillation by 

stationary wavelet transform implemented on an 

embedded architecture”, Journal of the Neurolog-

ical Sciences, Vol. 381, 2017, p. 542.

 [10] F. Darvas, D. Pantazis, E. Kucukaltun-Yildirim, R. M. 

Leahy, “Mapping human brain function with MEG 

and EEG: methods and validation”, NeuroImage, 

Vol. 23, 2004, pp. S289-S299.

[11] F. Wendling, K. Ansari-Asl, F. Bartolomei, L. Sen-

hadji, “From EEG signals to brain connectivity: 

a model-based evaluation of interdependence 

measures”, Journal of Neuroscience Methods, Vol. 

183, No. 1, 2009, pp. 9-18.

[12] A. Palmini et al. “Intrinsic epileptogenicity of hu-

man dysplastic cortex as suggested by corticogra-

phy and surgical results”, Annals of Neurology, Vol. 

37, No. 4, 1995, pp. 476-487.

[13] M. Darbas, S. Lohrengel, B. Sulis, “Forward and in-

verse source problems for time-dependent elec-

troen cephalography”, Inverse Problems in Sci-

ence and Engineering, Vol. 4, 2022.

[14] A. Hadriche, I. Behy, A. Necibi, A. Kachouri, C. B. 

Amar, N. Jmail, “Assessment of effective network 

connectivity among MEG none contaminated 

epileptic transitory events”, Computational and 

Mathematical Methods in Medicine, Vol. 1, 2021, 

p. 6406362.

[15] Y. Dai , W. Zhang , D. L. Dickens , B. He, “Source Con-

nectivity Analysis from MEG and its Application to 

Epilepsy Source Localization”, Brain Topography, 

Vol. 25, No. 2, 2012, pp. 157-166. 

[16] C. W. J. Granger”, Investigating Causal Relations by 

Econometric Models and Cross-spectral Methods”, 

The Econometric Society, Vol. 37, 1969, pp. 424-

438.

[17] F. Bartolomei, P. Chauvel, F. Wendling, “Epileptoge-

nicity of brain structures in human temporal lobe 

epilepsy: a quantified study from intracerebral 

EEG”, Brain, Vol. 131, No. 7, 2008, pp. 1818-1830. 

[18] U. Malinowska, J. M. Badier, M. Gavaret, F. Bartolo-

mei, P. Chauvel, C. G. Bénar, “Interictal networks in 

magnetoencephalography”, Human Brain Map-

ping, Vol. 35, No. 6, 2014, pp. 2789-2805.

[19] C. G. Bénar, T. Papadopoulo, B. Torrésani, M. Clerc, 

“Consensus matching pursuit for multi-trial EEG 

signals”, Journal of Neuroscience Methods, Vol. 

180, No. 1, 2009, pp. 161-170.

[20] A. Bruns, R. Eckhorn, H. Jokeit, A. Ebner, “Amplitude 

envelope correlation detects coupling among in-

coherent brain signals”, Neuroreport, Vol. 11, 2000, 

pp. 1509-1514.

[21] M. S. Roulston, L. A. Smith, “Evaluating Probabilis-

tic Forecasts Using Information Theory”, Monthly 

Weather, Vol. 130, 2002, pp.1653-1660.

[22] R. D. Pascual-Marqui, M. Esslen, K. Kochi, D. Lehm-

ann”, Functional imaging with low-resolution 

brain electromagnetic tomography (LORETA): a 

review”, Methods and Findings in Experimental 

and Clinical Pharmacology, Vol. 24, 2002, pp. 91-

95.

[23] L. Marzetti, A. Basti, F. Chella, A. D’Andrea, J. 

Syrjala, V. Pizzella, “Brain Functional Connectivity 

Through Phase Coupling of Neuronal Oscillations: 

A Perspective From Magnetoencephalography”, 

Frontiers in Neuroscience, Vol. 13, 2019.

[24] M. Lobier, F. Siebenhühner, S. Palva, J. Matias Pal-

va, “Phase transfer entropy: A novel phase-based 

measure for directed connectivity in networks 

coupled by oscillatory interactions”, NeuroImage, 

Vol. 35, 2014, pp. 853-872.

[25] A. M. Dale et al. “Dynamic statistical parametric 

mapping: combining fMRI and MEG forhigh- reso-

lution imaging of cortical activity”, Neuron, Vol. 26, 

No. 1, 2000, pp. 55-67.

[26] J. Philippe, Lachaux, Eugenio, J. Martinerie, Fran-

cisco J. Varela, “Measuring phase synchrony in 

brain signals”, Human Brain Mapping, Vol. 8, 1999, 

pp. 194-208.

[27] N. Jmail et al. “A comparison of methods for sepa-

ration of transient and oscillatory signals in EEG”, 

Journal of Neuroscience Methods, Vol. 199, No. 2, 

2011, pp. 273-289.

[28] N. Jmail, M. Gavaret, F. Bartolomei, C.-G. Benar, 

“Despikifying SEEG signals using a temporal basis 



884 International Journal of Electrical and Computer Engineering Systems

set”, Proceedings of the 15th International Confer-
ence on Intelligent Systems Design and Applica-
tions, Marrakech, Morocco, 14-16 December 2015, 
pp. 580-584. 

[29] A. Delorme, S. Makeig, “EEGLAB: an open source 
toolbox for analysis of single-trial EEG dynam-
ics including independent component analysis”, 
Journal of Neuroscience Methods, Vol. 134, No. 1, 
2004, pp. 9-21.

[30] J. F. Geweke, “Measures of Conditional Linear De-
pendence and Feedback between Time Series”, 
Journal of the American Statistical Association, 
Vol. 79, 1984, p. 388.

[31] A. Hadriche, I. ElBehy, A. Hajjej, N. Jmail, “Evalua-
tion of techniques for predicting a build up of sei-
zure”, Proceedings of the International Conference 
on Intelligent Systems Design and Applications, 
13-15 December 2021, pp. 816-827.

[32] S. L. Bressler, A. K. Seth, “Wiener-Granger Causali-
ty: A well established methodology”, NeuroImage, 
Vol. 58, 2011, pp. 323-329.

[33] M. S. Hämäläinen, R. J. Ilmoniemi, “Interpreting 
magnetic fields of the brain: minimum norm es-
timates”, Medical & Biological Engineering & Com-
puting, Vol. 32, No. 1, 1994, pp. 35-42.

[34] L. Kossler, T. Cecchin, O. Casparay, A. Benhadid, 
“EEG-MRI Coregistration and Sensor Labeling Us-
ing a 3D Laser Scanner”, Annals of Biomedical En-
gineering, Vol. 39, No. 3, 2011, pp. 983-995.

[35] D. van't Ent et al. “Spike cluster analysis in neocor-
tical localization related epilepsy yields clinically 
significant equivalent source localization results 

in magnetoencephalogram (MEG)”, Clinical Neu-

rophysiology, Vol. 114, No. 10, 2003, pp. 1948-

1962.

[36] J. C. Mosher, R. M. Leahy, “Recursive MUSIC A 

framework for EEG and MEG source localization”, 

IEEE Transactions on Biomedical Engineering, Vol. 

45,1998, pp. 1342-1354.

[37] G. Pellegrino et al. “Accuracy and spatial prop-

erties of distributed magnetic source imaging 

techniques in the investigation of focal epilepsy 

patients”, Human Brain Mapping, Vol. 41, No. 11, 

2020, pp. 3019-3033.

[38] M. Florian, K. Lehnertz, D. Peter, E. Christian, “Mean 

phase coherence as a measure for phase synchro-

nization and its application to the EEG of epilepsy 

patients Physica D: Nonlinear Phenomena”, East 

European Journal of Psycholinguistics, Vol. 144, 

2000, pp. 358-369.

[39] M. Caparos, V. Louis-Dorr, F. Wendling, L. Maillard, 

D. Wolf, “Automatic lateralization of temporal lobe 

epilepsy based on scalp EEG”, Clinical Neurophysi-

ology, Vol. 117, No. 11, 2006, pp. 2414-2423.

[40] C. Grova, J. Daunizea, J. M. Lina, C. G. Bénar, H. Be-

nali, J. B. Gotman, “Evaluation of EEG localization 

methods using realistic simulations of interictal 

spikes”, Neuroimage, Vol. 29, No. 3, 2016, pp. 734-

753.

[41] P. Tass, M. G. Rosenblum, J. Weule, J. Kurths, A. 

Pikovsky, J. Volkmann, A. Schnitzler, H.-J. Freund, 

“Detection of n: m Phase Locking from Noisy Data: 

Application to Magnetoencephalography”, Physi-

cal Review Letters, Vol. 81, 1998, p. 3291.


