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Abstract – Low Power Wide Area Networks (LPWANs) support long-range communication that suits them for varied IoT applications 
such as asset tracking, environmental monitoring, agricultural management, work site monitoring, fleet management, and smart 
cities. Even with the large number of connected devices, LPWANs are more power efficient than traditional IoT networks. Long 
Range (LoRa) is a noteworthy LPWAN technology that employs the ISM band, which experiences congestion due to the growing 
IoT and smart network applications. LoRa networks can utilize the available TV white spaces to overcome the congestion problem. 
Performance enhancement of the LoRa network in terms of energy efficiency is a significant concern. This paper proposes, for the first 
time, Multi-Armed Bandit (MAB) to improve the performance of the LoRa network using TVWS. We have developed a novel algorithm, 
LoRaT-MAB, for TVWS-based LoRa, and results show that the mean rewards increase by about 12.5% over conventional LoRa and 
the energy consumption for TVWS-based LoRa using LoRaT-MAB decreases by about 11.7% over conventional LoRa. The findings are 
encouraging and provide a basis for further research on the TVWS-based LoRa and other IoT applications.

Keywords: Internet of Things, LPWANs, LoRa, TV White Spaces, Multi-Armed Bandit, UCB

1.  INTRODUCTION

The Internet is still expanding due to advancements 
in wireless and mobile technology. The rapid and easy 
adoption of the Internet of Things (IoT), thanks to the 
emerging new technologies, has changed the way we 
live and work. Low Power Wide Area Networks (LPWAN) 
are a leading network paradigm for IoT as they sup-
port range connectivity for tiny edge nodes with lower 
power and cost than conventional wireless networks. 
LPWANs provide scalability and can accommodate the 
varied IoT requirements, enabling applications includ-

ing smart metering, smart homes, and smart cities, 
tracking and monitoring applications such as wildlife, 
agriculture, industrial assets, infrastructure, and so on. 
Long Range (LoRa), Weightless-N, Weightless-P, SigFox, 
SNOW, IQRF, DASH7, RPMA, NB-IoT, and 5G are some of 
the LPWAN technologies. Semtech's LoRa LPWAN tech-
nology enables low power, low throughput, and long-
range communication. It employs spread spectrum 
modulation at the physical layer, which improves link 
budget and interference resistance. It also takes ad-
vantage of Forward Error Correction (FEC). It functions 
in the 433, 868, or 915 MHz Industrial, Scientific, and 
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Medical (ISM) band. It employs Chirp Spread Spectrum 
(CSS) modulation with quasi-orthogonal spreading 
factors and supports up to 50 kbps data rate [1]. 

With the expansion of wireless applications and due 
to the restricted availability, fixed resource allocation 
techniques are unable to meet the growing demand 
of frequency spectrum from the expansion. With cog-
nitive radio, underutilized TV bands and TV White 
Spaces (TVWS) may be made available for these kinds 
of applications. Without interfering with the primary li-
censed users' ability to communicate, cognitive radio 
makes it easier for secondary, unlicensed users to take 
advantage of the unused licensed bands. The White 
Space Devices (WSD) identify and use the unoccupied 
spectrum using spectrum sensing. These days, a lot of 
applications using 2.4 GHz ISM protocols, such as Wi-
Fi, Bluetooth, and others, are prevalent, particularly in 
indoor and urban environments. Herein, the data rate 
and Quality of Service (quality of service) are affected 
by interference and coexistence. Using the 5 GHz range 
for indoor communication raises the issue of fading 
brought on by obstructions. For such scenarios, TVWS 
can be used instead. Compared to the ISM band, the 
VHF and UHF bands show superior signal propagation 
and greater obstacle penetration.

Various TVWS applications have been researched in 
the last few years. Regulations governing the maxi-
mum duty cycle in the unlicensed ISM bands have a 
significant im-pact on network capacity. Performance 
is affected when node density is high. According to 
studies in [2], using TVWS for LPWAN may lessen co-
existence and interference problems. One potential 
solution for LPWANs operating in the unlicensed yet 
restricted spectrum is to employ non-ISM spectrum, 
including whitespaces [3]. Using whitespaces for LP-
WAN can significantly minimize ISM band conflict, 
even if it could require improved time synchronization, 
listen-before-talk functionality, and channel informa-
tion transmission. Since available spectrum is limited 
and unlicensed spectrum is susceptible to interfer-
ence, TVWS offers an excellent alternative to LPWANs. 
Studies have shown that current LPWAN technologies 
face challenges such as coexistence, coverage, lack of 
spectrum, mobility, scalability, and security. As LPWAN 
drives the visibly growing IoT domain, addressing these 
issues is imperative. The unlicensed ISM band is com-
monly used in most current LPWAN solutions. Access to 
this frequency range is not controlled at the global lev-
el except by duty cycle guidelines. An available TVWS 
can be used to deal with interference, coexistence, and 
scalability issues in LPWAN networks.

A LoRa-based LPWAN is constructed using stars to-
pology and consists of several nodes that use the CSS 
modulation technique and the LoRaWAN MAC layer 
protocol to communicate with a gateway. The gate-
ways send packets received from end devices to the 
network server [4]. Transmission channels, spread-
ing factors, transmit power, channel bandwidth, and 

transmission rate are the essential parameters that can 
be customized with LoRa modulation. The network's 
overall performance, coverage, capacity, time-on-air, 
transmission energy, and range are all impacted by the 
selection of these parameters [5]. One of the six spread-
ing factors and an available subchannel are used by the 
end devices to communicate with the gateway. When 
multiple devices use the same channel and spreading 
factor at the same time, a collision could happen. The 
likelihood of a collision increases as the number of end 
devices in the network increases, which leads to a de-
cline in network performance. In this situation, choos-
ing the best parameters to reduce interference and in-
crease energy efficiency may be done using machine 
learning techniques, which will ultimately improve 
network performance [6]. Adaptive transmission and 
efficient resource use are the two strategies for improv-
ing low power IoT energy efficiency [7]. 

In LoRa networks, resource distribution and param-
eter selection can be done via centralized or distrib-
uted methods. Devices have two options: either they 
allow the network to control the transmission power 
and data rate, or they take control themselves. The net-
work server manages the end node's transmission pa-
rameters. By adjusting the data rate, it lowers a node's 
transmit power. In this scenario, the network needs to 
know the node's transmitted power for roughly the last 
twenty transmissions. It then adjusts the data rate to 
estimate the transmit power for the upcoming trans-
mission and sends it to the node. The node then modi-
fies its parameters based on the data it receives from 
the server. This approach's drawback is that it can only 
be used in stable radio frequency scenarios in which 
the end nodes remain stationary [4]. In practice, the 
end node can be mobile, and hence, for the low-com-
plex network with uniformly distributed nodes, consid-
ering a single frequency channel and uniform transmit 
power, the best parameter selection is still challenging.

Additionally, the adaptive data rate approach has 
certain drawbacks where it as-signs SF to a node based 
on the uplink signal-to-noise ratio (lower SF for the 
nodes close to the gateway and higher SF for nodes 
away from the gateway). ADR may assign the same SF 
to all nodes that are closer together, which could re-
sult in collisions from using one SF more and not us-
ing the other SFs [8]. ADR also tends to use less energy 
but has significant packet losses [5]. In such situations, 
distributed learning algorithms could be employed so 
that the edge nodes can select the best parameters for 
enhancing the performance. 

The aim is to optimize energy efficiency and reduce 
interference at the edge nodes of LoRa-LPWANs that 
use the TVWS band for transmissions. These two LoRa 
network performance metrics are affected by the selec-
tion of the spreading factor. The network performance 
is also influenced by several other factors, including 
channel frequency, bandwidth, coding rate, and trans-
mission power. Multi-Armed Bandit (MAB) is reinforce-
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ment learning algorithms that conform to such a struc-
ture. A new strategy employing the MAB algorithms is 
proposed to achieve energy efficiency in this work. 

The significant contributions of this work are as giv-
en. First is the use of licensed TVWS for LoRa transmis-
sions in contrast to the typical use of the unlicensed 
spectrum to avoid possible congestion and improve 
LoRa network performance. Second is the use of MAB 
algorithm such as DUCB for TVWS-based LoRa is ex-
perimented first time in this work, as per our literature 
study. The third contribution is that we have also de-
veloped a novel algorithm, LoRaT-PLM, based on MAB, 
for the use of TVWS in LoRa, which demonstrates im-
proved performance and enhanced energy efficiency. 

The structure of the paper is as follows. Section 2 dis-
cusses the relevant works. A brief description of LoRa 
technology and TVWS is given in Section 3. In Section 
4, a novel policy for TVWS-based LoRa using MAB algo-
rithms is proposed. In Section 5, simulations conducted 
and results obtained are discussed, and Section 6 pres-
ents the conclusions.

2. RELATED WORK

Different approaches for the selection of transmission 
parameters that boost energy efficiency and enhance 
performance for IoT and LoRa-based LPWANs are be-
ing studied and investigated. There are roughly 6720 
possible configurations for a LoRa device based on 
the different transmit power levels, coding rates (CR), 
spreading factors (SFs), and bandwidths that can be 
used. As a result, choosing the optimal course of action 
to maximize network performance is extremely difficult. 
The technique developed by [9] examines the link and 
effectively decides a suitable transmission parameter 
value. The method performs channel estimation based 
on the data extraction rate and modifies the spreading 
factor to adapt to the changing channel. In dense net-
works, experiments show that the suggested scheme 
outperforms other spreading factor provisioning strate-
gies in terms of capacity and reliability [10]. Utilizing the 
K-means clustering algorithm for LoRa SF al-location of-
fers added flexibility, enhancing coverage likelihood and 
enabling uniform resource distribution [11]. 

Allocating resources at the end node through de-
centralized learning is an intriguing strategy [12]. To 
improve energy efficiency and reliability, the end de-
vice can choose various parameters for each packet 
transmission, including sub-channel, spreading factor, 
transmission power, and others. This method focuses 
on applying MAB algorithms. To lessen collisions with 
other nodes, the first application of learning algorithms 
on LoRa network devices is suggested. The MAB-based 
upper confidence bound (UCB) algorithm is used for 
channel selection in LoRa, and the experimental results 
show that it is possible to double the device's battery 
life with less memory and processing requirement and 
achieve better outcomes as compared to random se-

lection. These algorithms are lightweight and can be 
used to avoid interference coming from other gate-
ways. MAB-based GNU radio implementation also il-
lustrates how such approaches help improve network 
connectivity [13]. It suggests that both the UCB1 as 
well as TS are effective and attain convergence quickly 
in stationary environments; UCB1 learns more quickly 
than TS, while TS provides slightly superior average 
performance. If the end nodes in a network are based 
on learning algorithms, it is possible to accommodate 
more nodes. Recent works also analyze TS and UCB1 in 
conjunction with a time and frequency slotted ALOHA, 
validating an increase in packet delivery ratio even in 
non-stationary scenarios [14]. 

The EXP3 algorithm takes into account inter-spread-
ing factor collision, and adversarial MABs are used in 
the design of a simulator for allocating the resources 
in LoRa-based LPWANs [15] and improving the overall 
performance. The EXP3 algorithm's lengthy conver-
gence time is one of its limitations. Compared to EXP3, 
the improved version, the EXP3.S algorithm, requires 
less convergence time and is computationally efficient. 
It performs well for the non-uniform distribution of de-
vices, but the convergence rate might become worse 
as the number of parameters increases [16].

Reinforcement learning-based resource manage-
ment techniques that take into account the channel 
and energy correlation are also developed that ex-
hibit improved energy efficiency [17].  As dense LoRa 
network deployments experience more packet colli-
sions, a deep reinforcement learning-based transmis-
sion parameter assignment algorithm for LoRaWAN is 
proposed that demonstrates an enhanced packet de-
livery ratio [18]. A multi-agent cooperative Q-learning 
approach for resource allocation in LoRa networks 
demonstrates an improved packet delivery ratio and 
reduces energy consumption in a deep reinforcement 
learning-based PHY layer transmission parameter as-
signment algorithm for LoRaWAN [19]. A multi-agent 
Q-learning algorithm for dynamic allocation uplink 
power and SF in LoRa is designed to decrease the 
power requirement and improve reliability giving an 
advantage for signal-to-interference noise ratio (SINR)  
and data rate [20].  

Several studies have suggested employing stochas-
tic and adversarial-based distributed learning like up-
dated UCB (UUCB) and its variations, along with up-
dated EXP3 (UEXP3), to fine-tune the communication 
parameters of devices according to the surrounding 
conditions. The simulations yield encouraging results 
for enhancing low-power IoT networks' dependability 
and energy efficiency [6]. In recent times, scholars have 
also investigated the UCB for channel selection and 
various retransmission strategies based on UCB. The 
technique is equally efficient and raises the transmis-
sion rate in dense networks [21]. 

LoRa specifies the centralized adaptive data rate 
(ADR) algorithm. The studies show that various MAB 
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algorithms perform better in terms of energy con-
sumption and packet loss than the conventional ADR 
algorithm. From a cognitive radio (CR) perspective, 
MAB learning algorithms are also being studied for 
spectrum sensing and MAC perspectives. To improve 
detection efficiency in varying scenarios, a discounted 
UCB algorithm is proposed for cooperative spectrum 
sensing [22]. In terms of energy transmission, the re-
sults demonstrate higher throughput when compared 
to the current ADR method [23]. DUCB policy for fre-
quency band selection in a non-stationary CR is also 
studied, and according to the application require-
ments, discount functions and exploration bonuses are 
taken into account; as a result, the policy offers reduced 
regret [24]. In one of our previous works, new discount 
functions and exploration bonuses for DUCB were de-
veloped to meet LoRa requirements. In comparison to 
other existing algorithms, the developed algorithm ex-
hibits superior performance and lower complexity [25].

MAB has been used in literature for various wireless 
network applications for dynamic spectrum access, 
and modified algorithms have also been proposed. In 
[26], the authors investigate a dynamic spectrum ac-
cess problem as a budget-constrained MAB. A modi-
fied UCB-MAB algorithm is proposed for dynamic spec-
trum access and transmission power selection for data 
rate maximization, resulting in improved performance. 
Two Thompson sampling-based methods that detect 
the channel variations and adjust the channel access 
policy for dynamic spectrum access are suggested [27]. 
The methods proposed do not consider any informa-
tion exchange between the end nodes but display a 
better success rate. A deep learning-based approach 
for CR results in improved channel access success 
probability and reduced interference probability [28]. 
Implementation of UCB-based Reinforcement Learn-
ing (RL) algorithm for opportunistic spectrum access 
on real radio environment using USRP N210 platforms 
is demonstrated [29]. The UCB algorithm favors the 
best solution and converges faster, validating the use 
of RL for dynamic spectrum access. A new approach to 
a non-stationary MAB problem that uses the predictive 
abilities of a Large Language Model (LLM) to guide the 
decision-making process is introduced [30]. Conven-
tional bandit strategies such as epsilon greedy and 
UCB struggle in case of dynamic variations. An LLM-
informed policy that provides guidance dynamically 
exhibits improved performance. Wireless networks 
are emerging as self-evolving networks where the 
use of Generative AI (GenAI) can be beneficial. LLMs, 
a subfield of GenAI promise to facilitate autonomous 
wireless networks. A large model trained over various 
network data can be adapted to accomplish tasks, thus 
leading to what can be termed artificial general intel-
ligence-enabled wireless networks. The fast growth of 
LLM offers vast opportunities for network optimization 
and management in future networks [31]. A TVWS da-
tabase with a prediction feature that is suitable for dif-
ferent TV frequencies is suggested. It forecasts TVWS 

availability using RL depending on the time, day, loca-
tion, and device [32]. Studies show that there are sev-
eral tools employing geo-location spectrum databases 
to estimate and guide the TVWS availability to promote 
efficient radio frequency utilization and dynamic spec-
trum access [33].

In summary, there are databases available that pro-
vide information about the TVWS at a particular loca-
tion and time. MAB algorithms are shown to perform 
better for parameter selection in LoRa networks. TVWS 
database can be exploited in an LLM-like manner along 
with MAB for parameter selection with additional 
channels, giving the advantage of faster learning and 
enhanced success rate. We used a combination of an 
informed strategy along with the developed UCB-P-
1/2+O MAB algorithm [25] for parameter selection in 
TVWS-based LoRa.

3. LORA, TV WHITE SPACES AND MAB

3.1. LORA TECHNOLOgy 

LoRa employs the low-power CSS modulation tech-
nique [9] and LoRaWAN medium access control (MAC) 
[4]. LoRa can operate over different frequency ranges 
[34]. Although it typically utilizes unlicensed ISM bands 
like 433 MHz, 868 MHz, and 915 MHz, it operates in li-
censed bands as well [35]. The packets transmitted by 
an end node can be received by several gateways in the 
neighborhood, as shown in Fig. 1. 

Fig. 1. LoRa Network Architecture

Every gateway uses a backhaul (either satellite, cel-
lular, Ethernet, or Wi-Fi) to forward the packets to the 
network server for handling sophisticated and intricate 
tasks like adaptive data rates, sending acknowledg-
ments via the appropriate gateway, and eliminating 
unnecessary packets. The LoRa network's asynchro-
nous nodes only communicate utilizing pure ALOHA. 
The number of channels, data rate, and frequency of 
transmission by the nodes all affect capacity. Variations 
in the data rate and orthogonal signals are caused by 
various spreading factors. As a result, the gateway can 
receive several packets with different data rates on the 
same channel concurrently [4, 36]. There are also other 
options being investigated to improve coverage with 
minimal interference [37]. 
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Different parameters, including SF, CR, transmit pow-
er, frequency, and channel bandwidth, can be set for 
any LoRa device [10]. According to the rules, transmis-
sion power can be adjusted roughly in steps of 1 dB, 
ranging from 2 dBm to 17 dBm. A higher spreading 
factor corresponds to increased SNR, sensitivity, range, 
and packet airtime. Spreading factor is defined as the 
ratio of symbol rate to chip rate. Any value between 7 
and 12 can be chosen for SF [36]. A bandwidth of 125 
kHz, 250 kHz, or 500 kHz is typically used by LoRa net-
works. A larger bandwidth increases data rate but at the 
expense of decreased sensitivity. Forward error correc-
tion (FEC) is used by the LoRa modem, and its coding 
rate can be adjusted to 4/5, 4/6, 4/7, or 4/8. Although 
it lengthens time on air, a higher coding rate improves 
error prevention. For transmission, a LoRa packet con-
sumes an average amount of energy, as given by

(1)

where Pt is transmit power, Tpkt is transmission time, 
and Np is per packet transmissions required for success-
ful transmission. Tpkt depends on SF [36]; thus, selecting 
optimal SF can facilitate optimal energy consumption. 
If the SINR at the desired LoRa node is higher than the 
receiver sensitivity for a given SF, a signal is detected at 
the gateway. The signal power must be high, and the 
interference power must be low for a high SINR value. 
It is implied by the above equations that when SF ris-
es, sensitivity improves, and a lower SINR is needed. 
Time on Air (ToA) or packet time, average energy, and 
throughput are likewise low for lower SF. The likeli-
hood of a successful transmission decreases as the size 
of the network grows because there are more devices 
with the same SF. Achieving energy efficiency and in-
terference avoidance are always trade-offs. 

3.2. TV WHITE SPACES  

TVWS includes free bands at different times and some 
TV broadcast frequency bands that are unutilized as a 
result of TV services being digitalized. TVWS's lower 
frequency ranges (50–698 MHz) are better at passing 
through obstructions and are, therefore, less suscep-
tible to fading as well as multipath, allowing for indoor 
and other applications [35]. Because TVWS offers much 
bandwidth, it can also support several high-bit-rate ap-
plications. Sufficient TVWS may be generally accessible, 
in contrast to ISM bands, particularly in rural areas, be-
cause of the small number of broadcast stations [38, 39]. 
TVWS presents a promising option for numerous criti-
cal indoor and outdoor wireless applications due to its 
superior indoor penetration, higher spectral efficiency, 
and good propagation characteristics. Applications re-
quiring a broad transmission range could use TVWS. The 
Indian government has granted experimental licenses 
in the 470–590 MHz band, unlocking the possibility of 
using the TVWS spectrum. Numerous TVWS applications 
for home networks, smart metering, WLAN, and rural 
wireless broadband access are demonstrated by litera-
ture reviews. For LPWAN, several hardware and software 

platforms operate over different frequency ranges [35]. 
Presently, LoRa transceivers for 137 MHz to 1020 MHz 
frequency bands (Semtech SX126* and SX127* series) 
are available [36]. We have investigated the use of TVWS 
frequencies, primarily the licensed bands for LoRa, using 
MAB for optimal parameter selection.

3.3. MULTI-ARMED BANDIT ALgORITHM 

Multi-armed bandit is a reinforcement learning struc-
ture where an agent must choose arms or actions to 
maximize its cumulative reward. The end device must 
choose SF or a strategy s(t) = {SFs} from the provided 
set of SFs. The devices are unaware of their location or 
the state of the channel. Therefore, any SF that is a part 
of the set, s ∈ S may be chosen by the device. Each end 
device selects a strategy s(t) at each packet arrival time 
t based on a specific distribution over S, yielding a re-
ward of rs(t) ∈ {0, 1}. The transmission may be success-
ful or unsuccessful after the device transmits a packet 
after choosing a specific value for SF. The LoRa gateway 
notifies the device of its successful packet reception by 
sending an acknowledgment. The selection of SF that 
leads to a successful transmission and receipt of ac-
knowledgment can be modeled as the reward, while SF 
value can be modeled as the arm or action. It is apparent 
that the end device receives a reward of 1 if it receives 
an acknowledgment; otherwise, the reward is 0. The end 
device chooses an optimal value of SF based only on 
locally available information, i.e., the received acknowl-
edgment, and experiences the fewest collisions. Since 
the end nodes are dynamic, it is possible to model the 
SF selection problem as a non-stationary MAB problem.

Discounted UCB for LoRa:

Stochastic MAB algorithms such as TS and UCB are 
applicable for stationary distribution scenarios, where-
as the advanced DUCB algorithm is suitable for a non-
stationary problem. By using an appropriate discount 
factor, the UCB algorithm can be modified to suit a 
non-stationary problem. This is the idea behind the 
Discounted UCB algorithm. The discount factor gives 
more weightage to the most recent plays and averag-
es past rewards in the DUCB policy. This approach fits 
the time-varying wireless environment. Therefore, the 
DUCB policy can also be optimized by modifying the 
discount factor and exploration bonus to adapt to the 
varying and complex LoRa network environment. The 
DUCB algorithm core index Uk (t) is given as 

(2)

Xk(t) is the discounted average for exploitation, Bk(t) is 
the exploration bonus [24]. If the discount function is a 
power function that is defined as f(x)=γx, then the term 
Xk(t) can be written as

(3)

Here, Xk(t) gives the average reward of action k at time 
step t, s is the sample, B is the upper bound, γt-s denotes 
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the discount function, 1is
 is the indicator function with 

value 1 if true and 0 if false. The Bk(t) can be written as

(4)

where N is the maximum number of trials, i is the in-
dex of actions, Xk is the average reward for action k, Nk 
is number of times action k is chosen, ξ is the bias pa-
rameter. Nk(t) is given as

(5)

Multi-armed bandit algorithms such as DUCB can be 
modified to suit the LoRa networks. 

4. MAB ALgORITHM FOR TVWS-BASED LORA

The use of MAB algorithms such as modified Dis-
counted Upper Confidence Bound for LoRa using TVWS 
bands is discussed below subsections.

4.1. UCB-P-1/2+O ALgORITHM FOR LORA

In our previous work, an exhaustive study related 
to DUCB for LoRa is carried out and a modified DUCB 
policy for LoRa, UCB-P-1/2+O is proposed [26]. The core 
index of this policy is as given.

(6)

where Xk(t) is the discounted average with the discount 
function as [(N-x)/N]1/2. Fig. 2 illustrates the flowchart of 
the developed UCB-P-1/2+O policy, which is utilized by 
an intelligent node to choose the SF. 

The node first chooses any SF value from {SF} to trans-
mit a packet. The reward is equal to one if a packet is 
successfully received at the gateway, which sends an 
acknowledgment. If the packet is not received success-
fully, the reward is equal to zero and there is no acknowl-
edgment. The UCB-P-1/2+O policy is therefore updated, 
and the subsequent selection is carried out as per the 
revised policy.

4.2.  LORA OVER TVWS – PATH LOSS MODEL 
 (LORAT-PLM)

The received signal strength varies as a result of hills, 
trees, buildings, and other similar objects standing be-
tween the transmitter and the receiver; this phenom-
enon is known as shadowing. This effect is seen in wire-
less networks and TV broadcasts, and it must be taken 
into account when determining the appropriate trans-
mission power by adding a margin. A hybrid path loss 
model for LoRa transmissions over TVWS frequencies is 
developed after a thorough literature review and analy-
sis of the results of various existing path loss models for 
TV and LoRa transmissions [39]. Based on the Okumura 
Hata model, the proposed LoRa over TVWS – Path Loss 
Model (LoRaT-PLM) takes shadow fading into account 
as given. For urban settings

Fig. 2. Flowchart of UCB-P-1/2+O Policy

(7)

where Lu is the path loss in urban regions (dB), f is the 
transmission frequency (MHz), hB is the base station 
antenna height (m), hM is the mobile station antenna 
height (m), CH is a factor for antenna height correction, 
d is the distance between the transmitter and receiver 
in kilometers. For rural settings

(8)

where Lo is the path loss in open regions (dB), Lu is the 
average path loss from a small city form of the model 
(dB), and f is the transmission frequency in MHz. In (7) 
and (8), shadow fading is taken into account by the 
newly designed Cs, a correction factor with a log-nor-
mal distribution. When there is an obstruction in the 
line of sight, when one turns a corner, passes behind 
a large building, or enters a building, shadow fading 
can be experienced. The Cs for urban settings would be 
higher than those for rural ones because these cases 
are more frequent in urban settings than in rural ones.

4.3. LORAT- MAB ALgORITHM 

We developed a modified MAB algorithm, UCB P-
1/2+O algorithm, for parameter selection in a LoRa 
network [24]. The developed algorithm is analyzed for 
SF selection and gives better performance in terms of 
mean rewards and execution time. In terms of energy 
cost, the algorithm demonstrates enhanced energy 
efficiency as compared to other algorithms. This algo-
rithm is designed and the analysis is carried out in the 
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context of LoRa operating in the 867 MHz frequency 
band in India. The use of 470 - 590 MHz TVWS bands, 
specifically in the Indian context for LoRa, is further in-
vestigated by using the developed LoRaT-PLM model 
[39]. It is demonstrated that TVWS-based LoRa per-
forms better for path loss, energy consumption, and 
uplink delivery rate. Both the proposed approaches 
(MAB and TVWS) utilize different techniques for energy 
efficiency, be it parameter selection or the use of TVWS. 
The rationale is to combine the two approaches to get 
the advantages of both. It has been shown previously 
that the UCB P-½+O algorithm for LoRa at ISM bands 
performs better than conventional LoRa. Performance 
analysis of UCB P-½+O algorithm for LoRa at 470 MHz 
(TVWS) is carried out and compared with the conven-
tional LoRa at ISM band for mean rewards and energy 
consumption. It is observed that the UCB P-½+O algo-
rithm for LoRa at 470 MHz (TVWS) gives better rewards 
and the energy consumption is less as compared to the 
conventional LoRa at the ISM band. This corroborates 
the use of the UCB P-½+O algorithm for LoRa at TVWS 
frequencies. 

LoRaT-MAB algorithm uses the core index of the UCB-
P-½ +O algorithm. It works on the strategy of explore 
and exploit. The additional information on TVWS avail-
ability can be obtained from an authorized database. 
This information is used by the LoRaT-MAB algorithm 
to exploit the available channels, thus reducing the 
exploration requirements. The developed UCB-P-½+O 
algorithm, as given in (6), has the core index, which is 
derived from the standard DUCB policy as given in (2). 
It consists of the addition of two terms: Xk(t), which de-
cides the exploitation of the action depending on the 
discounted averages, and Bk(t), which decides the ex-
ploration of actions done by the policy. Based on this, a 
novel algorithm is proposed that exploits the database-
assisted information effectively to its benefit. This pres-
ents an important contribution as a new method to as-
sist the decision-making process of complex stochastic 
MAB problems. This type of decision-making can adapt 
to the changing rewards and their distribution pat-
terns and perform better in a non-stationary scenario. 
This approach can ensure better selection by the algo-
rithm, which will finally lead to improved performance 
[31]. The strategy to select the transmit parameters can 
be defined as explore or exploit according to the MAB 
concept as Strategy S = {explore, exploit}. The strategy 
to explore or exploit as decided by the UCB-P-½+O al-
gorithm is Sactual. The strategy to explore or exploit ac-
cording to the information from the TVWS database is 
Sinformed. The decision D to explore or exploit is made 
by the LoRaT-MAB algorithm, depending on the strate-
gies Sactual and Sinformed, given as

Decision D(Sactual, Sinformed)=
{'exploit', if both Sactual and Sinformed are 'exploit'}
Or {'explore', if Sactual &/ or Sinformed are 'explore'}

The flowchart of the developed LoRaT-MAB algo-
rithm is illustrated in Fig. 3.

Fig. 3. Flowchart of LoRaT-MAB Algorithm

The important steps of LoRaT-MAB algorithm are as 
given. At first, a query to the TVWS database is made. 
The database provides information about TVWS avail-
ability. The MAB policy state and the arm states are ob-
served, and then it is verified whether the channel se-
lected by the UCB-P-½+O MAB algorithm is free or busy 
and whether it should be used at that time instant or 
not. Depending on the data from the TVWS database, 
the channel is exploited if free; if the state is exploiting. 
Otherwise, a new channel is explored. The process is re-
peated for the subsequent trial.

5. RESULTS AND DISCUSSION

This section presents the performance analysis of 
the proposed LoRaT-MAB algorithm for LoRa at 470 
MHz (TVWS) and a comparison with the UCB-P-½+O 
algorithm and conventional LoRa using the Random 
Selection (RS) method. Table 1 lists the various simu-
lation parameters and their settings. All the methods 
compared consider the selection of SF as the primary 
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LoRa transmit parameter for selection. Uplink delivery 
rate (UDR) is the percentage of packets correctly re-
ceived at the gateway. The simulations also consider 
the designed LoRaT-PLM path loss model and it shows 
an improved uplink delivery rate [37, 39]. Results show 
that LoRaT-MAB gives better rewards, better success 
rate, and lower energy consumption.

Table 1. Simulation Parameters for TVWS-based LoRa

Parameters Values
End Devices 5

Area Radius 1 km 

Bandwidth 125 kHz 

Preamble Symbols 8

Packet Length 11

Header Disabled (H) 1

Data Rate Optimization Disabled (D) 0

Coding Rate 4/5

To investigate the performance of TVWS-based LoRa 
using the LoRaT-MAB algorithm, LoRa transmissions are 
simulated using 470 MHz transmission frequency. The 
results are compared with the performance of TVWS-
based LoRa using 470 MHz frequency and UCB-P-½+O 
algorithm, as well as conventional LoRa using ISM band 
transmission frequency. Fig. 4 shows the mean rewards 
per device in a multiple intelligent node scenario as a 
function of a number of trials.

Fig. 4. Mean Rewards vs. Number of Trials for LoRa 
with LoRaT-MAB and UCB-P-½+O,  

and Conventional LoRa

The results in Fig. 4 show that TVWS-based LoRa using 
the LoRaT-MAB algorithm gives better mean rewards per 
device than TVWS-based LoRa using the UCB-P-½+O al-
gorithm and the conventional LoRa using the ISM band. 
It is also observed that as the number of trials increases, 
the mean rewards also increase, as expected. For ex-
ample, the mean rewards for TVWS-based LoRa using 
LoRaT-MAB increase by about 12.5% over conventional 
LoRa and 8.3% over TVWS-based LoRa using UCB-P-½+O 
for 50 trials. It is also seen that the proposed LoRaT-MAB 

algorithm gives consistent rewards and outperforms the 
other two methods. Fig. 5 depicts the changes in aver-
age energy consumption for TVWS-based LoRa using 
the LoRaT-MAB algorithm. It is seen that when the Lo-
RaT-MAB algorithm is applied for TVWS LoRa, it results 
in lesser energy consumption than TVWS LoRa employ-
ing the UCB-P-½+O algorithm and also the convention-
al LoRa using the ISM band. For example, the energy 
consumption for TVWS-based LoRa using LoRaT-MAB 
decreases by about 11.7% over conventional LoRa and 
5.8% over TVWS-based LoRa using UCB-P-½+O for 50 
trials. It is also seen that the proposed LoRaT-MAB algo-
rithm consistently demonstrates less energy consump-
tion and outperforms the other two methods.

Fig. 5. Average Energy Consumption for LoRa with 
LoRaT-MAB and UCB-P-½+O,  

and Conventional LoRa

The consistent and enhanced performance of the pro-
posed LoRaT-MAB algorithm can be attributed to the 
fact that the algorithm benefits both the MAB and the 
TVWS database. The database query reduces unneces-
sary explorations and exploitations. Thus, this additional 
input from the TVWS database ensures that the decision 
to exploit or explore is more tolerant and robust to the 
non-stationary wireless channel environment.

The analysis discussed in the previous sections is 
carried out for conventional LoRa using ISM band 
and TVWS-based LoRa using UCB-P-½+O and LoRaT-
PLM algorithms separately. Instead of being executed 
separately, these methodologies can be combined. 
This would enable the LoRa end device to operate in 
the ISM band and TVWS band. Initially, the LoRa device 
would work in the ISM band using the UCB-P-½+O al-
gorithm. If the ISM band is occupied and the selected 
transmit parameters yield lesser rewards than the re-
quired threshold, the transmissions would shift to the 
TVWS frequencies according to the LoRaT-PLM algo-
rithm. In case the TVWS band operations also yield 
lesser rewards than the required threshold, the system 
will reset and repeat the process. The entire procedure 
is repeated for further trials. A combination of the 
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methodologies, such as making use of ISM and TVWS 
band channels and MAB algorithms, may increase the 
probability of successful transmissions, thus improving 
energy efficiency and network performance.

6. CONCLUSIONS

To improve the energy efficiency in LoRa along with 
the network performance, the UCB-P-½+O algorithm 
has been developed and investigated for ISM band 
LoRa. It is employed on TVWS-based LoRa transmis-
sions and exhibits improved performance compared 
to other studied methods. TVWS is beneficial in terms 
of interference avoidance, reduced path loss, and re-
duced energy consumption for LoRa networks. These 
approaches are combined, and a modified MAB algo-
rithm is developed, the LoRaT-MAB algorithm. Simula-
tion results validate the enhanced performance of the 
LoRaT-MAB algorithm for TVWS-based LoRa transmis-
sions. The methods are compared for the selection of 
SF as the transmit parameter and can be easily extend-
ed for multiple parameter selection. LoRaT-MAB also 
takes into account the channel frequency selection 
and displays better performance in terms of rewards 
obtained and energy consumption. Further, work can 
be carried out for the selection of multiple parameters 
simultaneously to increase the network performance. 
The findings serve as a foundation for future study of 
MAB-based algorithms, TVWS-based LoRa, and the use 
of such techniques for other machine-to-machine and 
6G applications.

7. ACKNOWLEDgMENT

The authors extend their appreciation to Taif Uni-
versity, Saudi Arabia, for supporting this work through 
project number (TU-DSPP-2024-132) and Dr. Vishwa-
nath Karad MIT World Peace University, Pune, India for 
their support and encouragement.

8. FUNDINg

The research was funded by Taif University, Taif, Saudi 
Arabia (TU-DSPP-2024-132).

9. REFERENCES: 

[1] J. Finnegan, “A Comparative Survey of LPWA Net-

working”, Zhejiang University International Doc-

toral Students Conference, China, 2018. 

[2] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Mar-

tinez, J. Melia-Segui, T. Watteyne, "Understanding 

the Limits of LoRaWAN", IEEE Communications 

Magazine, Vol. 55, No. 9, 2017, pp. 34-40. 

[3] A. Dongare et al. "OpenChirp: A Low-Power Wide-

Area Networking Architecture”, Proceedings of 

the IEEE International Conference on Pervasive 

Computing and Communications Workshops, 

Kona, HI, USA, 13-17 March 2017, pp. 569-574. 

[4] LoRaWAN for Developers, https://lora-alliance.

org/resource_hub (accessed: 2024)

[5] R. Kerkouche, R. Alami, R. Féraud, N. Varsier, P.  

Maillé, “Node-Based Optimization of LoRa Trans-

missions with Multi-Armed Bandit Algorithms”, 

Proceedings of the 25th International Conference 

on Telecommunications, Saint-Malo, France, 26-

28 June 2018, pp. 521-526.

[6] A. Azari, C. Cavdar, “Self-organized low-power 

IoT networks: A distributed learning approach”, 

Proceedings of the IEEE Global Communications 

Conference, Abu Dhabi, United Arab Emirates, 

9-13 December 2018, pp. 1-7.

[7] S. N. Ghorpade, M. Zennaro, B. S. Chaudhari, “IoT-

based hybrid optimized fuzzy threshold ELM mod-

el for localization of elderly persons”, Expert Sys-

tems with Applications, Vol. 184, 2021, p. 115500.

[8] M. N. Ochoa, A. Guizar, M. Maman, A. Duda, “To-

ward a Self-Deployment of LoRa Networks: Link 

and Topology Adaptation”, Proceedings of the 

International Conference on Wireless and Mobile 

Computing, Networking and Communications, 

Barcelona, Spain, 21-23 October 2019, pp. 1-7.

[9] M. Bor, U. Roedig, “LoRa Transmission Parameter Se-

lection”, Proceedings of the 13th International Con-

ference on Distributed Computing in Sensor Sys-

tems, Ottawa, ON, Canada, 5-7 June 2017, pp. 27-34.

[10] Q. Zhou, J. Xing, L. Hou, R. Xu, K. Zheng, “A Novel 

Rate and Channel Control Scheme Based on Data 

Extraction Rate for LoRa Networks”, Proceedings 

of the IEEE Wireless Communications and Net-

working Conference, Marrakesh, Morocco, 15-18 

April 2019, pp. 1-6. 

[11] M. A. Ullah, J. Iqbal, A. Hoeller, R. D. Souza, H.  Alves, 

“K-Means Spreading Factor Allocation for Large-

Scale LoRa Networks”, Sensors, Vol. 19, p. 4723. 

[12] C. Moy, “IoTligent: First World-Wide Implementa-

tion of Decentralized Spectrum Learning for IoT 

Wireless Networks”, Proceedings of the URSI Asia-

Pacific Radio Science Conference, New Delhi, In-

dia, 9-15 March 2019, pp. 1-4.

[13] L. Besson, R. Bonnefoi, C. Moy, “GNU Radio Imple-



768 International Journal of Electrical and Computer Engineering Systems

mentation of MALIN: Multi-Armed bandits learn-

ing for Internet-of-Things Networks”, Proceedings 

of the IEEE Wireless Communications and Net-

working Conference, Marrakesh, Morocco, 15-18 

April 2019.

[14] R. Bonnefoi, L. Besson, C. Moy, E. Kaufmann, J. 

Palicot, “Multi-Armed Bandit Learning in IoT Net-

works: Learning Helps Even in Non-stationary 

Settings”, Cognitive Radio Oriented Wireless Net-

works, Springer International Publishing, Vol. 228, 

2018, pp. 173-185. 

[15] D. T. Ta, K. Khawam, S. Lahoud, C. Adjih, S. Martin, 

“LoRa-MAB: A Flexible Simulator for Decentralized 

Learning Resource Allocation in IoT Networks,” 

Proceedings of the 12th IFIP Wireless and Mobile 

Networking Conference, Paris, France, 11-13 Sep-

tember 2019, pp. 55-62.  

[16] S. Gupta, B. Chaudhari, B. Chakrabarty, "Vulnerable 

network analysis using war driving and security 

intelligence," Proceedings of the International Con-

ference on Inventive Computation Technologies, 

Coimbatore, India, 26-27 August 2016, pp. 1-5.

[17] R. Hamdi, E. Baccour, A. Erbad, M. Qaraqe, M. Ham-

di, “LoRa-RL: Deep Reinforcement Learning for Re-

source Management in Hybrid Energy LoRa Wire-

less Networks”, IEEE Internet Things Journal, Vol. 9, 

No. 9, 2022, pp. 6458-6476.

[18] I. Ilahi, M. Usama, M. O. Farooq, M. U. Janjua, J. 

Qadir, “LoRaDRL: Deep Reinforcement Learning 

Based Adaptive PHY Layer Transmission Param-

eters Selection for LoRaWAN”, Proceedings of 

the IEEE 45th Conference on Local Computer Net-

works, Sydney, NSW, Australia, 16-19 November 

2020, pp. 457-460.

[19] A. Scarvaglieri, S. Palazzo, F. Busacca, “A light-

weight, fully-distributed AI framework for energy-

efficient resource allocation in LoRa networks”, 

Proceedings of the IEEE/ACM 16th International 

Conference on Utility and Cloud Computing, 

Taormina (Messina), Italy, December 2023, pp. 1-6.

[20] Y. Yu, L. Mroueh, S. Li, M. Terre, “Multi-Agent Q-

Learning Algorithm for Dynamic Power and Rate 

Allocation in LoRa Networks”, Proceedings of the 

IEEE 31st Annual International Symposium on Per-

sonal, Indoor and Mobile Radio Communications, 

London, United Kingdom, 31 August - 3 Septem-

ber 2020, pp. 1-5. 

[21] R. Bonnefoi, L. Besson, J. Manco-Vasquez, C. Moy, 

“Upper-Confidence Bound for Channel Selection 

in LPWA Networks with Retransmissions”, Pro-

ceedings of the IEEE Wireless Communications 

and Networking Conference Workshop, Marrake-

ch, Morocco, 15-18 April 2019, pp. 1-7.

[22] W. Ning, X. Huang, K. Yang, F. Wu, S. Leng, “Rein-

forcement learning enabled cooperative spec-

trum sensing in cognitive radio networks”, Journal 

of Communications and Networks, Vol. 22, No. 1, 

2020, pp. 12-22.

[23] G. Park, W. Lee, I. Joe, “Network resource optimi-

zation with reinforcement learning for low power 

wide area networks”, EURASIP Journal on Wireless 

Communications and Networking, Vol. 2020, No. 

1, 2020, p. 176-184.

[24] Y. Chen, S. Su, J. Wei, “A Policy for Optimizing Sub-

Band Selection Sequences in Wideband Spectrum 

Sensing”, Sensors, Vol. 19, No. 19, 2019, p. 4090.

[25] A. R. Askhedkar, B. S. Chaudhari, “Multi-Armed 

Bandit Algorithm Policy for LoRa Network Perfor-

mance Enhancement”, Journal of Sensor and Ac-

tuator Networks, Vol. 12, No. 3, 2023, p. 38.

[26] A. Amrallah, E. M. Mohamed, G. K. Tran, K. Sakagu-

chi, “Enhanced Dynamic Spectrum Access in UAV 

Wireless Networks for Post-Disaster Area Surveil-

lance System: A Multi-Player Multi-Armed Bandit 

Approach”, Sensors, Vol. 21, No. 23, 2021, p. 7855.

[27] S. Ye, T. Wang, S. Wang, “Thompson Sampling-

Based Dynamic Spectrum Access in Non-Station-

ary Environments”, IEEE Transactions on Cognitive 

Communications and Networking, Vol. 9, No. 3, 

2023, pp. 593-603.

[28] X. Wang, Y. Teraki, M. Umehira, H. Zhou, Y. Ji, “A Us-

age Aware Dynamic Spectrum Access Scheme for 

Interweave Cognitive Radio Network by Exploit-

ing Deep Reinforcement Learning”, Sensors, Vol. 

22, No. 18, 2022, p. 6949.

[29] C. Moy, A. Nafkha, M. Naoues, “Reinforcement 

learning demonstrator for opportunistic spec-

trum access on real radio signals”, Proceedings of 

the IEEE International Symposium on Dynamic 



769Volume 15, Number 9, 2024

Spectrum Access Networks, Stockholm, Sweden, 

29 September - 2 October 2015, pp. 283-284. 

[30] J. De Curtò, I. De Zarzà, G. Roig, J. C. Cano, P. Man-

zoni, C. T. Calafate, “LLM-Informed Multi-Armed 

Bandit Strategies for Non-Stationary Environ-

ments”, Electronics, Vol. 12, No. 13, 2023, p. 2814.                                         

[31] A. Rao, B. Chaudhari, "Development of LoRaWAN 

based Traffic Clearance System for Emergency 

Vehicles," Proceedings of the Fourth International 

Conference on I-SMAC (IoT in Social, Mobile, Ana-

lytics and Cloud), Palladam, India, 7-9 October 

2020, pp. 217-221.

[32] A. Pakzad, R. M. Manuel, L. Materum, “TVWS Geo-

location Database for Secondary-User TVWS De-

vices for Spectrum Forecasting”, EPSTEM, Vol. 21, 

2022, pp. 188-195.

[33] A. Lysko, L. Mfupe, "Television Whitespace en-

abling rural and utility connectivity with CSIR 

geolocation spectrum database technology”, Pre-

sented in CSIR Conference, November 2020.

[34] LoRa SX1276 Datasheet, https://www.semtech.

com/products/wireless-rf/lora-connect/sx1276 

(accessed: 2024)


