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Abstract – The internet has become indispensable for modern communication, playing a vital role in the development of smart cities 
and communities. However, its effectiveness is contingent upon its security and resilience against interruptions. Intrusions, defined 
as unauthorized activities that compromise system integrity, pose a significant threat. These intrusions can be broadly categorized 
into host intrusions, which involve unauthorized access and manipulation of data within a system, and network intrusions, which 
target vulnerabilities within the network infrastructure. To mitigate these threats, system administrators rely on Network Intrusion 
Detection Systems (NIDS) to identify and respond to security breaches. However, designing an effective and adaptable NIDS capable of 
handling novel and evolving attack strategies presents a significant challenge. This paper proposes a deep learning-based approach 
for NIDS development, leveraging Self-Taught Learning (STL) and the NSL-KDD benchmark dataset for network intrusion detection. 
The proposed approach is evaluated using established metrics, including accuracy, F-measure, recall, and precision. Experimental 
results demonstrate the effectiveness of STL in the 5-class categorization, achieving an accuracy of 79.10% and an F-measure of 
75.76%. This performance surpasses that of Softmax Regression (SMR), which attained 75.23% accuracy and a 72.14% F-measure. 
The paper concludes by comparing the proposed approach's performance with existing state-of-the-art methods.
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1.  INTRODUCTION

An intrusion detection system (IDS) [1] analyzes and 
monitors an organization's network devices [2]. If an in-
vasion is identified, this system notifies users and stops 
additional harm. The two types of intrusion sensing 
systems are anomaly-dependent network intrusion de-
tection systems (ANIDS) [3] and signature-dependent 
network intrusion detection systems. SNIDS [4], such 
as Snort, come pre-configured with attack signatures. 
To detect a compromise in network security, traffic is 
compared to the signatures that have been applied. 
If an ADNIDS identifies a deviation from normal traffic 
patterns, the observed network traffic is labeled as an 
intrusion. SNIDS are useful for detecting known threats 
since they have a high detection accuracy and a low 
false alarm rate. Due to the limited number of attack 
signatures that can be pre-installed, it is difficult for an 
IDS to recognize new or inventive attacks [5-9].

ADNIDS, on the other hand, are very successful in 
locating previously undiscovered, unique threats. 
Even though they have a higher rate of false posi-
tives, ADNIDS have gained considerable recognition 
in the research community due to their potential for 
identifying new attacks. Two impediments hinder the 
development of effective and adaptable NIDS capable 
of protecting against unknown future threats. Firstly, 
the sheer volume of information available makes it 
challenging to select suitable criteria for identifying 
anomalies within network data. Since attack methods 
constantly change and evolve, traits effective for one 
type of attack may be ineffective for another. Currently, 
insufficient labeled traffic data from real networks is 
available for developing effective NIDS. Creating such 
a labeled dataset from raw, real-time network traffic 
traces requires significant effort and time. Network 
managers are very cautious about disclosing security 
breaches within their networks, as they strive to pro-
tect both individual user privacy and the organization's 
trade secrets related to internal network structure [5]. 
NIDS are designed to distinguish between normal and 
anomalous traffic patterns.

Many NIDS employ feature selection to achieve more 
accurate classifications, which involves selecting a sub-
set of meaningful features from recorded traffic. Fea-
ture selection can help reduce the risk of overfitting 
during training by removing irrelevant features and 
noise [6]. Comprehending sounds, images, and speech 
using deep learning algorithms is a relatively recent de-
velopment. hese approaches enable the construction 
of effective feature representations from large amounts 
of unlabeled data, which can then be applied to small-
er, labeled datasets for supervised classification. Data 
from both labeled and unlabeled distributions may 
originate from various sources, but they should ideally 
be related [7].

Deep learning approaches were expected to address 
the challenges of building effective NIDS [8]. It is fea-

sible to gather unlabeled network traffic data from vari-
ous sources across the network and then apply deep 
learning methods to extract useful feature representa-
tions. These features can then be used for supervised 
classification on a smaller, labeled dataset containing 
both normal and anomalous traffic. Such a dataset 
could be used to analyze traffic trends. Collecting la-
beled traffic data is possible within a controlled, secure, 
and isolated network environment [10].

Self-taught learning (STL) is a powerful approach for 
Network Intrusion Detection Systems (NIDS), providing 
a robust mechanism for detecting anomalous patterns 
in network traffic. STL typically utilizes large amounts 
of unlabeled network data to train deep learning mod-
els without requiring annotations. This data, often 
unstructured, undergoes feature extraction, where 
important characteristics such as packet size, protocol 
type, and source/destination IP addresses are extract-
ed. A deep learning model can then leverage unsuper-
vised learning, often through an autoencoder archi-
tecture, for pretraining. During pretraining, the model 
aims to minimize the difference between the original 
input and its reconstruction, effectively learning to rep-
resent normal network behavior. This process allows 
the model to encode normal network behavior. During 
deployment, deviations from this learned behavior can 
indicate anomalies, such as intrusions or attacks.

Once deployed, the trained model continuously 
monitors all incoming network traffic. Leveraging the 
learned representations, the model can effectively 
identify anomalies based on emerging patterns in 
real-time. This proactive approach enables network 
administrators to preempt or promptly detect threats 
before they escalate into more serious security breach-
es. Moreover, the model can adapt to new threats as it 
continuously learns from new data, refining its under-
standing of normal network behavior. Therefore, STL, 
particularly when applied to deep learning models for 
NIDS, offers a promising approach to strengthening 
cybersecurity and defending against evolving network 
threats. 

The following are our contribution towards this re-
search work:

•	 To achieve this goal, we propose a novel deep 
learning approach for NIDS based on self-taught 
learning, utilizing sparse autoencoders and soft-
max regression.

•	 This approach enabled the development of our 
proposed NIDS. We evaluate its performance on 
the NSL-KDD intrusion dataset, a widely used 
benchmark derived from the original KDD Cup 
1999 dataset.

•	 We evaluate the performance of our STL-based 
NIDS on the NSL-KDD dataset and compare its ef-
fectiveness with existing methods.
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2.  RELATED WORK

It is important to note that this discussion focuses 
solely on studies that utilized the NSL-KDD dataset to 
evaluate effectiveness. Henceforth, any mention of a 
dataset refers to NSL-KDD. One of the earliest studies 
[11] employed Artificial Neural Networks (ANNs) with 
enhanced backpropagation to develop an intrusion 
detection system. This research utilized the entire train-
ing dataset, allocating 70% for training, 15% for valida-
tion, and 15% for testing. As anticipated, performance 
degraded when evaluated on unlabeled data. The 
training dataset will be analyzed. Another study [12] 
employed the J48 decision tree classifier with 10-fold 
cross-validation. This experiment utilized a reduced 
feature set of 22 attributes instead of the complete set 
of 41. Similar research [13] demonstrated that the Ran-
dom Forest model achieved the lowest false alarm rate, 
surpassing other supervised tree-based classifiers.

Numerous two-level classification schemes have also 
been proposed. One study [14] used a Discriminative 
Multinomial Naive Bayes (DMNB) model as the base 
classifier, with nominal features converted to binary us-
ing a controlled filtering approach at the second level 
and 10-fold cross-validation. This concept was further 
developed using Random Forest and Ensembles of Bal-
anced Nested Dichotomies (END) [15]. END is an abbre-
viation for ensembles of balanced nested dichotomies. 
As expected, this approach resulted in an increased de-
tection rate and a reduced false positive rate.

Another study [16] proposed a novel two-level tech-
nique that first applies Principal Component Analysis 
(PCA) for feature reduction and then utilizes a Support 
Vector Machine (SVM) for classification, achieving high 
detection accuracy. While this approach, using the full 
training dataset with 41 features, demonstrated prom-
ising results, reducing the feature set to 23 improved 
the detection accuracy for specific attack types, albeit 
with a slight decrease in overall performance. Build-
ing upon their previous work, the authors of [17] first 
ranked features based on information gain and then 
applied behavior-based feature selection to reduce the 
feature set to 20. This approach led to an improvement 
in the reported accuracy on the training dataset. The 
secondary group of experiments utilized both training 
and testing datasets. An earlier study [18] combined 
fuzzy classification with a genetic algorithm, achiev-
ing a detection accuracy of at least 80% with a 1% false 
positive rate.

One notable study [19] revealed a significant per-
formance degradation when training and testing data 
were combined. This research employed unsupervised 
clustering techniques to address its research questions. 
Similarly, another study [20] utilizing both training and 
testing datasets employed a k-nearest neighbors ap-
proach, achieving slightly higher detection accuracy 
and a lower false positive rate. Compared to the SVM-
RBF approach, the Optimum-Path Forest (OPF) strat-

egy, which utilizes graph partitioning for feature clas-
sification, has been shown to achieve a higher detec-
tion rate, although it is not as widely adopted as other 
techniques. The study [21] employed a deep learning 
approach, utilizing a Deep Belief Network (DBN) for 
feature selection and a Support Vector Machine (SVM) 
for classification. This approach, when trained on the 
training data, achieved an accuracy of approximately 
92.84%. 

Our research, which also utilizes both training and 
testing datasets, builds upon these earlier works by 
exploring the application of deep learning for NIDS. 
The authors of [22] adopt a semi-supervised learning 
scheme, similar to the one used in [23]. Their technique 
was validated using real-world data from the KDD Cup 
1999 dataset, which was also used for training. Our ap-
proach differs in that we specifically focus on the NSL-
KDD dataset to evaluate the feasibility of using deep 
learning for NIDS. Furthermore, we employ a sparse 
autoencoder for completely unsupervised feature 
learning. The authors of [24] propose a deep learning 
approach for network traffic analysis based on sparse 
autoencoders. However, instead of focusing on intru-
sion detection, their research concentrates on identify-
ing anomalous protocols within TCP traffic.

3.  METHODOLOGY 

3.1. SELF-TAUGHT LEARNING (STL)

Self-Taught Learning (STL) is a deep learning-based 
classification technique that operates in two stages. 
The first stage, known as Unsupervised Feature Learn-
ing (UFL), focuses on constructing robust feature rep-
resentations from a large volume of unlabeled data. 
This type of learning, free from human supervision, 
relies solely on the inherent structure within the data. 
The learned representation is then utilized in the sub-
sequent stage to categorize labeled data. A key as-
sumption in STL is that even if the unlabeled and la-
beled data originate from different distributions, there 
should be some underlying relationship or shared fea-
tures between them. Fig. 1 presents a diagrammatic 
representation of the STL architecture.

Two common approaches for UFL are Gaussian Mix-
tures and Sparse Autoencoders. This study employed a 
Sparse Autoencoder for feature learning due to its sim-
plicity and efficiency. In a Sparse Autoencoder, the roles 
of the traditional neural network layers (input, hidden, 
output) are reinterpreted. The input layer of the neural 
network corresponds to the output layer of the Sparse 
Autoencoder, while the hidden layer remains the same. 
Finally, the output layer of the neural network aligns 
with the input layer of the Sparse Autoencoder. Both 
the output and input layers consist of "N" nodes, while 
the hidden layer is composed of "K" nodes. The Sparse 
Autoencoder aims to reconstruct the original input 
data at its output layer, thereby learning a compressed 
and meaningful representation in the hidden layer.
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The sigmoid function, g(z)=1/(1+exp(-z)), is used to 
activate the nodes in the hidden and output layers, in-
dicated by hW, b, respectively:

(1)

(2)

The cost function minimized during backpropaga-
tion in a sparse autoencoder is represented by Equa-
tion (2). This function consists of three key components:

•	 Reconstruction Error: The primary term represents 
the average sum-of-squared errors between the in-
put and reconstructed output over all "m" training 
data points. This term encourages the autoencoder 
to learn a faithful representation of the input data.

•	 Weight Decay: The second term incorporates 
weight decay, controlled by a weight decay param-
eter. This term helps prevent overfitting by penaliz-
ing large weights, thus promoting a smoother and 
more generalizable model.

•	 Sparsity Penalty: The first term in the equation is the 
sparsity penalty factor. This term, crucial for enforc-
ing sparsity in the hidden layer, encourages most 
hidden units to have low average activation levels.

Equation (3) defines the sparsity penalty using the 
Kullback-Leibler (KL) divergence:

(3)

Where the sparsity penalty term β is governed by a 
sparsity limited parameter “ρ” having a measure rang-
ing 0 to 1, where parameter's value can be any number 
between 0, 1. The KL(ρ||ρˆj ) reaches its minimum value 
when ρ = ρj, in which j denotes the average activation 
of hidden unit “j” over all training inputs “x”. In other 
words, the penalty is minimized when the average acti-
vation of each hidden unit closely matches the desired 
sparsity level (ρ).

Once the optimal parameters W, b1 are learned from 
the unlabeled data (xu) using the sparse autoencoder, 
we can generate feature representations for the la-
beled data (xl). This is achieved by calculating: 

a = hW, b1 (xl). The modified representation of the 
attributes is used in the next step. 

The sparsity penalty factor, appearing as the first 
term in the equation, ensures that the hidden layer 
maintains relatively low average activation levels. This 
factor, formally known as the Kullback-Leibler (KL) di-
vergence, is defined in Equation (3).

The sparsity penalty term, β, is governed by the 
sparsity parameter "ρ," which ranges from 0 to 1. The 
KL(ρ||ρˆj) reaches its minimum value when ρ = ρj, where 

“j” represents the average activation of hidden unit “j” 
over all training inputs “x”.

We first determine the optimal parameters W, b1 us-
ing the sparse autoencoder on the unlabeled data (xu). 
Subsequently, we assess the feature representation for 
the labeled data (xl) using these learned parameters. 
This representation, denoted as a, is calculated as: a = 
W, b1 (xl).

3.2. WORKING OF STL

STL has been successfully incorporated into deep 
learning models for Network Intrusion Detection Sys-
tems (NIDS). Below is a simplified explanation of the 
STL workflow:

Unlabeled Data Collection: Initially, a large data-
set of raw network traffic data is collected. This data 
encompasses various network packets and flows but 
lacks any labels indicating whether the traffic is benign 
or malicious.

Feature Extraction: This stage involves extracting 
relevant features from the raw network data. These 
features may include packet size, protocol type, source 
and destination IP addresses, port numbers, and other 
characteristics. Feature extraction enables the model to 
identify patterns and predict future network behavior.

Pre-training on Unlabeled Data: A deep learning 
model, such as an autoencoder or another type of 
artificial neural network, is trained on the unlabeled 
data. The model's objective during pre-training is to 
reconstruct the input data accurately, thereby learning 
meaningful representations by minimizing the differ-
ence between the input and its reconstruction.

Fine-tuning on Labeled Data: The pre-trained mod-
el is then fine-tuned using a smaller labeled dataset. 
This step may not always be necessary, depending on 
the size of the labeled data and the pre-trained model's 
performance.

Intrusion Detection: Once trained, the model func-
tions as an intrusion detection system. During infer-
ence, the model receives new network traffic data 
and classifies it as either benign or malicious based on 
learned patterns. If the model detects any anomalies 
or deviations from normal behavior, it triggers an alert.

Feedback Loop: The NIDS can incorporate a feed-
back mechanism where the generated alerts are used 
to further improve the model's performance over time. 
This feedback loop allows for continuous learning and 
adaptation to new threats.

3.3. DATASET

This study utilizes the NSL-KDD dataset, a modified 
and refined version of the original KDD Cup 99 dataset. 
The KDD Cup 99 dataset, based on network traffic col-
lected during the 1998 DARPA IDS assessment program, 
has undergone significant changes. The original data-
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set consists of raw network data gathered over seven 
weeks of training and two weeks of testing. The test-
ing data includes several attack types absent from the 
training data. This deliberate omission aims to simulate 
real-world scenarios where novel attacks, often inspired 
by previous ones, emerge. This characteristic enhances 
the dataset's ability to evaluate the accuracy of intrusion 
detection systems in identifying unknown threats. The 
NSL-KDD dataset comprises five million TCP/IP connec-
tion records for training and two million for testing.

For many years, the KDD Cup dataset served as a 
standard benchmark for evaluating NIDS. However, a 
significant drawback is the high redundancy within the 
dataset. A substantial portion of the records in both the 
training (78%) and testing (75%) sets are duplicates. 
This redundancy biases learning algorithms towards 
the most frequent attack types, resulting in poorer per-
formance on less common but potentially more dan-
gerous attacks. For example, a simple machine learn-
ing model achieved a minimum accuracy of 98% on 
the training data but only 86% on the testing data. This 
discrepancy makes it challenging to compare different 

IDSs and training methods fairly. The NSL-KDD dataset 
addresses these limitations. It improves upon the KDD 
Cup dataset in two key ways:

1. Redundancy Removal: Duplicate records are re-
moved from both the training and testing sets.

2. Difficulty-Based Sampling: Records are categorized 
based on their difficulty level for learning algo-
rithms. The NSL-KDD dataset then samples records 
randomly from various difficulty levels, ensuring a 
more balanced and representative distribution of 
attack types.

The training data comprises 23 traffic classes, consist-
ing of 22 attack classes and one normal class. The test 
data set is more diverse, containing 39 traffic classes. 
These include 21 attack classes present in the train-
ing data, 16 novel attack classes, and one normal class. 
Each attack class falls into one of four categories based 
on its intended impact: Probing, Denial of Service 
(DoS), Remote to Local (R2L), and User to Root (U2R). 
Table 1 presents the distribution of normal and attack 
traffic within the training and testing sets.

Fig. 1. STL NIDS architecture
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Table 1. Distribution of Normal and Attack Traffic in 
the NSL-KDD Dataset

Traffic Training Test
Normal 67343 9711

Attack

DoS 45927 7458

U2R 52 67

R2L 995 2887

probe 11656 2421 

4. RESULTS AND DISCUSSION

The following describes the two methods employed 
to evaluate the NIDS performance. The first method 
utilizes the entire dataset for both training and testing, 
resulting in a high accuracy rate and a low false posi-
tive rate. However, this approach lacks independent 
evaluation. The second method addresses this limita-
tion by splitting the dataset into separate training and 
testing sets. This independent evaluation, while more 
realistic, yields lower accuracy due to the differing con-
ditions under which the training and testing data were 
collected. To ensure a comprehensive assessment, we 
prioritize the results obtained using the second, more 
realistic, method. However, for completeness, we also 
present the results from the first method.

4.1. PERFORMANCE ASSESSMENT, NSL 
 IMPLEMENTATION

The dataset, as described in the previous section, con-
tains numerous attributes, each of which can take on a 
range of values. Before employing self-taught learning, 
the dataset requires preparation. This involves convert-
ing nominal features into discrete attributes using '1-to-n 
encoding'. Additionally, the value of the 'num outbound 
cmds' feature is set to 0 for all entries in both the training 
and testing sets, as this feature is currently absent from 
the database. Following these steps, the dataset yields 
121 features. Fig. 2 illustrates how the sigmoid function 
generates values in the output layer during the feature 
learning phase. As shown in the diagram, this function 
produces values ranging from 0 to 1.

Fig. 2. STL based learning stages

4.1.1 Training phase

The classification accuracy of self-taught learning 
(STL) was evaluated on the training data using 10-fold 

cross-validation. Performance was assessed for two, 
five, and twenty-three class scenarios and compared 
against a baseline of soft-max regression (SMR) trained 
on the same data without prior knowledge. As illus-
trated in Fig 3, STL significantly outperforms SMR in the 
two-class classification task. However, for the five-class 
and twenty-three class scenarios, the performance of 
both methods is comparable. Furthermore, our analy-
sis determined that STL achieves a consistently high 
classification accuracy exceeding 98% across all tested 
categorization scenarios.

Fig. 3. Classification accuracy

Certain data categories were excluded from the 10-
fold cross-validation evaluation of the five-class and 
twenty-three-class scenarios. Consequently, these met-
rics were only assessed for the two-class classification 
task. Our analysis revealed that STL consistently outper-
formed SMR across all evaluated metrics. Specifically, as 
depicted in Fig 4, STL achieved an F-measure of 98.84%, 
while SMR attained 96.79%. Notably, STL's performance 
on the training data approaches the highest accuracy 
levels reported in the literature for similar tasks.

Fig. 4. Precision, recall, F-measure data

4.1.2. Testing phase

We evaluated the performance of STL and SMR on 
both two-class and five-class classification tasks using 
the held-out testing data. As illustrated in Fig. 5, STL con-
sistently outperforms SMR in terms of accuracy. For the 
two-class scenario, STL achieved an accuracy of 88.39%, 
surpassing the 78.06% accuracy obtained by SMR. This 
result also compares favorably to previous studies, with 
the highest reported accuracy for a similar task using NB-
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Tree being 82% [24]. In the five-class scenario, STL main-
tained its advantage with an accuracy of 79.10%, com-
pared to 75.23% for SMR. Fig. 6 and 7 provide a detailed 
breakdown of the performance metrics for the five-class 
and two-class tasks, respectively, including F-measure, 
accuracy, and recall. Interestingly, while STL demon-
strates superior overall accuracy in the two-class case, 
its accuracy (85.44%) is notably lower than that of SMR 
(96.56%) when considering only Figure 6. However, STL 
exhibits a significantly higher recall rate (95.95%) com-
pared to SMR (63.73%), ultimately leading to a higher F-
measure (90.4% for STL vs. 76.8% for SMR). This discrep-
ancy highlights the importance of considering multiple 
evaluation metrics. For the five-class classification (Fig-
ure 7), the results follow a similar trend, with STL achiev-
ing a higher F-measure (75.76%) than SMR (72.14%).

Fig. 5. Classification accuracy

Fig. 6. An evaluation of accuracy metrics for two-
class classification

Fig. 7. An evaluation of accuracy metrics for 5-class 
classification

Comparing Self-Taught Learning (STL) with Softmax 
Regression (SMR) provides researchers and practi-
tioners valuable insights into the trade-offs between 
unsupervised and supervised learning for Network In-
trusion Detection Systems (NIDS). STL excels in explor-
atory data analysis, uncovering patterns and anoma-
lies within unlabeled data. Conversely, SMR offers a 
robust framework for classification when labeled data 
is available, enabling effective cross-situational catego-
rization. Understanding these distinct strengths and 
weaknesses is crucial for selecting the most appropri-
ate algorithm based on the specific requirements and 
constraints of the NIDS application.

Self-Taught Learning (STL), an unsupervised learning 
approach, demonstrates particular efficacy in scenari-
os where labeled data is limited, especially for binary 
anomaly detection in Network Intrusion Detection Sys-
tems (NIDS). STL's ability to independently learn mean-
ingful representations from unlabeled data is crucial 
for identifying previously unseen threats, which often 
evade detection by supervised methods reliant on pre-
defined labels. However, STL may exhibit limitations in 
multi-class classification tasks, potentially leading to 
lower recall rates compared to supervised learning. This 
stems from STL's lack of predefined intrusion classes, 
making it challenging to differentiate between various 
attack types during training. Additionally, interpreting 
the learned representations within STL models can be 
less intuitive than those in supervised learning models, 
potentially hindering explainability. Therefore, a thor-
ough understanding of STL's operational characteris-
tics and limitations, as documented in the literature, is 
essential for justifying its suitability and effectiveness 
for specific NIDS applications

Empirical studies consistently demonstrate that ap-
plying STL-based deep learning models to NIDS leads 
to significant improvements in intrusion detection and 
prevention rates. These enhancements are evident 
across several key aspects:

Improved Detection Accuracy: A primary evalua-
tion metric for NIDS is the model's ability to accurately 
distinguish between benign and malicious network 
traffic. STL-based approaches consistently outperform 
conventional methods in this regard. This superior per-
formance stems from their ability to leverage latent 
representations learned from unlabeled data, enabling 
the detection of novel attack patterns not encountered 
during training. Consequently, STL-based NIDS exhibit 
enhanced detection capabilities, strengthening overall 
network security.

Reduced False Positives: Minimizing false positives 
is crucial in NIDS, as excessive alerts can overwhelm 
security teams, leading to alert fatigue and potentially 
missed threats. STL-based models excel in this area due 
to their capacity to discern subtle anomalies within 
complex traffic patterns. This ability to effectively dif-
ferentiate between benign and malicious events sig-
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nificantly reduces false alarms, optimizing resource al-
location for security teams.

Adaptability to New Threats: The dynamic nature 
of cybersecurity threats necessitates adaptable de-
fense mechanisms. STL-based NIDS models possess 
inherent flexibility, continuously learning from incom-
ing network data to refine their detection patterns. This 
adaptability enables them to effectively identify and 
respond to emerging attack types and evolving mali-
cious tactics, ensuring the NIDS remains a relevant and 
effective security measure.

Scalability and Efficiency: Effective NIDS solutions 
must handle the demands of large-scale networks 
without compromising performance. STL-based mod-
els are well-suited for such environments, often de-
signed with computational efficiency in mind. This al-
lows them to analyze vast volumes of network traffic 
in real-time without imposing excessive overhead on 
system resources.

Overall, these findings highlight the substantial ben-
efits of incorporating STL-based deep learning models 
into NIDS, paving the way for more robust and resilient 
network security solutions.

5. CONCLUSION 

This paper presented an effective and adaptable 
deep learning-based approach for enhancing Network 
Intrusion Detection Systems (NIDS). The proposed NIDS 
leverages a sparse autoencoder for unsupervised fea-
ture learning, followed by a soft-max regression classi-
fier for anomaly detection. The system's performance 
was rigorously evaluated using the NSL-KDD bench-
mark dataset, demonstrating its effectiveness in iden-
tifying network intrusions. Comparative analysis re-
vealed that our NIDS outperforms existing methods for 
both normal and anomaly detection on the test data. 
While alternative approaches like Stacked Autoencod-
ers and Deep Belief Networks, also derived from sparse 
autoencoders, show promise for unsupervised feature 
learning when combined with classifiers such as J48, 
NB-Tree, or Random Forest, these methods achieved 
superior results when applied directly to the dataset. 
Our experiments with Self-Taught Learning (STL) based 
deep learning models for NIDS highlight the signifi-
cant advantages of incorporating STL. The results indi-
cate that STL enhances network intrusion security by 
enabling: higher accurate detection rates, minimized 
false alarms, adaptive learning of new threats over 
time, and scalability to large networks. Future research 
directions include exploring techniques for effectively 
training STL-based NIDS while preserving data privacy. 
This could involve investigating privacy-preserving 
machine learning methods such as federated learn-
ing, differential privacy, and homomorphic encryption. 
These technologies can facilitate collaborative model 
training across distributed networks without requiring 
the sharing of sensitive raw data.
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