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Abstract – Weed management is an essential operational task to ensure the excellent health of crops or trees. The emergence of 
machine vision enables convolutional neural networks (CNNs) to classify weed types automatically, which can subsequently be used 
for a weed management strategy. A dominant approach to implement CNN-based weed classification is to train a network with RGB 
images as input either by adopting a transfer learning approach or a custom network. However, such an approach limits the process 
of incorporating prior knowledge as a significant feature of the network to improve the classification accuracy. This work proposes 
a novel network based on parallel convolutional neural networks (P-CNN), leveraging the excess green index (ExG) channel as an 
additional input to the RGB image channels. We argue that using the ExG channel can capture the greenness feature of weeds from 
the visible light spectrum, an important feature in many vegetation images such as leaves or green plants. The results show that 
the proposed P-CNN combining ResNet50 and a custom CNN obtains a Top-1 accuracy of 97.2% on a public weed dataset called 
DeepWeeds compared to the baseline ResNet50 alone with only 95.7%. The results show the significant contribution of domain-
specific knowledge of green indexes in improving the classification performance of weed images. This enhancement could transform 
real-world weed management by enabling highly precise detection by allowing the classifier to focus intensively on differentiating 
green color features between leaves with nearly identical morphology.
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1.		 INTRODUCTION

Weed management is a crucial task in agriculture. It is 
required to minimize the effect of weed growth on crop 
production [1]. Weeds compete with crops, consuming 
nutrients, sunlight, and other growth factors. Weed 
management is also one of the costliest maintenance 

operations in various plantations. Weeds are classified 
as unwanted plants that can affect the productivity 
of vegetation trees. Popular weed management ap-
proaches include chemical, biological, mechanical, and 
cultural controls [2]. 

Digital image processing of weeds is an essential tool 
for automatic weed management control and modern 
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precision agriculture practices. The result from image pro-
cessing can be used to analyze weed occurrence detec-
tion and weed species classification. In chemical-based 
weed control, the process of spraying herbicides through-
out the fields is commonly utilized worldwide [3]. In such 
a case, weed identification using image processing can 
be manipulated to determine the types of herbicides that 
must be sprayed according to the weed species.

Weed image analysis requires special attention due 
to unique challenges, including a wide range of species 
types, wide distribution, different leaf shapes and sizes, 
and various texture features. Different weed growth 
stages could also make it difficult to detect the species 
of the weeds [4]. Weed classification also intrinsically 
faces a challenging problem because of the monoto-
nous green color on the weed's surface. 

Research interest in weed image detection and classi-
fication has increased significantly in the past few years 
due to the need for automatic weed management and 
the advancement of supported digital technologies. 
Various computer vision methods used in recent works 
to detect weed from images have been extensively re-
viewed [5]. There are two main categories: 1) traditional 
image processing combining feature extraction and 
conventional machine learning, and 2) deep learning 
with ample data training.

Conventional machine learning approaches typically 
require small image samples, short training time, and 
low computational power requirements. Images are 
pre-processed to extract and enhance distinct features. 
Due to such low requirements, an algorithm of conven-
tional machine learning can be easily implemented as 
an embedded system for real-time image processing 
and analysis. However, this class of image processing 
approaches suffers from low accuracy and is prone to 
misclassification errors due to changes in a natural en-
vironment such as ambient light.

On the other hand, deep learning gains its attractive-
ness in various image processing domains due to the 
algorithms’ capability to provide an end-to-end detec-
tion paradigm and to achieve highly significant accu-
racy for real-world applications. Another advantage of 
using deep learning over conventional machine learn-
ing is the automatic feature extraction mechanism that 
can be learned through backpropagation. This capabil-
ity comes with the requirements of having large image 
samples, longer training time, and high computational 
power, specifically graphic processing unit (GPU).

However, training a deep learning model can be chal-
lenging when dealing with a small sample size. A mod-
el trained with small datasets exposes the problem of 
underfitting and overfitting due to bias and variance in 
the dataset. One of the well-accepted solutions to the 
small dataset problem is to use the transfer learning 
approach. The transfer learning approach is a method 
that takes some or all parts of a pre-trained network 
that has been trained on large datasets of other im-

ages and re-trained some parts of the network with a 
desired and typically small dataset. Although the ap-
proach works, it tends to miss extracting essential fea-
tures that could be domain-specific main features.

Combining the method used by conventional ma-
chine learning and deep learning can demonstrate 
a potentially innovative approach to leverage the 
strength of both machine learning categories [6]. 
Specifically, combining two methods for feature ex-
traction, namely handcrafted features and learned 
features, could yield benefits, including improved ac-
curacy, reduced training time, and enhanced robust-
ness. Furthermore, it allows the designers to control 
the known feature to be utilized as one of the inputs 
by the classifier to make decisions. In the case of weed 
classification, the green color feature can play a signifi-
cant role in differentiating classes of weed types. This is 
also applied to most vegetation-related problems such 
as leaf type, plant disease type, or crop growth stage. 
Enhancing this feature manually can ensure that the 
classifier block is considering the processed input to 
make decisions while allowing other unclear features 
to be automatically learned by deep networks. 

This work proposes a parallel convolutional neural 
network (P-CNN) incorporating excess green informa-
tion in the network. The proposed network adopts 
transfer learning deep CNN combined with another 
customized CNN network featuring handcrafted excess 
green feature input to improve weed classification ac-
curacy. An analysis of the performance of the proposed 
methods is presented based on a pre-trained CNN net-
work, namely ResNet50. 

The contribution of this work is two-fold. First, the 
proposed P-CNN classifier suggests a method to merge 
conventional machine learning and deep learning 
mechanisms by utilizing handcrafted feature extrac-
tion for a known vital feature and transfer learning to 
exploit a trained network. Second, the work explores 
the benefit of the excess green feature in improving 
the classification task for weed images in particular and 
the potential to be further applied to various greenish 
vegetation images.

The article is organized as follows: The next section 
presents related works by other researchers. Then, the 
proposed approach taken in this work to perform weed 
classification is discussed in detail. The results and dis-
cussion section presents the experimental results and 
performance of the P-CNN classifier. Finally, the conclu-
sion section summarizes the findings.

2.	 RELATED WORKS

This section investigates the relevant literature on 
leveraging deep learning-based weed classification 
techniques with various feature extraction techniques. 
Several studies have shown that deep learning yields 
superior results to traditional machine learning [7]. 
Weed image classification with conventional machine 
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learning yields low and inconsistent accuracy [8-9]. 
For supervised deep learning, generating datasets is 
both labor-intensive and time-consuming. Reducing 
the workload involved in data acquisition and annota-
tion presents a significant challenge in deep learning 
research [10]. Therefore, various works have explored 
ways to optimize the performance of deep learning-
based classifiers. There are three main categories for 
optimizing deep learning-based weed classifiers: 1) 
transfer learning approach, 2) modification of neural 
network structure, and 3) addition of feature vectors.

The transfer learning approach is one of the most 
common approaches among deep learning designers. 
The approach is used when the available dataset is con-
siderably small, depending on the problem at hand. 
Transfer learning empowers the reusable of some pa-
rameters from an existing model trained with other 
domains to the desired classification domain. This ap-
proach can be seen in various works involving weed 
classification. For example, a semantic segmentation 
based on SegNet is proposed in [11] to differentiate im-
ages of rice seedlings, backgrounds, and weeds. Trans-
fer learning of a pre-trained VGG16 network as the en-
coder of SegNet was applied to save the training time, 
while a decoder and a softmax classifier were retrained 
with 224 images of rice seedlings and weeds. 

In another work by [12], transfer learning played a 
crucial role, enabling the extensive training of 24 deep 
learning models for Saffron crops and weeds classifi-
cation. Leveraging a dataset of 291 images depicting 
standard weed classes around Saffron crops and se-
lection of Xception as the final model, the study high-
lighted the superior classification by making the last 
20 layers in the middle flow and exit flow of Xception 
trainable. The transfer learning approach is also applied 
to some other weed classification works, as in [13, 14]. 
The current limitation of the transfer learning approach 
for weed classification is that the base model, includ-
ing feature extraction layers, is made non-trainable. No 
new feature vectors are extracted, limiting the model's 
ability to adapt to new data and capture unique char-
acteristics of different weed classes. Consequently, the 
performance may suffer, mainly when dealing with do-
main dissimilarity.

Another way to enhance classifier performance is by 
modifying neural network structures. This approach 
entails replacing, adding, or removing certain layers 
within the network, thus optimizing the structure for 
improved results. A work by [15] performed a study on 
real-time categorization of weed severity, employing 
275 images of five prevalent weeds near lettuce crops. 
The work utilized a multimodal YOLOV7-L model, at-
taining a 97.5% mAP@0.5. The approach incorporated 
a simplified model and a novel ELAN-B3 feature ex-
traction layer, facilitating real-time processing in 4 to 
13 milliseconds. The viability of such an approach was 
primarily dependent upon augmented photos to en-
hance the sample size.

A two-stage encoder–decoder architecture is investi-
gated by [16] for pixel-level classification and differenti-
ation between crops and weeds, utilizing 1,920 images 
from tobacco and sesame datasets with RGB channels. 
The W-shaped CNN attained 90% and 94% accuracy 
on the tobacco and sesame datasets, respectively, sur-
passing the performance of UNet and SegNet seman-
tic classifiers. Nonetheless, the network's extensive 
parameters necessitate substantial training resources, 
and it has not been sufficiently evaluated on crops ex-
hibiting colors akin to weeds.

A study in [17] introduces a graph-based deep learn-
ing framework named Graph Weeds Net (GWN). The 
classifier, utilizing recurrent neural networks (RNN), no-
tably ResNet50 and DenseNet202, was trained to dis-
criminate patterns in graph vertices that represent im-
age sub-patches formed from various scales, ranging 
from local to global contexts. On another hand, a work 
by [18] created a lightweight real-time weed classifier 
for embedded systems, employing 40,000 photos ob-
tained from UAVs. The preprocessing included bound-
ing box filtering and color-indexed segmentation, 
utilizing ResNet18 to attain 94% accuracy. The model 
size was refined from 32-bit to 16-bit, facilitating real-
time detection at 2.2 frames per second. Nonetheless, 
the performance deteriorated subsequent to resizing. 
Overall, the primary disadvantage of structural modifi-
cation is the heuristic method employed to substitute 
appropriate layers within the network, rendering the 
procedure a trial-and-error strategy.

Last but not least, the incorporation of feature vec-
tors constitutes the third strategy for improving the 
performance of deep learning. This method achieves 
the greatest degree of flexibility since it enables the 
preprocessing and enhancement of input images prior 
to their introduction into the deep neural network. In 
[19], text-based descriptors were employed to classify 
4,232 images from the TomatoWeeds dataset. The study 
utilized text-based descriptors as input for ResNet50, 
encompassing additional features of image-to-text 
projection, morphological characteristics, and habitat 
descriptions. Transfer learning was implemented. Nev-
ertheless, the outcome is suboptimal due to the con-
straints of a limited and unbalanced dataset. Another 
work by [20] integrated grey-level characteristics with 
RGB features and presented the hybridized whale and 
sea lion algorithm as an optimizer for CNNs. Employ-
ing a crop/weed field dataset for weed detection in 
soybean cultivation, this work attained 92% accuracy. 
However, due to the dual-phase data preprocessing, 
the method necessitated substantial CPU resources 
and was deficient in real-time analytical capabilities.

In [21], the work employed multispectral image 
decomposition and feature vector methodologies 
utilizing Wavelet and CapsNet on 2,000 images from 
the Madurai LISS IV dataset, encompassing five weed 
classifications. Their methodology utilizing multispec-
tral sub-bands and a Deep Denoising Auto-Encoder 
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(DDAE) achieved an accuracy of 96.75%, surpassing 
traditional CNNs such as AlexNet, VGG, ResNet, and 
Inception. Despite its excellent accuracy, the intricate 
data preprocessing and feature vector production pre-
sented obstacles for real-time application.

Another work by [22] concentrated on classifying 
corn crops, narrow-leaf weeds, and broadleaf weeds 
by connected component analysis (CCA) to extract re-
gions of interest. Utilizing 15,000 cornfield images cap-
tured under natural conditions, the work implemented 
VGG16, VGG19, and Xception models, attaining an 
accuracy of 97%. These CNN models surpassed SVM 
utilizing LBP feature extraction, although no real-time 
detection processing was documented.

 The integration of deep learning for vegetable de-
tection with color index-based segmentation was pro-
posed by [23] to extract weed features across 12 maize, 
sunflower, and potato classes. Employing the novel 
CentreNet model and color index-based segmenta-
tion, the work attained a 95.3% F1 score. The effort en-
hanced the color index equation using a genetic algo-
rithm but encountered sluggish sequential processing 
in the recognition of vegetables and weeds.

 The performance of VGG16, ResNet50 and Xception 
models is compared in [14] on the classification of 12 
weed types in maize, sunflower, and potatoes farms. 
The work introduced a semi-automatic approach for 
weed labeling utilizing the Excess Green–Red Index 
threshold, applied to 93,000 images across 12 weed 
categories. Utilizing VGG16, ResNet50, and Xception, 
this work attained 98% accuracy through transfer 
learning with two fully connected top layers. Neverthe-
less, the methodology necessitated an extensive data-
set for optimal training.

Table 1 compares and summarizes all works related 
to machine learning algorithms in weed classification 
applications. The analysis highlighted in this section 
emphasizes the limitations of existing research meth-
odologies. This article concatenates all three optimi-
zation strategies to enhance weed classification per-
formance by integrating transfer learning, a modified 
neural network topology, and the incorporation of fea-
ture vectors.

3.	 PROPOSED METHOD

The proposed method for weed image classification 
follows a workflow as depicted in Fig.1. The workflow 
can be divided into three stages. The first stage explains 
the processes taken for data acquisition and processing 
steps. The second stage describes model training steps 
in which the structure of the proposed parallel CNN net-
work will be explained in detail. Finally, model testing 
steps are performed to analyze and validate the perfor-
mance of the trained classifier. Note that k-fold cross-
validation is applied in this work to avoid any bias. Thus, 
the model training and testing steps are repeated a few 
times to get the overall model performance.

3.1.	 Data Acquisition and Processing 
	 Phase

This work uses a weed image dataset from a publicly 
available source called DeepWeeds [24]. The dataset 
contains 17,509 images of weed species commonly 
found across northern Australia. The dataset provides 
weed images from eight locations in a natural range-
land environment. The rangeland environment pres-
ents unique challenges for classifying weeds under 
uneven terrains, complex backgrounds, and difficulty 
in differentiating weeds from native plants.  

There are nine weed classes identified within the da-
taset namely 1) Chinee apple (Ziziphus mauritiana), 2) 
Lantana (Lantana camara), 3) Parkinsonia (Parkinsonia 
aculeata), 4) Parthenium (Parthenium hysterophorus), 
5) Prickly acacia (Vachellia nilotica), 6) Rubber vine 
(Cryptostegia grandiflora), 7) Siam weed (Chromolaena 
odorata), 8) Snake weed (Stachytarpheta spp.), and 9) 
Negative (indicates non-weed class). Fig. 2 shows a few 
samples of weed images in the DeepWeeds dataset.

The size of the images fed into the proposed classi-
fication model is 224 x 224 pixels, so each image IRGB 
is the size of R224x224. Each weed class contains at least 
1000 images. Meanwhile, the negative class concat-
enates all images with no weed, accumulating around 
8690 images. The resampling procedure based on the 
k-fold cross-validation technique is used to evaluate 
the trained CNN model. Expressly, number of folds, k=5 
is set. The dataset is split into training, validation, and 
testing sets with a ratio of 60:20:20.

3.2.	 Model Training Phase

The overall process of model training steps is dis-
cussed further in this section. This phase starts with the 
design of the proposed parallel CNNs model, including 
the input selection, learning paradigm, and classifier 
layer configuration. Then, the architecture of all main 
networks used in the proposed P-CNN model is pre-
sented, including pre-trained CNNs and a custom CNN. 
Thirdly, the generation of excess green images using 
the excess green feature extractor as one input type to 
the model is explained.

The Model Design

In the proposed P-CNN model, the classifier receives 
two inputs, namely RGB image IRGB and its correspond-
ing excess green image IExG. The IRGB size is 224 × 224 × 
3 indicating 224 pixels height (hrgb), 224 pixels weight 
(wrgb) and three-color channels (drgb). IExG has a size of 
224 × 224 × 1 implying 224 pixels for both height and 
weight (hexg and wexg) and expands only one gray-color 
channel (dexg) as the second input to the classifier. Both 
inputs are fed into two different convolutional network 
blocks of the proposed parallel CNN classifier. These 
blocks act as an automated feature extractor that 
learns important image features the classifier block re-
quires. As illustrated, these blocks are organized paral-
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lel to each other so that both blocks can be processed 
simultaneously.

A pre-trained CNN block gets IRGB input. Transfer 
learning extracts IRGB features using well-trained net-
work information. All network weights are untrainable. 
ResNet50 [25] is chosen in this study by maintain-
ing all layers except the top layers for classifier block. 

ResNet50 was chosen for its deep layers and unique 
residual convolutional layers, which achieve one of the 
highest classification accuracies in diverse applications. 
DeepWeeds reference dataset uses ResNet50 as the 
basis and best model. Consequently, this study aims 
to demonstrate how the extra green feature enhances 
performance without the need for new parameters 
while utilizing the same model.

Authors Contribution Datasets Input 
Parameters Classifiers Results Advantages Disadvantages

Hu et al. 
(2024)

Real-time deep 
learning classifier 
for weed severity 

classification

275 images of 5 
common weeds 
around lettuce 

crops

RGB image Multimodule 
YOLOV7-L

97.5% 
mAP@0.5

Lightweight model 
and novel ELAN-B3 
feature extraction 
module. Real-time 
processing 4-13ms

Small datasets and 
highly depends 
on augmented 

images

Makarian 
et al. 

(2024)

Deep learning for 
Saffron crops and 

weeds classification

291 images of 
common weed 
classes around 
Saffron crops

RGB image Xception (the 
best model)

100% F1-
score

Evaluate 24 deep 
learning models. 

Apply transfer learning

Manual 
hyperparameter 

tuning

Belissent 
et al. 

(2024)

Deep learning model 
leveraging text-

based descriptors 
for tomato weeds 

classification

4,232 images of 
4 weed classes 

in TomatoWeeds 
dataset

Text embeds 
with image-to-
text projection, 
morphological 

and habitat 
descriptions

ResNet50 77.8% 
accuracy.

Embed text-based 
descriptors. Deploy 

transfer learning.
Zero-shot learning for 
unseen weed classes

Limitation of 
performance 

due to a small, 
unbalanced 

dataset

Moldvai et 
al. (2024)

Conventional feature-
based classifiers of 
vegetation weeds

3,000 images 
from public 

dataset of corn, 
lettuce and 

radish weeds.

Weed area, 
hull area, and 

solidity

SVM, RF, KNN, 
ANN, NB, GBM

59% to 94% 
accuracy 
in various 
classifier

Extraction of various 
features such as shape 
descriptors and color 

histograms

Small dataset for 
verification

Martins et 
al. (2024)

Feature-based 
classifiers of 

broadleaf weeds in 
narrowleaf crops

126 points for 
pasture area and 

89 points for 
sorghum area.

Soil, terrain 
conditions, 
color and 

spatial 
information

Random 
Forest

84% 
(pasture) 
and 74% 

(sorghum) 
accuracy

Geo-referenced map 
for groundtruth. 

Exploit terrain and 
soil variables as 

parameters

No parameter 
correlation 

analysis 

Moazzam 
et al. 

(2023)

Deep learning model 
for tobacco and 

sesame crop weeds

1,920 images of 
tobacco dataset 

and sesame 
dataset

RGB image W-shaped 
CNN

90% - 94% 
accuracy 

Two stage encoder–
decoder structures 

for pixel-level 
classification 

Large network 
with large 

parameters to be 
trained

Panda et 
al. (2023)

Deep learning model 
for soybean crop 

weeds classification

Crop/weed field 
image dataset 

and weed 
detection in 

soybean crops

GLCM, GLRM 
and RGB 
features

Customized 
CNN with 
HW–SLA 

optimizer

92% 
accuracy 

Incorporate RGB and 
grey-level features. 

Introduce hybridized 
HW–SLA algorithm as 

CNN optimizer

Two-stage data 
pre-processing 

increases time and 
computational 

power

Rajakani 
& Kavitha 

(2023)

Deep learning 
model with 

multispectral image 
decomposition

2,000 images 
from Madurai 
LISS IV with 5 
weed classes.

Multispectral 
sub-bands

Deep 
Denoising 

Auto-Encoder 
(DDAE)

96.75% 
accuracy

Multispectral image 
decomposition and 
feature vector using 

Wavelet and CapsNet

Complex data 
pre-processing 

and feature vector 
generation

Garibaldi-
Márquez 

et al. 
(2022)

Deep learning 
classifier for narrow-

leaf weeds, and 
broadleaf weeds. 

15,000 cornfield 
images Texture features

VGG16, 
VGG19 and 

Xception

97% 
accuracy

Deploy connected 
component analysis 
(CCA) for region of 
interest extraction

No real-time 
detection 

processing

Hu et al. 
(2021)

Multi-scale detection 
via graph vertices DeepWeeds RGB Image Graph Weeds 

Net (GWN)
98.1% 

accuracy
Semi-supervised 

learning approach

Complex 
parameters 

network

de-
Camargo 

et al. 
(2021)

Deep learning model 
for real-time weed 

classifier

40,000 images 
from UAV view

Bounding box 
filtering and 

color indexed 
segmentation

ResNet18 94% 
accuracy

Model size reduction 
from 32-bit to 16-bit. 
Real-time detection 
with 2.2 frames per 

second.

Acceptable result 
degradation after 

resizing

Jin et al. 
(2021)

Deep learning 
and color index 
segmentation 

classifier

12 classes 
of maize, 

sunflower, and 
potato weeds

RGB Image

CentreNet 
and Color 

index-based 
segmentation

95.3% F1 
score

Optimized color index 
equation with Genetic 

algorithm

Slow sequential 
process of 

vegetable and 
weed detection

Peteinatos 
et al. 

(2020)

Deep learning 
classifier with semi-

automatic image 
labeling 

93,000 images of 
12 weed classes RGB Image

VGG16, 
ResNet50 and 

Xception

98% 
accuracy

Semi-automatic 
method for weed 

labeling using Excess 
Green–Red Index 

threshold

Large dataset 
required
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Fig. 1. Overall workflow diagram for the proposed weed classification methodology

Fig. 2. Samples of RGB images of different weed 
classes in DeepWeeds dataset

On the other hand, an IExG input is processed via a 
custom trainable convolutional network. The intuition 
behind this is that very little pre-trained CNN model is 
available for a grayscale or a one-channel input image. 
In addition, this block is the one that is responsible for 
integrating prior domain-specific knowledge that may 
vary in the form of a range of image formats, sizes, or 
depths. Thus, any chosen convolutional network must 
be trained to find the best-configured weights and 
biases with the acquired labeled data. In this work, 
an excess green image generator is used to generate 
IExG from its corresponding IRGB before running this 
convolutional block. Hereafter, the proposed custom 
network for one channel IExG images is called ExGNet.

Next, outputs from both CNN blocks are combined 
and fed into a fully connected layer block that func-
tions as the classifier layer. This block is constructed 
with dense layers with trainable weights and biases to 
form input, hidden, and output nodes. The number of 
nodes for the input layer is equal to the combination of 
output size from both the pre-trained network and the 
trainable network blocks. The output layer is designed 
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to have the nodes equivalent to the number of weed 
classes in the database. Each node represents a weed 
class that is activated based on an activation function. 
In this work, the softmax activation function caters to 
multi-class classification by providing a probability val-
ue for each class. The softmax activation function can 
be calculated using equation (1),

(1)

where yi is the value of the output node of class i and 
N is the total number of classes.

The Network Architecture

The proposed model architecture is depicted in Fig. 
3. This figure and Table 2 represent the proposed P-

CNN network combining the canonical ResNet50 and 
the ExGNet for the DeepWeeds dataset classification.

ResNet50 is a residual learning framework to over-
come the problem of accuracy degradation of deeper 
network layers. In many deeper networks, training er-
rors are supposed to converge. 

However, it is common to observe that the learning 
process runs the other way around causing the accu-
racy to become saturated and drops rapidly. ResNet50 
incorporates residual functions to solve this degrada-
tion problem. A shortcut connection is added to the 
feedforward neural networks. The method has eased 
the training process of deeper layers to achieve better 
accuracy substantially.

Fig. 3. A parallel CNN (P-CNN) model combining the ResNet50 and the ExGNet for the DeepWeeds dataset

Table 2. Model structure of ExGNet for DeepWeeds dataset

Layer Filter Kernel size Pool size Stride Padding Activation 
function

Conv.1 64 3x3 - 1 Same ReLU

Max Pool.1 - - 2x2 None Valid -

Conv.2 128 3x3 - 1 Same ReLU

Max Pool.2 - - 2x2 None Valid -

Conv.3 256 3x3 - 1 Same ReLU

Max Pool.3 - - 2x2 None Valid -

Conv.4 512 3x3 - 1 Same ReLU

Batch Norm.1 - - - - -

Max Pool.4 - - 2x2 - Valid -

Global Avg. Pool.1 - - - - - -

The main idea of the proposed architecture is to fully 
utilize available resources via integrating transfer learn-
ing, prior domain-specific knowledge, and a limited la-
beled dataset. 

The parameters of the pre-trained ResNet50 blocks 
are preserved in the architecture via a transfer learn-
ing approach. The powerful transfer learning approach 

makes those networks highly reusable for RGB im-
age applications. The networks have been extensively 
trained using thousands of RGB images, such as from 
the ImageNet dataset, and thus, are capable of extract-
ing low-level image features like lines and edges and 
high-level image features, such as object shapes, as the 
network layers go deeper.
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For the trainable ExGNet, the network is built from a 
sequence of convolutional layers, max-pooling layers, a 
batch normalization layer, and a global average pool-
ing layer. The first convolutional layer (Conv.1) uses 64 
kernels (𝑑𝑐𝑜𝑛𝑣 = 64) to produce a feature map of size 224 
× 224 × 64. Each kernel has the size of 3 x 3 (𝑘𝑐𝑜𝑛𝑣 = 3 
× 3). Standard convolution with scalar multiplication 
operation and stride one and same padding is used in 
this work. Such standard convolution has the computa-
tional cost as in (2).

Costconv = hi x wi x di x dconv x kconv (2)

where hi, wi and di are the height, width and depth of 
an input, respectively.

A Rectified Linear Unit (ReLU) is adopted as the acti-
vation function after the convolutional layer to intro-
duce a non-linearity function to the network. A pooling 
layer (Max Pool.1) is added after the Conv.1 layer. The 
pooling layer is introduced to down-sample the fea-
ture maps, reducing the number of parameters to be 
learned. Max pooling type is performed such that the 
maximum element of any feature map region covered 
by a filter with 2 x 2 pool size (𝑘𝑝𝑜𝑜𝑙 = 2 × 2) is selected. 
The same convolutional and max pooling layers block 
are repeated three times (Conv.2, Max Pool.2, Conv.3, 
Max Pool.3) for the network to learn more complex fea-
tures. Another convolutional layer (Conv.4) is added, 
followed by a batch normalization layer.

The loss function is used as the guide for the back-
propagation algorithm to fine-tune all trainable pa-
rameters. The loss function calculates prediction errors 
by comparing the models and labeled outputs. In this 
work, categorical cross entropy, 𝐿𝑜𝑠𝑠𝑐𝑎𝑡𝑥, is used as the 
loss function as in (3),

(3)

where ŷj is the target value of class j. Here, one-hot 
encoded labeled output is established from the avail-
able dataset for all outputs. Table 2 shows the configu-
rations of hyperparameters used in this work.

Table 2. Hyperparameters setting

Hyperparameter Filter
Optimizer Adam V2

Learning rate 0.0001

Epoch 100

Excess Green Image Generator

An excess green image IExG can be generated from 
the excess green feature extractor block in Fig. 1. This 
block acts as the medium to extract greenness index 
information from an RGB image IRGB. Greenness iden-
tification is vital for many vegetation and crop identi-
fication by focusing on the green color spectrum and 
reducing the effect of red and blue color spectra. 

Various visible spectral-index methods are available, 
such as the excess green index, the vegetation index, 

the excess green minus excess red index, and the green 
leaf index. However, this work selects the excess green 
index due to its capability to distinguish green plants 
with its background effectively and outperforms other 
greenness indices in terms of greenness identification 
performance [26].

The excess green index can be calculated for each 
pixel of an RGB image using equation (4),

ExG=2g-r-b (4)

where, g, r and b are the chromatic green, red and blue 
colors defined by equation (5).

(5)

where G, R and B are the pixel values of an RGB im-
age, while 𝐺*, 𝑅* and 𝐵* are the maximum pixel values 
of an RGB image.

3.3.	 Model Testing Phase

Every trained model's performance can be validated 
with data outside the training dataset. This work choos-
es the cross-validation approach rather than the single 
'training-testing' split approach to avoid bias and reduce 
variance. Each dataset is equally divided into several 
folds, k, with the amount of data in every fold almost 
close to each other. k=5 is used in this work, which means 
the proposed classifier model was trained 5 times, with 
each training using k-1 or four folds as the training data-
set, alternating each remaining fold as the testing data-
set once. The model performance is measured based on 
all performance indices' mean and standard deviation.

The main performance index is accuracy. A model's 
accuracy can be calculated with equation (6). Accura-
cy gives the overall rate of correct predictions over all 
tested cases.

(6)

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 are true positive, true nega-
tive, false positive and false negative cases, respec-
tively, acquired from a confusion matrix. For further 
statistical analysis, three more performance indices are 
calculated based on precision, recall and F1-score indi-
ces. Equations of (7), (8) and (9) show the calculation for 
all three indices, respectively.

(7)

(8)

(9)

Precision measures the percentage of correct posi-
tive predictions from all positive predictions. Recall 
gives a percentage of correct positive predictions over 
all positive cases. F1-score considers the trade-off be-
tween precision and recall.
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4.	 RESULTS AND DISCUSSION

The results obtained from both the training and test-
ing phases of the proposed P-CNN classifier model are 
presented in this section. The hardware utilized for this 
experiment comprises an AMD Ryzen 7 4800HS pro-
cessor, 16GB of RAM, and a Nvidia GeForce GTX 1660 
Ti graphics card. 

The proposed parallel CNN model was implemented 
on the Deep-Weeds dataset, with nine weed classes 
and 17,509 images. In this experiment, the ResNet50 
network in the pre-trained convolutional block was 
used to support the complexity of the classification 
problem. Transfer learning was made from the net-
work trained in [24], with the last two layers acting as 
the classification function removed. Then, the custom 
convolutional block, ExGNet, and the fully connected 
block, as described in section 3, were combined with 
the ResNet50 network. 

Fig. 4 shows the learning process of the proposed 
model across all five cross-validated training and vali-
dation folds of the DeepWeeds dataset. The accelera-
tion stage occurred for the first 5 epochs, the optimiza-
tion stage between epochs 6 and 49, and the short pla-
teau stage from epoch 50 onward. All training sessions 
stopped early before reaching the maximum epoch as 
no further improvement can be seen in the validation 
accuracy. The training time was around 91 minutes. In 
comparison, it took 13 hours to train a single ResNet50 
model without transfer learning in [25].

Fig. 4. Graph of learning performance in terms of 
training dataset accuracies (training 1,2,3,4,5) and 

validation dataset accuracies (validation 1,2,3,4,5) for 
all 5 cross validated folds of the DeepWeed dataset

Moving to the testing phase, Table 3 contains the con-
fusion matrix of the average prediction results expressed 
as percentages across all five cross-validated testing 
folds for nine weed classes. Negatives and Parkinsonia 
classes have the two highest prediction accuracy, with 
98.6% and 98.3%, respectively. In contrast, Chinee apple 
and Snake weed classes show the two lowest prediction 
accuracies with 91.6% and 93.1%, respectively.

This is due to a relatively large misclassification be-
tween these two classes compared to other classes. 
This confusion is contributed by certain lighting condi-

tions that make the leaf material of both weed classes 
look intensely similar. However, the misclassification 
errors of the Chinee apple image as Snake weed image 
at 2.4%, and 3.1% vice-versa, are lower than the errors 
produced by the original ResNet50 model. The pro-
posed P-CNN can increase the accuracy of the Chinee 
apple class from 88.5% in [25] to 91.6%. The same goes 
for the Snake weed class, which has improved from 
88.8% to 93.1%. Overall weighted accuracy for all class-
es of the proposed model is 97.2%.

Table 3. Confusion matrix between actual and 
predicted weed classes of DeepWeeds dataset for 

all 5 cross validated testing folds. The weighted 
class accuracy is expressed as percentages.

Predicted

Ch
in

ee
 

A
pp

le

La
nt

an
a

Pa
rk

in
so

n

Pa
rt

he
ni

um

Pr
ic

kl
y 

A
ca

ci
a

Ru
bb

er
 V

in
e

Si
am

 W
ee

d

Sn
ak

e 
W

ee
d

N
eg

at
iv

es

A
ct

ua
l

Chinee 
Apple 91.6 0.5 0.0 0.8 0.0 0.2 0.1 2.4 4.4

Lantana 0.6 96.7 0.0 0.1 0.0 0.2 0.0 0.5 2.0

Parkinson 0.0 0.0 98.3 0.2 0.7 0.0 0.0 0.0 0.9

Parthenium 0.1 0.0 0.1 97.1 0.9 0.1 0.0 0.0 1.8

Prickly 
Acacia 0.1 0.0 0.6 0.9 95.8 0.0 0.0 0.0 2.6

Rubber Vine 0.5 0.2 0.0 0.2 0.1 95.7 0.0 0.4 2.9

Siam Weed 0.0 0.0 0.0 0.0 0.0 0.0 97.7 0.0 2.3

Snake Weed 3.1 0.6 0.0 0.2 0.0 0.0 0.0 93.1 3.0

Negatives 0.3 0.2 0.1 0.1 0.3 0.1 0.2 0.2 98.5

This is due to a relatively large misclassification be-
tween these two classes compared to other classes. 
This confusion is contributed by certain lighting condi-
tions that make the leaf material of both weed classes 
look intensely similar. However, the misclassification 
errors of the Chinee apple image as Snake weed image 
at 2.4%, and 3.1% vice-versa, are lower than the errors 
produced by the original ResNet50 model. The pro-
posed P-CNN can increase the accuracy of the Chinee 
apple class from 88.5% in [25] to 91.6%. The same goes 
for the Snake weed class, which has improved from 
88.8% to 93.1%. Overall weighted accuracy for all class-
es of the proposed model is 97.2%.

Statistical analysis with precision, recall, and F1-score 
performance indices was conducted and tabulated in 
Table 4. The highest precision achieved is 98.8% by the 
Parkinsonia class, while Chinee Apple shows the lowest 
precision with 93.9%. 7 out of 9 classes have precision 
above 95%. The highest and the lowest recall is 98.5% 
and 91.6% recorded by Negatives and Chinee Apple 
classes, respectively. Again, all classes have recall above 
95% except for the Chinee Apple and Snake Weed 
classes. Combining precision and recall, the highest F1-
score is attained by the Parkinsonia class with 98.5%. In 
contrast, the Chinee apple class carries the least per-
formed class with an F1-score of 92.7%.

Finally, the performance improvement of the proposed 
parallel CNN (P-CNN) model was observed against the 



performance reported by the ResNet50 model in [12].  
Table 5 compares accuracy, precision, and false positive 
rate (FPR) indices for all classes in the DeepWeeds data-
set between both models. P-CNN achieved better ac-
curacy than ResNet50 in all weed classes. Chinee Apple 
and Snake Weed classes show the highest improvement, 
at 4.3% and 3.1%, respectively. 
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Table 4. The average precision, recall and F1-score for 
all 5 cross validated testing folds of the DeepWeeds 

dataset. All values are expressed as percentages

Class Precision Recall F1-score

Chinee Apple 93.9 91.6 92.7

Lantana 97.0 96.7 96.8

Parkinson 98.8 98.3 98.5

Parthenium 96.6 97.1 96.8

Prickly Acacia 95.6 95.8 95.7

Rubber Vine 98.5 95.7 97.1

Siam Weed 97.9 97.7 97.8

Snake Weed 94.7 93.1 93.9

Negatives 97.7 98.5 98.1

Table 5. Comparison of accuracy, precision and 
false positive rate (FPR) performance between the 
proposed model (DP-CNN) and the conventional 

ResNet50 model (ResNet50). The bolded texts 
indicate the improvement of 1% and more
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Chinee 
Apple 91.6 88.5 93.9 91.0 0.42 0.61

Lantana 96.7 95.0 97.0 91.7 0.19 0.55

Parkinsonia 98.3 97.2 98.8 97.9 0.07 0.13

Parthenium 97.1 95.8 96.6 96.7 0.21 0.21

Prickly 
Acacia 95.8 95.5 95.6 93.0 0.29 0.46

Rubber Vine 95.7 92.5 98.5 99.1 0.09 0.05

Siam Weed 97.7 96.5 97.9 97.2 0.13 0.18

Snake Weed 93.1 88.8 94.7 90.9 0.32 0.55

Negatives 98.5 97.6 97.7 96.7 2.50 3.59

Average 97.2 95.7 97.2 95.7 1.40 2.04

For the precision and FPR indices, P-CNN outper-
formed ResNet50 in all classes except the Parthenium 
and Rubber Vine classes. The precision and FPR results 
of the Parthenium class are on par with those of both 
models. Meanwhile, the Rubber vine class has a very 
minimum performance reduction of 0.6% and 0.04% 
for precision and FPR, respectively. Interestingly, the 
weighted average FPR of P-CNN has significant error 
improvement, where it recorded only a 1.40% error rate 
compared to Res-Net50 with a 2.04% error rate. This, in 
turn, could be beneficial for weed control and man-
agement. For example, smaller FPR can save the cost 
of herbicide application by minimizing cases with her-
bicide and weed type mismatches. Overall, the results 

show the dominance of the proposed P-CNN model 
over the ResNet50 model.

The capability of weed classification models to accu-
rately identify weed types is essential for several rea-
sons. Robust identification of weed classes can assist in 
managing effective weed control strategies, especially 
in determining the correct type and amount of chemi-
cal sprayer, mechanical weed removal, or other weed 
management techniques. Weed image classification 
can also aid in analyzing invasive weed types that dis-
place native crops and disrupt ecological balance via 
preventive maintenance actions.

The applicability of the excess green index (ExG) to 
the weed image classification can be seen from the 
performance improvement of various classification in-
dices. The results show that the features extracted from 
ExG are important in vegetation classification, where 
greenness information plays a vital role in distinguish-
ing patterns of different weed types.

The total time required to compute the excess green 
index and execute a prediction using parallel CNN 
is around 200ms. The size of the P-CNN model is ap-
proximately 210MB. In contrast, a solitary ResNet50 
required approximately 180ms when utilizing the or-
dinary TensorFlow package. The ResNet50 model's size 
is 283.6MB, encompassing its original fully connected 
layers. The data indicates that the incorporation of ExG-
Net has minimal effect on the time and sizing perfor-
mance of the classifier.

The suggested method utilizing ExG index extrac-
tion has effectively distinguished various weeds ex-
hibiting similar greenness patterns; however, it is lim-
ited in enhancing other parameters, such as lighting 
circumstances, which are less correlated with green 
color. Exploration of a parallel network utilizing other 
established feature vectors that have a high correlation 
with a desired factor is feasible. Moreover, the ExGNet 
architecture is subject to additional optimization. This 
is justifiable when the dimensions of the structure and 
the execution duration must be minimized for certain 
applications, such as embedded systems. 

In terms of the proposed model's applicability, fu-
ture research should concentrate on integrating the 
proposed model into an embedded system for in-situ 
industrial applications. For example, the proposed 
model can be employed for an automated herbicide 
sprayer to eliminate weeds. The selection of the suit-
able herbicide can occur in real-time with accurate 
classification of weed types. This method provides 
significant economic benefits by minimizing herbi-
cide usage, resulting in cost reductions for farmers. 
Furthermore, it reduces the environmental impact of 
pesticides, fostering sustainable agriculture methods. 
By precisely targeting weeds, it also aids in maintain-
ing crop health and productivity, so further aiding the 
agricultural sector.
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5.	 CONCLUSION

The proposed parallel convolutional neural network (P-
CNN) has surpassed a state-of-the-art network in reduc-
ing the classification error of weed types. A public dataset 
of weed images has been utilized to assess the P-CNN. 
The P-CNN achieved an average accuracy of 97.2% on the 
DeepWeeds dataset, compared to the standard ResNet50 
model's accuracy of 95.7%. The total error rate varies be-
tween 1.5% and 8.4%. The P-CNN surpasses ResNet50 
across all nine categories. The experimental results indi-
cate that using green excess index information can sub-
stantially enhance classification accuracy while preserv-
ing the requirement for rapid computer processing. The 
suggested network demonstrates significant progress 
towards reaching a near-zero error rate in weed classifi-
cation, warranting further investigation to attain a sub-
stantial and acceptable degree of accuracy. The proposed 
model can be implemented into an embedded system for 
in-situ industrial applications in future research. A weed-
killing automatic herbicide sprayer can use the model to 
perform herbicide selection in real time.
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