
Implementation of Cyber Network’s Attacks
Detection System with Deep Learning
Designing Algorithms

819

Original Scientific Paper

Abstract – The internet has become indispensable for modern communication, playing a vital role in the development of smart cities
and communities. However, its effectiveness is contingent upon its security and resilience against interruptions. Intrusions, defined
as unauthorized activities that compromise system integrity, pose a significant threat. These intrusions can be broadly categorized
into host intrusions, which involve unauthorized access and manipulation of data within a system, and network intrusions, which
target vulnerabilities within the network infrastructure. To mitigate these threats, system administrators rely on Network Intrusion
Detection Systems (NIDS) to identify and respond to security breaches. However, designing an effective and adaptable NIDS capable of
handling novel and evolving attack strategies presents a significant challenge. This paper proposes a deep learning-based approach
for NIDS development, leveraging Self-Taught Learning (STL) and the NSL-KDD benchmark dataset for network intrusion detection.
The proposed approach is evaluated using established metrics, including accuracy, F-measure, recall, and precision. Experimental
results demonstrate the effectiveness of STL in the 5-class categorization, achieving an accuracy of 79.10% and an F-measure of
75.76%. This performance surpasses that of Softmax Regression (SMR), which attained 75.23% accuracy and a 72.14% F-measure.
The paper concludes by comparing the proposed approach's performance with existing state-of-the-art methods.

Keywords: cyber network, deep learning, intrusion detection system, network intrusion

Volume 15, Number 10, 2024

Lubna Emad Kadhim
University of Imam Al-Kadhum,
College of Imam Al-Kadhum (IKC), Department of
Computer Techniques Engineering
10011, Baghdad, Iraq
lubnaemad@alkadhum-col.edu.iq

Saif Aamer Fadhil
University of Imam Al-Kadhum,
College of Imam Al-Kadhum (IKC), Department of
Computer Techniques Engineering
10011, Baghdad, Iraq
saifaamer@alkadhum-col.edu.iq

Sumaia M. Al-Ghuribi
Prince Sattam bin Abdulaziz University,
Faculty of Computer Engineering & Sciences,
Department of Software Engineering
Alkharj 11942, Riyadh, Saudi Arabia
Taiz University, Faculty of Applied Sciences,
Department of Computer Science, Taiz, Yemen
s.alghuribi@psau.edu.sa

Amjed Abbas Ahmed*
Universiti Kebangsaan Malaysia (UKM),
Faculty of Information Science and Technology,
Center for Cyber Security, 43600, Bangi, Malaysia
University of Imam Al-Kadhum,
College of Imam Al-Kadhum (IKC),
Department of Computer Techniques Engineering
10011, Baghdad, Iraq
amjedabbas@alkadhum-col.edu.iq

Mohammad Kamrul Hasan
Universiti Kebangsaan Malaysia (UKM),
Faculty of Information Science and Technology,
Center for Cyber Security, 43600, Bangi, Malaysia
mkh@ukm.edu.my

Shahrul A. Mohd Noah
Universiti Kebangsaan Malaysia (UKM),
Faculty of Information Science and Technology,
Centre for Artificial Intelligence Technology (CAIT)
43600, Bangi, Malaysia
shahrul@ukm.edu.my

Fatima N. AL-Aswadi
UCSI University,
Institute of Computer Science and Digital Innovation
56000, Kuala Lumpur, Malaysia
Hodeidah University,
Faculty of Computer Science and Engineering
Al Hudaydah, Yemen
Fatima.Nadeem@ucsiuniversity.edu.my

Received: May 18, 2024; Received in revised form: July 23, 2024; Accepted: July 24, 2024

*Corresponding author

820 International Journal of Electrical and Computer Engineering Systems

1. INTRODUCTION

An intrusion detection system (IDS) [1] analyzes and
monitors an organization's network devices [2]. If an in-
vasion is identified, this system notifies users and stops
additional harm. The two types of intrusion sensing
systems are anomaly-dependent network intrusion de-
tection systems (ANIDS) [3] and signature-dependent
network intrusion detection systems. SNIDS [4], such
as Snort, come pre-configured with attack signatures.
To detect a compromise in network security, traffic is
compared to the signatures that have been applied.
If an ADNIDS identifies a deviation from normal traffic
patterns, the observed network traffic is labeled as an
intrusion. SNIDS are useful for detecting known threats
since they have a high detection accuracy and a low
false alarm rate. Due to the limited number of attack
signatures that can be pre-installed, it is difficult for an
IDS to recognize new or inventive attacks [5-9].

ADNIDS, on the other hand, are very successful in
locating previously undiscovered, unique threats.
Even though they have a higher rate of false posi-
tives, ADNIDS have gained considerable recognition
in the research community due to their potential for
identifying new attacks. Two impediments hinder the
development of effective and adaptable NIDS capable
of protecting against unknown future threats. Firstly,
the sheer volume of information available makes it
challenging to select suitable criteria for identifying
anomalies within network data. Since attack methods
constantly change and evolve, traits effective for one
type of attack may be ineffective for another. Currently,
insufficient labeled traffic data from real networks is
available for developing effective NIDS. Creating such
a labeled dataset from raw, real-time network traffic
traces requires significant effort and time. Network
managers are very cautious about disclosing security
breaches within their networks, as they strive to pro-
tect both individual user privacy and the organization's
trade secrets related to internal network structure [5].
NIDS are designed to distinguish between normal and
anomalous traffic patterns.

Many NIDS employ feature selection to achieve more
accurate classifications, which involves selecting a sub-
set of meaningful features from recorded traffic. Fea-
ture selection can help reduce the risk of overfitting
during training by removing irrelevant features and
noise [6]. Comprehending sounds, images, and speech
using deep learning algorithms is a relatively recent de-
velopment. hese approaches enable the construction
of effective feature representations from large amounts
of unlabeled data, which can then be applied to small-
er, labeled datasets for supervised classification. Data
from both labeled and unlabeled distributions may
originate from various sources, but they should ideally
be related [7].

Deep learning approaches were expected to address
the challenges of building effective NIDS [8]. It is fea-

sible to gather unlabeled network traffic data from vari-
ous sources across the network and then apply deep
learning methods to extract useful feature representa-
tions. These features can then be used for supervised
classification on a smaller, labeled dataset containing
both normal and anomalous traffic. Such a dataset
could be used to analyze traffic trends. Collecting la-
beled traffic data is possible within a controlled, secure,
and isolated network environment [10].

Self-taught learning (STL) is a powerful approach for
Network Intrusion Detection Systems (NIDS), providing
a robust mechanism for detecting anomalous patterns
in network traffic. STL typically utilizes large amounts
of unlabeled network data to train deep learning mod-
els without requiring annotations. This data, often
unstructured, undergoes feature extraction, where
important characteristics such as packet size, protocol
type, and source/destination IP addresses are extract-
ed. A deep learning model can then leverage unsuper-
vised learning, often through an autoencoder archi-
tecture, for pretraining. During pretraining, the model
aims to minimize the difference between the original
input and its reconstruction, effectively learning to rep-
resent normal network behavior. This process allows
the model to encode normal network behavior. During
deployment, deviations from this learned behavior can
indicate anomalies, such as intrusions or attacks.

Once deployed, the trained model continuously
monitors all incoming network traffic. Leveraging the
learned representations, the model can effectively
identify anomalies based on emerging patterns in
real-time. This proactive approach enables network
administrators to preempt or promptly detect threats
before they escalate into more serious security breach-
es. Moreover, the model can adapt to new threats as it
continuously learns from new data, refining its under-
standing of normal network behavior. Therefore, STL,
particularly when applied to deep learning models for
NIDS, offers a promising approach to strengthening
cybersecurity and defending against evolving network
threats.

The following are our contribution towards this re-
search work:

•	 To achieve this goal, we propose a novel deep
learning approach for NIDS based on self-taught
learning, utilizing sparse autoencoders and soft-
max regression.

•	 This approach enabled the development of our
proposed NIDS. We evaluate its performance on
the NSL-KDD intrusion dataset, a widely used
benchmark derived from the original KDD Cup
1999 dataset.

•	 We evaluate the performance of our STL-based
NIDS on the NSL-KDD dataset and compare its ef-
fectiveness with existing methods.

821Volume 15, Number 10, 2024

2. RELATED WORK

It is important to note that this discussion focuses
solely on studies that utilized the NSL-KDD dataset to
evaluate effectiveness. Henceforth, any mention of a
dataset refers to NSL-KDD. One of the earliest studies
[11] employed Artificial Neural Networks (ANNs) with
enhanced backpropagation to develop an intrusion
detection system. This research utilized the entire train-
ing dataset, allocating 70% for training, 15% for valida-
tion, and 15% for testing. As anticipated, performance
degraded when evaluated on unlabeled data. The
training dataset will be analyzed. Another study [12]
employed the J48 decision tree classifier with 10-fold
cross-validation. This experiment utilized a reduced
feature set of 22 attributes instead of the complete set
of 41. Similar research [13] demonstrated that the Ran-
dom Forest model achieved the lowest false alarm rate,
surpassing other supervised tree-based classifiers.

Numerous two-level classification schemes have also
been proposed. One study [14] used a Discriminative
Multinomial Naive Bayes (DMNB) model as the base
classifier, with nominal features converted to binary us-
ing a controlled filtering approach at the second level
and 10-fold cross-validation. This concept was further
developed using Random Forest and Ensembles of Bal-
anced Nested Dichotomies (END) [15]. END is an abbre-
viation for ensembles of balanced nested dichotomies.
As expected, this approach resulted in an increased de-
tection rate and a reduced false positive rate.

Another study [16] proposed a novel two-level tech-
nique that first applies Principal Component Analysis
(PCA) for feature reduction and then utilizes a Support
Vector Machine (SVM) for classification, achieving high
detection accuracy. While this approach, using the full
training dataset with 41 features, demonstrated prom-
ising results, reducing the feature set to 23 improved
the detection accuracy for specific attack types, albeit
with a slight decrease in overall performance. Build-
ing upon their previous work, the authors of [17] first
ranked features based on information gain and then
applied behavior-based feature selection to reduce the
feature set to 20. This approach led to an improvement
in the reported accuracy on the training dataset. The
secondary group of experiments utilized both training
and testing datasets. An earlier study [18] combined
fuzzy classification with a genetic algorithm, achiev-
ing a detection accuracy of at least 80% with a 1% false
positive rate.

One notable study [19] revealed a significant per-
formance degradation when training and testing data
were combined. This research employed unsupervised
clustering techniques to address its research questions.
Similarly, another study [20] utilizing both training and
testing datasets employed a k-nearest neighbors ap-
proach, achieving slightly higher detection accuracy
and a lower false positive rate. Compared to the SVM-
RBF approach, the Optimum-Path Forest (OPF) strat-

egy, which utilizes graph partitioning for feature clas-
sification, has been shown to achieve a higher detec-
tion rate, although it is not as widely adopted as other
techniques. The study [21] employed a deep learning
approach, utilizing a Deep Belief Network (DBN) for
feature selection and a Support Vector Machine (SVM)
for classification. This approach, when trained on the
training data, achieved an accuracy of approximately
92.84%.

Our research, which also utilizes both training and
testing datasets, builds upon these earlier works by
exploring the application of deep learning for NIDS.
The authors of [22] adopt a semi-supervised learning
scheme, similar to the one used in [23]. Their technique
was validated using real-world data from the KDD Cup
1999 dataset, which was also used for training. Our ap-
proach differs in that we specifically focus on the NSL-
KDD dataset to evaluate the feasibility of using deep
learning for NIDS. Furthermore, we employ a sparse
autoencoder for completely unsupervised feature
learning. The authors of [24] propose a deep learning
approach for network traffic analysis based on sparse
autoencoders. However, instead of focusing on intru-
sion detection, their research concentrates on identify-
ing anomalous protocols within TCP traffic.

3. METHODOLOGY

3.1. SELF-TAUGHT LEARNING (STL)

Self-Taught Learning (STL) is a deep learning-based
classification technique that operates in two stages.
The first stage, known as Unsupervised Feature Learn-
ing (UFL), focuses on constructing robust feature rep-
resentations from a large volume of unlabeled data.
This type of learning, free from human supervision,
relies solely on the inherent structure within the data.
The learned representation is then utilized in the sub-
sequent stage to categorize labeled data. A key as-
sumption in STL is that even if the unlabeled and la-
beled data originate from different distributions, there
should be some underlying relationship or shared fea-
tures between them. Fig. 1 presents a diagrammatic
representation of the STL architecture.

Two common approaches for UFL are Gaussian Mix-
tures and Sparse Autoencoders. This study employed a
Sparse Autoencoder for feature learning due to its sim-
plicity and efficiency. In a Sparse Autoencoder, the roles
of the traditional neural network layers (input, hidden,
output) are reinterpreted. The input layer of the neural
network corresponds to the output layer of the Sparse
Autoencoder, while the hidden layer remains the same.
Finally, the output layer of the neural network aligns
with the input layer of the Sparse Autoencoder. Both
the output and input layers consist of "N" nodes, while
the hidden layer is composed of "K" nodes. The Sparse
Autoencoder aims to reconstruct the original input
data at its output layer, thereby learning a compressed
and meaningful representation in the hidden layer.

822 International Journal of Electrical and Computer Engineering Systems

The sigmoid function, g(z)=1/(1+exp(-z)), is used to
activate the nodes in the hidden and output layers, in-
dicated by hW, b, respectively:

(1)

(2)

The cost function minimized during backpropaga-
tion in a sparse autoencoder is represented by Equa-
tion (2). This function consists of three key components:

•	 Reconstruction Error: The primary term represents
the average sum-of-squared errors between the in-
put and reconstructed output over all "m" training
data points. This term encourages the autoencoder
to learn a faithful representation of the input data.

•	 Weight Decay: The second term incorporates
weight decay, controlled by a weight decay param-
eter. This term helps prevent overfitting by penaliz-
ing large weights, thus promoting a smoother and
more generalizable model.

•	 Sparsity Penalty: The first term in the equation is the
sparsity penalty factor. This term, crucial for enforc-
ing sparsity in the hidden layer, encourages most
hidden units to have low average activation levels.

Equation (3) defines the sparsity penalty using the
Kullback-Leibler (KL) divergence:

(3)

Where the sparsity penalty term β is governed by a
sparsity limited parameter “ρ” having a measure rang-
ing 0 to 1, where parameter's value can be any number
between 0, 1. The KL(ρ||ρˆj) reaches its minimum value
when ρ = ρj, in which j denotes the average activation
of hidden unit “j” over all training inputs “x”. In other
words, the penalty is minimized when the average acti-
vation of each hidden unit closely matches the desired
sparsity level (ρ).

Once the optimal parameters W, b1 are learned from
the unlabeled data (xu) using the sparse autoencoder,
we can generate feature representations for the la-
beled data (xl). This is achieved by calculating:

a = hW, b1 (xl). The modified representation of the
attributes is used in the next step.

The sparsity penalty factor, appearing as the first
term in the equation, ensures that the hidden layer
maintains relatively low average activation levels. This
factor, formally known as the Kullback-Leibler (KL) di-
vergence, is defined in Equation (3).

The sparsity penalty term, β, is governed by the
sparsity parameter "ρ," which ranges from 0 to 1. The
KL(ρ||ρˆj) reaches its minimum value when ρ = ρj, where

“j” represents the average activation of hidden unit “j”
over all training inputs “x”.

We first determine the optimal parameters W, b1 us-
ing the sparse autoencoder on the unlabeled data (xu).
Subsequently, we assess the feature representation for
the labeled data (xl) using these learned parameters.
This representation, denoted as a, is calculated as: a =
W, b1 (xl).

3.2. WORKING OF STL

STL has been successfully incorporated into deep
learning models for Network Intrusion Detection Sys-
tems (NIDS). Below is a simplified explanation of the
STL workflow:

Unlabeled Data Collection: Initially, a large data-
set of raw network traffic data is collected. This data
encompasses various network packets and flows but
lacks any labels indicating whether the traffic is benign
or malicious.

Feature Extraction: This stage involves extracting
relevant features from the raw network data. These
features may include packet size, protocol type, source
and destination IP addresses, port numbers, and other
characteristics. Feature extraction enables the model to
identify patterns and predict future network behavior.

Pre-training on Unlabeled Data: A deep learning
model, such as an autoencoder or another type of
artificial neural network, is trained on the unlabeled
data. The model's objective during pre-training is to
reconstruct the input data accurately, thereby learning
meaningful representations by minimizing the differ-
ence between the input and its reconstruction.

Fine-tuning on Labeled Data: The pre-trained mod-
el is then fine-tuned using a smaller labeled dataset.
This step may not always be necessary, depending on
the size of the labeled data and the pre-trained model's
performance.

Intrusion Detection: Once trained, the model func-
tions as an intrusion detection system. During infer-
ence, the model receives new network traffic data
and classifies it as either benign or malicious based on
learned patterns. If the model detects any anomalies
or deviations from normal behavior, it triggers an alert.

Feedback Loop: The NIDS can incorporate a feed-
back mechanism where the generated alerts are used
to further improve the model's performance over time.
This feedback loop allows for continuous learning and
adaptation to new threats.

3.3. DATASET

This study utilizes the NSL-KDD dataset, a modified
and refined version of the original KDD Cup 99 dataset.
The KDD Cup 99 dataset, based on network traffic col-
lected during the 1998 DARPA IDS assessment program,
has undergone significant changes. The original data-

823Volume 15, Number 10, 2024

set consists of raw network data gathered over seven
weeks of training and two weeks of testing. The test-
ing data includes several attack types absent from the
training data. This deliberate omission aims to simulate
real-world scenarios where novel attacks, often inspired
by previous ones, emerge. This characteristic enhances
the dataset's ability to evaluate the accuracy of intrusion
detection systems in identifying unknown threats. The
NSL-KDD dataset comprises five million TCP/IP connec-
tion records for training and two million for testing.

For many years, the KDD Cup dataset served as a
standard benchmark for evaluating NIDS. However, a
significant drawback is the high redundancy within the
dataset. A substantial portion of the records in both the
training (78%) and testing (75%) sets are duplicates.
This redundancy biases learning algorithms towards
the most frequent attack types, resulting in poorer per-
formance on less common but potentially more dan-
gerous attacks. For example, a simple machine learn-
ing model achieved a minimum accuracy of 98% on
the training data but only 86% on the testing data. This
discrepancy makes it challenging to compare different

IDSs and training methods fairly. The NSL-KDD dataset
addresses these limitations. It improves upon the KDD
Cup dataset in two key ways:

1. Redundancy Removal: Duplicate records are re-
moved from both the training and testing sets.

2. Difficulty-Based Sampling: Records are categorized
based on their difficulty level for learning algo-
rithms. The NSL-KDD dataset then samples records
randomly from various difficulty levels, ensuring a
more balanced and representative distribution of
attack types.

The training data comprises 23 traffic classes, consist-
ing of 22 attack classes and one normal class. The test
data set is more diverse, containing 39 traffic classes.
These include 21 attack classes present in the train-
ing data, 16 novel attack classes, and one normal class.
Each attack class falls into one of four categories based
on its intended impact: Probing, Denial of Service
(DoS), Remote to Local (R2L), and User to Root (U2R).
Table 1 presents the distribution of normal and attack
traffic within the training and testing sets.

Fig. 1. STL NIDS architecture

824 International Journal of Electrical and Computer Engineering Systems

Table 1. Distribution of Normal and Attack Traffic in
the NSL-KDD Dataset

Traffic Training Test
Normal 67343 9711

Attack

DoS 45927 7458

U2R 52 67

R2L 995 2887

probe 11656 2421

4. RESULTS AND DISCUSSION

The following describes the two methods employed
to evaluate the NIDS performance. The first method
utilizes the entire dataset for both training and testing,
resulting in a high accuracy rate and a low false posi-
tive rate. However, this approach lacks independent
evaluation. The second method addresses this limita-
tion by splitting the dataset into separate training and
testing sets. This independent evaluation, while more
realistic, yields lower accuracy due to the differing con-
ditions under which the training and testing data were
collected. To ensure a comprehensive assessment, we
prioritize the results obtained using the second, more
realistic, method. However, for completeness, we also
present the results from the first method.

4.1. PERFORMANCE ASSESSMENT, NSL
 IMPLEMENTATION

The dataset, as described in the previous section, con-
tains numerous attributes, each of which can take on a
range of values. Before employing self-taught learning,
the dataset requires preparation. This involves convert-
ing nominal features into discrete attributes using '1-to-n
encoding'. Additionally, the value of the 'num outbound
cmds' feature is set to 0 for all entries in both the training
and testing sets, as this feature is currently absent from
the database. Following these steps, the dataset yields
121 features. Fig. 2 illustrates how the sigmoid function
generates values in the output layer during the feature
learning phase. As shown in the diagram, this function
produces values ranging from 0 to 1.

Fig. 2. STL based learning stages

4.1.1 Training phase

The classification accuracy of self-taught learning
(STL) was evaluated on the training data using 10-fold

cross-validation. Performance was assessed for two,
five, and twenty-three class scenarios and compared
against a baseline of soft-max regression (SMR) trained
on the same data without prior knowledge. As illus-
trated in Fig 3, STL significantly outperforms SMR in the
two-class classification task. However, for the five-class
and twenty-three class scenarios, the performance of
both methods is comparable. Furthermore, our analy-
sis determined that STL achieves a consistently high
classification accuracy exceeding 98% across all tested
categorization scenarios.

Fig. 3. Classification accuracy

Certain data categories were excluded from the 10-
fold cross-validation evaluation of the five-class and
twenty-three-class scenarios. Consequently, these met-
rics were only assessed for the two-class classification
task. Our analysis revealed that STL consistently outper-
formed SMR across all evaluated metrics. Specifically, as
depicted in Fig 4, STL achieved an F-measure of 98.84%,
while SMR attained 96.79%. Notably, STL's performance
on the training data approaches the highest accuracy
levels reported in the literature for similar tasks.

Fig. 4. Precision, recall, F-measure data

4.1.2. Testing phase

We evaluated the performance of STL and SMR on
both two-class and five-class classification tasks using
the held-out testing data. As illustrated in Fig. 5, STL con-
sistently outperforms SMR in terms of accuracy. For the
two-class scenario, STL achieved an accuracy of 88.39%,
surpassing the 78.06% accuracy obtained by SMR. This
result also compares favorably to previous studies, with
the highest reported accuracy for a similar task using NB-

825Volume 15, Number 10, 2024

Tree being 82% [24]. In the five-class scenario, STL main-
tained its advantage with an accuracy of 79.10%, com-
pared to 75.23% for SMR. Fig. 6 and 7 provide a detailed
breakdown of the performance metrics for the five-class
and two-class tasks, respectively, including F-measure,
accuracy, and recall. Interestingly, while STL demon-
strates superior overall accuracy in the two-class case,
its accuracy (85.44%) is notably lower than that of SMR
(96.56%) when considering only Figure 6. However, STL
exhibits a significantly higher recall rate (95.95%) com-
pared to SMR (63.73%), ultimately leading to a higher F-
measure (90.4% for STL vs. 76.8% for SMR). This discrep-
ancy highlights the importance of considering multiple
evaluation metrics. For the five-class classification (Fig-
ure 7), the results follow a similar trend, with STL achiev-
ing a higher F-measure (75.76%) than SMR (72.14%).

Fig. 5. Classification accuracy

Fig. 6. An evaluation of accuracy metrics for two-
class classification

Fig. 7. An evaluation of accuracy metrics for 5-class
classification

Comparing Self-Taught Learning (STL) with Softmax
Regression (SMR) provides researchers and practi-
tioners valuable insights into the trade-offs between
unsupervised and supervised learning for Network In-
trusion Detection Systems (NIDS). STL excels in explor-
atory data analysis, uncovering patterns and anoma-
lies within unlabeled data. Conversely, SMR offers a
robust framework for classification when labeled data
is available, enabling effective cross-situational catego-
rization. Understanding these distinct strengths and
weaknesses is crucial for selecting the most appropri-
ate algorithm based on the specific requirements and
constraints of the NIDS application.

Self-Taught Learning (STL), an unsupervised learning
approach, demonstrates particular efficacy in scenari-
os where labeled data is limited, especially for binary
anomaly detection in Network Intrusion Detection Sys-
tems (NIDS). STL's ability to independently learn mean-
ingful representations from unlabeled data is crucial
for identifying previously unseen threats, which often
evade detection by supervised methods reliant on pre-
defined labels. However, STL may exhibit limitations in
multi-class classification tasks, potentially leading to
lower recall rates compared to supervised learning. This
stems from STL's lack of predefined intrusion classes,
making it challenging to differentiate between various
attack types during training. Additionally, interpreting
the learned representations within STL models can be
less intuitive than those in supervised learning models,
potentially hindering explainability. Therefore, a thor-
ough understanding of STL's operational characteris-
tics and limitations, as documented in the literature, is
essential for justifying its suitability and effectiveness
for specific NIDS applications

Empirical studies consistently demonstrate that ap-
plying STL-based deep learning models to NIDS leads
to significant improvements in intrusion detection and
prevention rates. These enhancements are evident
across several key aspects:

Improved Detection Accuracy: A primary evalua-
tion metric for NIDS is the model's ability to accurately
distinguish between benign and malicious network
traffic. STL-based approaches consistently outperform
conventional methods in this regard. This superior per-
formance stems from their ability to leverage latent
representations learned from unlabeled data, enabling
the detection of novel attack patterns not encountered
during training. Consequently, STL-based NIDS exhibit
enhanced detection capabilities, strengthening overall
network security.

Reduced False Positives: Minimizing false positives
is crucial in NIDS, as excessive alerts can overwhelm
security teams, leading to alert fatigue and potentially
missed threats. STL-based models excel in this area due
to their capacity to discern subtle anomalies within
complex traffic patterns. This ability to effectively dif-
ferentiate between benign and malicious events sig-

826 International Journal of Electrical and Computer Engineering Systems

nificantly reduces false alarms, optimizing resource al-
location for security teams.

Adaptability to New Threats: The dynamic nature
of cybersecurity threats necessitates adaptable de-
fense mechanisms. STL-based NIDS models possess
inherent flexibility, continuously learning from incom-
ing network data to refine their detection patterns. This
adaptability enables them to effectively identify and
respond to emerging attack types and evolving mali-
cious tactics, ensuring the NIDS remains a relevant and
effective security measure.

Scalability and Efficiency: Effective NIDS solutions
must handle the demands of large-scale networks
without compromising performance. STL-based mod-
els are well-suited for such environments, often de-
signed with computational efficiency in mind. This al-
lows them to analyze vast volumes of network traffic
in real-time without imposing excessive overhead on
system resources.

Overall, these findings highlight the substantial ben-
efits of incorporating STL-based deep learning models
into NIDS, paving the way for more robust and resilient
network security solutions.

5. CONCLUSION

This paper presented an effective and adaptable
deep learning-based approach for enhancing Network
Intrusion Detection Systems (NIDS). The proposed NIDS
leverages a sparse autoencoder for unsupervised fea-
ture learning, followed by a soft-max regression classi-
fier for anomaly detection. The system's performance
was rigorously evaluated using the NSL-KDD bench-
mark dataset, demonstrating its effectiveness in iden-
tifying network intrusions. Comparative analysis re-
vealed that our NIDS outperforms existing methods for
both normal and anomaly detection on the test data.
While alternative approaches like Stacked Autoencod-
ers and Deep Belief Networks, also derived from sparse
autoencoders, show promise for unsupervised feature
learning when combined with classifiers such as J48,
NB-Tree, or Random Forest, these methods achieved
superior results when applied directly to the dataset.
Our experiments with Self-Taught Learning (STL) based
deep learning models for NIDS highlight the signifi-
cant advantages of incorporating STL. The results indi-
cate that STL enhances network intrusion security by
enabling: higher accurate detection rates, minimized
false alarms, adaptive learning of new threats over
time, and scalability to large networks. Future research
directions include exploring techniques for effectively
training STL-based NIDS while preserving data privacy.
This could involve investigating privacy-preserving
machine learning methods such as federated learn-
ing, differential privacy, and homomorphic encryption.
These technologies can facilitate collaborative model
training across distributed networks without requiring
the sharing of sensitive raw data.

6. ACKNOWLEDGMENT

This work has been supported by the Universiti Ke-
bangsaan Malaysia, Under the research grant scheme
DIP 2022-021.

7. REFERENCES

[1] L. X. Ying, M. Aman, A. Hafizah, M. S. Jalil, T. M. Omar,

Z. S. Attarbashi, M. A. Abuzaraida, "Malaysia Cyber

Fraud Prevention Application: Features and Func-

tions”, Asia-Pacific Journal of Information Technol-

ogy and Multimedia, Vol. 12, No. 2, 2023, p. 312.

[2] A. A. Ahmed, M. K. Hasan, I. Memon, A. H. M.

Aman, S. Islam, T. R. Gadekallu, S. A. Memon, "Se-

cure AI for 6G Mobile Devices: Deep Learning

Optimization Against Side-Channel Attacks”, IEEE

Transactions on Consumer Electronics, Vol. 70, No.

1, 2024, pp. 3951-3959.

[3] F. Dehkordi, K. Manochehri, V. Aghazarian, "Inter-

net of Things (IoT) Intrusion Detection by Machine

Learning (ML): A Review”, Asia-Pacific Journal of

Information Technology and Multimedia, Vol. 12,

No. 1, 2023, pp. 13-38.

[4] A. A. Ahmed, M. K. Hasan, N. S. Nafi, A. H. Aman,

S. Islam, S. A. Fadhil, "Design of Lightweight Cryp-

tography based Deep Learning Model for Side

Channel Attacks”, Proceedings of the 33rd Inter-

national Telecommunication Networks and Ap-

plications Conference, Melbourne, Australia, 29

November - 1 December 2023, pp. 325-328.

[5] N. Jafri, M. M. Yusof, "Managing Data Security Risk

in Model Software as a Service (SAAS)”, Asia-Pacif-

ic Journal of Information Technology and Multi-

media, Vol. 7, No. 1, 2018, pp. 99-117.

[6] A. K. Jakkani et al. “Design of a Novel Deep Learn-

ing Methodology for IOT Botnet based Attack

Detection”, International Journal on Recent and

Innovation Trends in Computing and Communi-

cation, Vol. 11, No. 9, 2023, pp. 4922-4927.

[7] A. O. Alzahrani, M. J. Alenazi, "Designing a Net-

work Intrusion Detection System Based on Ma-

chine Learning for Software Defined Networks”,

Future Internet, Vol. 13, No. 5, 2021, p. 111.

[8] P. Reddy, Y. Adetuwo, A. K. Jakkani, “Implementa-

tion of Machine Learning Techniques for Cloud

Security in Detection of DDOS Attacks”, Interna-

827Volume 15, Number 10, 2024

tional Journal of Computer Engineering and Tech-
nology, Vol. 15, No. 2, 2024, pp. 25-34.

[9] R. Kolandaisamy, K. Subaramaniam, A. B. Jalil, "A
Study on Comprehensive Risk Level Analysis of IoT
Attacks”, Proceedings of the International Confer-
ence on Artificial Intelligence and Smart Systems,
Coimbatore, India, 25-27 March 2021, pp. 1391-
1396.

[10] A. Agbonyin, P. Reddy, A. K. Jakkani, “Utilizing In-
ternet of Things (IOT), Artificial Intelligence, and
Vehicle Telematics for Sustainable Growth in
Small, and Medium Firms (SMES)”, International
Journal of Computer Engineering and Technol-
ogy, Vol. 15, No. 2, 2024, pp. 182-191.

[11] Y.-W. Chen, J.-P. Sheu, Y.-C. Kuo, N. Van Cuong,
"Design and Implementation of IoT DDoS Attacks
Detection System Based on Machine Learning”,
Proceedings of the European Conference on Net-
works and Communications, Dubrovnik, Croatia,
15-18 June 2020, pp. 122-127.

[12] Q. Abu Al-Haija, S. Zein-Sabatto, "An Efficient
Deep-Learning-Based Detection and Classifica-
tion System for Cyber-Attacks in IoT Communica-
tion Networks”, Electronics, Vol. 9, No. 12, 2020, p.
2152.

[13] J. Zhang, L. Pan, Q.-L. Han, C. Chen, S. Wen, Y.
Xiang, "Deep Learning Based Attack Detection for
Cyber-Physical System Cybersecurity: A Survey”,
IEEE/CAA Journal of Automatica Sinica, Vol. 9, No.
3, 2021, pp. 377-391.

[14] B. Susilo, R. F. Sari, "Intrusion Detection in IoT Net-
works Using Deep Learning Algorithm”, Informa-
tion, Vol. 11, No. 5, 2020, p. 279.

[15] T. H. Aldhyani, H. Alkahtani, "Attacks to Automa-
tous Vehicles: A Deep Learning Algorithm for Cy-
bersecurity”, Sensors, Vol. 22, No. 1, 2022, p. 360.

[16] I. Ullah, Q. H. Mahmoud, "Design and Develop-
ment of a Deep Learning-Based Model for Anom-
aly Detection in IoT Networks”, IEEE Access, Vol. 9,

2021, pp. 103906-103926.

[17] A. A. Ahmed, W. A. Jabbar, A. S. Sadiq, H. Patel,

"Deep Learning-Based Classification Model for

Botnet Attack Detection”, Journal of Ambient In-

telligence and Humanized Computing, Vol. 13,

2022, pp. 3457-3466.

[18] V. Dutta, M. Choraś, M. Pawlicki, R. Kozik, "A Deep

Learning Ensemble for Network Anomaly and

Cyber-Attack Detection”, Sensors, Vol. 20, No. 16,

2020, p. 4583.

[19] N. Elmrabit, F. Zhou, F. Li, H. Zhou, "Evaluation of

Machine Learning Algorithms for Anomaly Detec-

tion”, Proceedings of the International Conference

on Cyber Security and Protection of Digital Ser-

vices (Cyber Security), Dublin, Ireland, 15-19 June

2020, pp. 1-8.

[20] A. Khaleghi, M. S. Ghazizadeh, M. R. Aghamoham-

madi, "A Deep Learning-Based Attack Detection

Mechanism Against Potential Cascading Failure

Induced by Load Redistribution Attacks”, IEEE

Transactions on Smart Grid, Vol. 14, No. 6, 2023,

pp. 4772-4783.

[21] J. Shareena, A. Ramdas, H. AP, "Intrusion Detection

System for IoT Botnet Attacks Using Deep Learning”,

SN Computer Science, Vol. 2, No. 205, 2021, pp. 1-8.

[22] L. Liu, P. Wang, J. Lin, L. Liu, "Intrusion Detection

of Imbalanced Network Traffic Based on Machine

Learning and Deep Learning”, IEEE Access, Vol. 9,

2020, pp. 7550-7563.

[23] J. Lansky, S. Ali, M. Mohammadi, M. K. Majeed, S.

T. Karim, S. Rashidi, M. Hosseinzadeh, A. M. Rah-

mani, "Deep Learning-Based Intrusion Detection

Systems: A Systematic Review”, IEEE Access, Vol. 9,

2021, pp. 101574-101599.

[24] G. Kocher, G. Kumar, "Machine Learning and Deep

Learning Methods for Intrusion Detection Sys-

tems: Recent Developments and Challenges”, Soft

Computing, Vol. 25, 2021, pp. 9731-9763.

