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Abstract – In neutron radiographic imaging, generally, the collimation ratio is assumed to be sufficiently large to ensure a valid 
approximation for parallel beam geometry. However, this assumption is difficult to apply in small nuclear reactors due to the low-
intensity neutron flux. For this reason, these reactors produced inherently blurry neutron images. In this paper a blind deconvolution 
technique is investigated for the enhanced visual quality of neutron images through the reduction of blurring artefacts. Technically, 
this approach is extremely challenging because it requires an unknown point spread function. To solve this problem, scholars employ 
the gradient minimization strategy under the framework of a maximum a posterior, which leads to the development of an improved 
deblurring method, referred to in this paper as the enhanced patch-wise intensity prior. Experimental results demonstrate that the high 
competitiveness of the proposed method in terms of blind or no-reference evaluation measure, with an average of 46.1 for six neutron 
images used in this study. This value is considerably lower compared with those of existing deblurring techniques, which implies a 
more accurate restoration. Additionally, the proposed method resulted in the highest, and hence, the best entropy and contrast values, 
averaging at 7.09 and 1.05 respectively. The proposed method is also the second fastest technique witd mean time of 180 s.
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1.  INTRODUCTION

Neutron radiography (NR) uses neutron radiation to 
probe the internal structures of objects, and it shows 
similarity to X-ray radiography. However, different from 
X-ray, neutrons are easily attenuated by light elements, 
such as hydrogen and boron, but can easily penetrate 
numerous heavy metals. These unique properties ren-
der NR a highly useful technique for nondestructive 
testing and quality control inspection. Despite being 
powerful and unique, the NR images produced by low-
power nuclear reactors exhibit inherent degradation 
due to blurring. Examination of the collimation system, 
which is one of the core elements in NR image capture, 

can be used to explain the main source of blurring (Fig. 
1). Referring to this figure the collimator system, which 
comprises an aperture and detector, directs a neutron 
beam to an object. Similar to a pinhole camera, the 
aperture prevents neutrons from entering the beam 
except through the hole, which concentrates neutrons 
within a small area, and hence reduces image distor-
tion and chromatic aberration. Meanwhile, the detec-
tor converts neutrons into a two-dimensional (2D) im-
age that depicts the internal structure of an object. This 
geometry determines the collimation ratio, which is an 
important characteristic of NR. In this case, the collima-
tion ratio refers to the ratio of collimation length L to 
the effective diameter of the aperture D or L ⁄ D.



134 International Journal of Electrical and Computer Engineering Systems

Fig. 1. Typical collimation system used for NR image 
capture

Following the pinhole camera analogy, geometric 
blurring can be defined as ∆= x ⁄ ((L/D) ), where Δ di-
rectly determines the resolution or sharpness of NR 
images. An optimal resolution is obtained when Δ→0. 
This requirement can be attained either through place-
ment of the object close to the detector (x→0) or with 
the use of a larger collimation ratio (L ⁄ D→∞). However, 
the contrast exhibits a rapid drop with the decrease in x 
due to the reduced intensity of neutron flux through an 
inverse-square relationship. For this reason, x is main-
tained at a reasonable distance, whereas L ⁄ D is main-
tained as high as possible to produce NR images with 
adequate contrast and acceptable resolution. Typically, 
the L ⁄ D of high-power neutron reactors ranges be-
tween 125 to 500 [1]. By contrast, the L ⁄ D of small reac-
tors are generally considerably lower than this range. At 
Malaysia Nuclear Agency (MNA), the L ⁄ D of NR facilities 
approximates 105, which is moderately low compared 
with those of high-power or large-scale reactors. Using 
an arctan inverse relationship (i.e. (tan-1(1/(L ⁄ D))-1) this 
ratio is equivalent to a beam divergence of approxi-
mately1.820. The low L ⁄ D or high beam divergence 
serves as the primary cause of the blurring for images 
captured at this facility. Hence, image deblurring or res-
toration constitutes one of the important tasks in post 
image processing activities in this reactor. For linear, 
shift-invariant systems, image restoration can be mod-
eled as a convolution operation. Mathematically:

B=k*L+n (1)

where B represents the blurred image, L refers to an un-
known latent or sharp image, k denotes the PSF, “*” repre-
sents the 2D convolution operator and n corresponds to 
additive noise. In most deblurring applications, n can be 
ignored because it is small and uncorrelated. Given that 
k is generally unknown, the image restoration methods 
transforms into a blind-deconvolution problem. Among 
all available solutions to this problem, the maximum a 
posterior (MAP) is the most popular and widely used 
technique. An earlier work in this field is a paper pub-
lished elsewhere [2]. Their algorithm is effective when 
dealing with small-sized images and hence less complex 
PSFs. Multilayer iterative estimation techniques are usu-
ally deployed for large images with relatively complex 
PSFs. Importantly, this algorithm exhibits sensitivity 

to local minima, which led to inaccurate estimation of 
PSF and in turns affected the deblurring results. Hence, 
regularization is performed to increase the probability 
of finding good local minima. In general, this step is in-
troduced into an optimization problem to prevent over-
fitting and reduce complexity [3, 4]. They developed an 
L0-based image smoothing algorithm by retaining large 
structures and removing minute details. They used L0 
and L2 norms for image gradient prior and kernel prior, 
respectively. However, such an algorithm is time con-
suming because the solutions require solving a compli-
cated joint optimization problem. Moreover, it requires 
sophisticated priors and thus considerably more com-
plex optimizers. Therefore, the superior performance of 
this method is compromised by a high computational 
cost. These problems were addressed, which resulted in 
development of an improved technique [5]. These au-
thors assumed that not all edges in the latent image are 
significant and useful. This assumption allowed them to 
enforce L0 regularization to constrain the sparsity of im-
age prior and use L2 to regularize the kernel prior. Such 
regularization strategies not only improve the quality of 
image deblurring but also reduce the runtime. A new 
channel prior called the enhanced local maximum in-
tensity has also been investiogated [6]. Though effective, 
however, this algorithm has only been tested in the res-
toration of text documents with a uniform background. 
Compared with text images, NR images exhibit a more 
complex intensity distributions because they contain 
many brightly illuminated pixels due to the strong pen-
etration of neutrons. Therefore, the direct application of 
intensity priors is less satisfactory for NR images. In an-
other work. In another research a sparse prior based on 
a collection of local minimal pixels in non-overlapping 
patches has been proposed [7]. Referred to as patch-
wise minimal pixels (PMPs), this method involves the cal-
culation of the low intensity of dark pixels in non-over-
lapping patches. Despite the remarkable performance 
of this method, especially when an image contains many 
dark pixels, its effectivity decreases when dealing with 
large-sized images or complex PSFs. Solving this meth-
od led to the development of a new sparse channel prior 
that considers the relationship between dark and bright 
channel priors [8]. Even though the authors reported im-
proved performance, however, the method is very time 
consuming as it requires more than 115 s to process a 
small image with a size of 256×256 pixels. Recently, the 
deep learning approach for restoring neutron image has 
also been reported [9,10]. However, due to the unavail-
ability of standard neutron image dataset, the authors 
have resorted to using X-ray images as substitutions for 
training and testing. Though the results are quite prom-
ising, however, it’s difficult to evaluate the actual perfor-
mance of the algorithm because of different type of im-
ages used in the investigation.

Following the above discussion, this paper proposes 
an alternative strategy based on high-intensity bright 
pixels. It also addresses large and complex PSFs as evi-
dent from the ensuing discussion. The basic idea be-
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hind this idea is first published at a conference meet-
ing held recently [11]. Following this publication, this 
paper presents detailed information of the proposed 
method including the use of a much more efficient and 
accurate PSF estimator. Compared to the trial-and-er-
ror method as in our previous publication, here, a more 
systematic approach in determining important param-
eters of the algorithm is devised and discussed. Also 
the performance of the proposed solution is evaluated 
critically by comparing results with the state-of-the-art 
methods. Our contributions are as follows:

1. A new effective and simple image prior that uses 
bright pixels in nonoverlapping patches. This new 
image prior is referred to as the enhanced patch-
wise intensity (EPI). 

2. A new cost-effective penalty function to enforce spar-
sity of the prior. During induced sparsity, the regu-

larization term facilitates recovery of sharp images, 
which are in turn used in PSF estimation. The method 
helps in accelerating the runtime because only the 
nonzero elements are used in the computation. 

2. MATERIALS AND METHODS

2.1. INTENSITY DISTRIbUTIONS

In consideration of the above discussion, two important 
assumptions are accounted for in the method proposed 
in this paper. First, most NR images contain a high number 
of brightly illuminated pixels, which is principally due to 
intense radiation, with neutrons easily penetrating most 
objects except hydrogenated materials. Second, brightly 
illuminated pixels show a drop in intensity due to blurring. 
Fig. 2 illustrates these assumptions using three different 
NR images.

(i) Sample 1

(a)

(ii) Sample 2 (iii) Sample 3

(i) Sample 1
(b)

(ii) Sample 2 (iii) Sample 3

(c)

Fig. 2. The effect of blurring on image brightness and intensity distributions. 
(a) Sharp images, (b) Blured images, (c) Histogram



136 International Journal of Electrical and Computer Engineering Systems

The images in Fig. 2(a) appear sharp and clear because 
they are captured using a high-power nuclear reactor. 
In this case, Figs. 2(a)(i-iii) include the original sharp im-
ages captured from three different projections, and Figs. 
2(b)(i-iii) display their corresponding blurry counter-
parts. Blurring is simulated using a simple low-pass filter. 
Comparison of Figs. 2(a) and 2(b) shows the reduction 
in brightness after blurring, which implies the consider-
able drop in intensity. To further prove this observation, 
we examined the characteristics of sharp and blurred 
images on their histograms. In so doing the probability 
density function (PDF) for sharp and blurry images are 
first calculated, second normalized, and then averaged. 
Fig. 2(c) displays the results. As shown in the figure, the 
histogram of blurred image shift to the left, which results 
in more pixels occupying low gray-scale values and im-
plies the reduced image brightness due to blurring.

2.2. ENHANCED PATCH-wISE INTENSITY PRIOR

On the basis of the above assumptions, the proposed 
prior employs high-intensity bright channel pixels in 
non-overlapping patch. The proposed method can be 
explained by referring to a sharp image L of size m × n 
and partitioned into d non-overlapping patches; with 
each size r × r, the patch size r can be varied by ratio 
formula: r=SF ×((m + n)/2) where SF is a scaling factor. 
Meanwhile d=⌈m / r⌉ × ⌈n / r⌉, and ⌈∙⌉ denotes the ceil 
operator. For gray scale image the EPI prior can be de-
fined as follows:

(2)

where (x, y) denotes the pixel coordinates, and Ωi de-
notes the i-th non-overlapping patch with i=1,2,…,d. 
Therefore, EPI(L)(i) represents the collection of high-
intensity or bright pixels of i-th non-overlapping patch. 
Similarly, the EPI prior of blurred image B can be ex-
pressed as follows:

(3)

As discussed previously, the brightness of an image 
drops as a result of blurring. Hence, the EPI prior of 
the blurred image is much less than that of a sharp 
latent image. Mathematically, the following inequal-
ity holds:

EPI (B) ≤ EPI (L) (4)

Substituting Equation (1) into Equation (4) gives

(5)

where k>0 and ∑k=1. Following Equations (4) and (5), 
the maximum intensity value of a blurred image is also 
significantly less than that of a sharp image. With the 
assumption that the patch size for B and L is the same, 
the following inequality is also valid:

(6)

(7)

The first term ‖L * k-B‖2
2 is a data fidelity term that 

constrains the convolution of L and k so that the result 
is consistent with B. The regularized terms P(L) and P(k) 
are priors related to latent image and PSF kernel, respec-
tively. μ and γ are positive regularizing parameters that 
balance the weight relation between the fidelity and 
priors. The deblurring problem is non-convex; therefore, 
regularization helps constrain the priors to increase the 
probability of producing a good local solution. As ex-
plained previously, the gradient of a natural image is 
sparse. Consequently, P(L) is regularized such that

P(L)= ‖L‖0 (8)

where ‖.‖0 indicates the zero norm. Meanwhile, the 
kernel prior is formulated as

(9)

where ‖.‖2 denotes the second norm. The deblurring 
model can be formulated by combining Equations (8) 
and (9). Mathematically,

(10)

where ∇=(∇h, ∇v) denotes the image gradients calcu-
lated in the horizontal and vertical directions. In this 
case the ‖.‖2 is also used to constraint the data term 
because this norm is known to be optimal for Gaussian 
noise. Moreover it enables the solution to be calculated 
using a standard fast Fourier transform (FFT) algorithm. 
Introducing the EPI, Equation (10) can be rewritten as:

(11)

where α, μ, and γ are positive weight parameters. Tra-
ditionally, an iterative-based Half Quadratic Splitting 
(HQS) algorithm is used in solving Equation (10), such 
as in [5] and [10]. However, this algorithm is complex 
and time consuming. Thus, an alternative strategy is 
employed in this study. Exploiting the sparsity of the 
EPI in non-overlapping patch, Equation (9) is solved 
directly via soft thresholding. The following condition 
is introduced to constrain the solutions in such a way 
that

(12)

subject to EPI(L)(i)~p(x), for i ∈ {1,…,d}  

As explained, this paper exploits high-intensity pixels 
to distinguish sharp from blurry images. With this as-
sumption, the deblurring model is developed and pre-
sented in the following subsections.

2.3. DEbLURRINg MODEL

With the use of Equation (1), the deblurringit's model 
based on the standard MAP estimation framework is 
developed as follows: 
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(13)

subject to EPI(L)(i)~p(x), for i∈{1,…,d}

The second subproblem describes the unknown k as 
follows: 

Equations (13) and (14) are principally non-convex. 
Hence, the ideal solution may not exist. Therefore, 
these equations are solved through the minimization 
technique to produce approximate solutions. In so do-
ing, similar approaches published by [5], [7], [12] and 
[13] are adopted. Interested readers are referred to 
these publications for further details. A summary of 
the minimization procedures is presented for the sake 
of completeness and thoroughness of discussion. The 
first step in the minimization process is to estimate k. 
The Gaussian function is used as a first estimate of k 
because the blurring is essentially low-pass filtering. 
Then, Equations (13) and (14) are solved alternately us-
ing methods and procedures discussed in the follow-
ing subsections.

2.4. L SUb-PRObLEM 

In solving Equation (13), a constraint is imposed to in-
duce the sparsity on EPI(L), indirectly speeding up the 
minimization process. Given a previous estimation of 
ki, the latent image is updated via iterative threshold-
ing. Mathematically,

(15)

subject to EPI(L)(i)~p(x), for i ∈ {1,…,d}

Equation (14) comprises two important regularizers: 
L2 and L0. The data fidelity term is smooth and convex, 
whereas the gradient term is non-convex. With the use 
of an auxiliary variable G with respect to the image gra-
dient ∇L, Equation (15) is reformulated to yield

(16)

subject to EPI (L)(i)~p(x), for i∈{1,…,d}

where β is a positive and sufficiently large penalty 
parameter to enforce ‖∇L-G‖2≈0 ,and ∇L≈G. As a re-
sult of additional constraints, L and G cannot be solved 
directly using popular algorithm such as the block 

(17)

for i∈{1,…d}

where λ is the thresholding value, which is greater than 
zero. With Ωt+1,j denoted as the index set of EPI, the bi-
nary mask corresponding to EPI subset is calculated as 
follows:

(18)

where M ∈ Rm×n is the binary mask corresponding to the 
EPI subset of L. Here EPI(L): Rm×n→Rd; thus, the inverse of 
EPI(L) is equivalent to EPIT (L): Rd→Rm×n for any z ∈ Rd. 
Consequently, L can be presented by:

(19)

where ∘ is the dot product. In this case M(i, j)=1 is the 
maximal pixel in the non-overlapping patch. For other 
pixels, M(i, j)=0. With the use of the results of Equation 
(19), the intermediate latent image at jth iterative step is 
updated as follows:

(20)

Substituting Equation (20) into Equation (16), the 
gradient subproblem of G is reformulated as follows:

(21)

where ∇=(∇h, ∇v) and G=(Gh, Gv). Gh and Gv are the im-
age gradient in the horizontal and vertical directions, 
respectively. Following [5], Equation (21) is solved us-
ing proximal minimization. Mathematically,

(22)

Using results calculated from Equation (22), the final 
update formula for L is defined as follows:

(23)

The closed-form solution of Equation (23) can be ob-
tained using the FFT algorithm. Mathematically,

(24)

where F(.) and F-1(.) denote FFT and inverse FFT, re-
spectively. F(∙) is the complex conjugate operator. ∇v, ∇h 

where p(x) is a PDF. The thresholding of the minimum 
and maximum pixels of non-overlapping patches with 
a constraint value of 0.9 produces distributions whose 
shape is approximately hyper-Laplacian. This type of 
output together with the sparsity of high-intensity pix-
els enhances the distinguishability between sharp from 
blurred images. The next step is applying the alternat-
ing optimization rule to Equation (12), which splits the 
cost function into two subproblems. The first subprob-
lem characterizes L using the following cost function:

(14)

coordinate descent. Similar to [7], an alternative soft 
thresholding technique is applied to solve Equation 
(16) iteratively. The EPI subset of Lt, j is denoted as Ls

t, 

j∶=EPI(j) for tth latent image at jth iterative step, then the 
subsequent latent image is calculated by direct thresh-
olding as follows:
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Fig. 3. Overview of the proposed EPI method

(25)

As before, the solution to Equation (24) is obtained 
through the FFT algorithm. The result is as follows:

(26)

The above optimization procedures are implemented 
using coarse-to-fine multi-scale structure. In this way, k 
is always non-negative, thus fulfilling the constraint re-
quirement. The main steps involved in solving L and k 
subproblems are summarized in Appendix I. 

Respectively the algorithm is named as Algorithm 1 
and Algorithm 2. Referring to Algorithm 1, the method 
performs two-layer loop iterative calculations. Theo-
retically, β must be large for the algorithm to work. 

represent vertical and horizontal differential operators, 
respectively.

2.5.  K SUb-PRObLEM

The k subproblem is solved in the gradient space, 
similar to the approach of [5], [10] and [11]. The update 
formula for k is given by

However, a large β means that regularization is a time-
consuming process. One solution to this problem is to 
first use smaller β and then iteratively update this figure 
until it reaches a stable target value. For this method to 
work, a >1. In this research, the following parameters 
are chosen for Algorithm 1: a=2 , β0=2μ, βmax= 105, μ=4 x 
10-3, J=3. The threshold value λ is initially set to 0.1. This 
value is reduced gradually until it equals a mean value 
of EPI. Here β0 determines the starting strength of the 
regularization. Meanwhile, βmax is set to an upper limit 
to ensure a controlled regularization.

Together, they prevent excessive deblurring while 
preserving important details and avoiding over-
smoothing.

2.6. IMPLEMENTATION

The alternate minimization described in Equations 
(24) and (26) iterates between latent image and kernel 
estimation. The blurred image and Gaussian function 
are used as first-guess solutions for L and k, respec-
tively. Large kernels are estimated using the multilayer 
pyramid scheme combined with iterative minimization 
strategy. The scheme prevents optimization from being 
isolated in a local minimum. The strategy works gradu-
ally from the coarsest layer to the finest layer. Fig. 3 sum-
marizes the working principle of the proposed method. 
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3. IMAgE ACQUISITION

Neutron imaging experiments are performed at MNA, 
which houses the Research TRIGA PUSPATI (RTP) reactor. 
The RTP is a swimming pool-type, light, water research 
reactor containing enriched uranium–zirconium–hydride 

fuel and a graphite reflector. This reactor has a nominal 
power of 1 MW and is thus categorized under low-power 
research reactors. RTP possesses three radial beam ports, 
one tangential beam port, and one thermal column. The 
NR imaging facility is constructed around the radial beam 
port. The details are described elsewhere [14]. A total of 
six NR images of common objects produced at this facil-
ity are investigated, three of which are illustrated in Fig. 4. 

(a)

(b)

(c)

Fig. 4. Examples of neutron images produced by 
RTP. Regions containing vague useful features are 
marked with solid-line circles. (a) Hard-disk drive 

(1509 x 1248), (b) Honeycomb (1515 x 2322), 
 (c) Lily flower (1728 x 2132)

The figure shows the multilayer PSF processing unit 
represented by several elements inside the blue dotted 
square. The red-dotted rectangle refers to a single-lay-
er pyramid PSF processing unit. In the unit, the square 
block on the left is the latent image calculation engine, 
and that on the right is the PSF estimator unit. Once k 
and L have been estimated in the low-resolution layer, 
k is upscaled for the next layer. L and k are refined itera-
tively in each layer. In this study, the maximum number 
of iterations is rigidly fixed to five. This value is selected 
heuristically because it produces the best solutions for 
all images used in the present work. During operation, 
the input image is first transformed into a grayscale 
one and then downscaled a few times. Here, the extent 
of downscaling depends on the size of the input PSF, 
which also determines the number of pyramid layers. 
The PSF size is used in the retrieval of a part of the ker-
nel alone, which prevents noise accumulation in subse-
quent estimation processes.

Referring again to Fig. 3, in the minimization pro-
cess, the blurred image is deconvoluted using the k 
estimated from previous iteration. The size of k in the 
coarsest layer is rigidly fixed to 7 × 7. At the start of 
minimization, weight μ is set to a high value to ensure 
restoration of strong edges and removal of details. Dur-
ing each iteration cycle, a coarse L is computed with an 
EPI prior for each nonoverlapping patch. Theoretically, 
the EPI prior shows increased sparsity. Hence, L exhibits 
more details with the increase in the number of layers. 

The orange rectangular block in Fig. 3 contains the 
kernel estimation algorithm. The weight parameter 
γ in Equation (26) is constantly set to a positive value 
to penalize large Fourier coefficients, which ensures a 
smooth PSF distribution. Then, the estimated k is up-
scaled by a factor of 2, and the result serves as the ini-
tial prediction for the next estimation layer. The proce-
dure is repeated until the intended size of k is reached. 
Equation (26) is solved, and all negative-value pixels in 
k are set to zero, centered, and finally normalized to 1. 

The k estimated from a previous step is used in im-
age restoration, with the blurred image serving as in-
put. The restoration is non-blinded; therefore, such 
a problem can be solved using various image decon-
volution techniques. In this paper, the algorithm pub-
lished in [12] is utilized because this method produces 
few ringing artifacts and accurate restoration. Appen-
dix II shows the complete procedure of the proposed 
EPI algorithm.The methods and procedures are imple-
mented in MATLAB2023a. This software is installed in 
personal computer which housed 4.0 GHz Intel Core i5 
processor, 8 GB RAM and Windows 11.
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(a) (b)

(c) (d)

Fig. 5. Effect of varying patch size on PSNR and SSIM in the comparison of the proposed method and that 
of [7]. (a) SF=0.020, (b) SF=0.025, (c) SF=0.030, (d) SF=0.035

The remaining images are presented in Appendix III. 
These 16-bit images are captured at an exposure time 
of 300 s and they are shown here after noise removal 
and brightness adjustment. Figs. 4(a), 4(b), and 4(c) cor-
respond to images of a hard-disk drive, an aircraft hon-
eycomb, and a lily flower, respectively. The size of each 
image is indicated in the figure. Visually, these images 
are blurry, which causes difficulty in the identification of 
important features or useful structures. For illustration 
purposes, regions containing useful information are en-
circled with solid lines. In the case of the hard-disk-drive 
in Fig. 4(a), five small anomalies located on the controller 
unit appear faded and blurry. Fig. 4(b) illustrates the loss 
of minute details, such as small structures of the honey-
comb. Meanwhile, left petal of a flower’s image in Fig. 4(c) 
show fine filaments that are blurry and out of focus. The 
proposed deblurring method is applied to enhance the 
images in Fig. 4. The results are presented and discussed 
in next section. 

4.  RESULTS

4.3. DETERMINATION OF PATCH SIZE

The effect of various patch sizes and the number of 
iterations is investigated first. Given that the ground 
measurements required for such an investigation and 
the lack of ground truth image for NR at present, opti-
cal images are the best alternative option. The popular 
dataset published in [15] is considered for this pur-
pose. This dataset includes four ground truth images 
(255×255) and eight PSF kernels (25×25). These ground 
images are blurred using eight various PSF kernels, 
which results in 32 blurred images. The results are eval-
uated in terms of the following quality indices: similar-

ity kernel (S(k, k̂)), mean peak signal ratio (PSNR), and 
mean structural similarity (SSIM). Figs. 5–6 show the 
plotted results comparing the proposed method and 
[7]. The former reveals variation in S(k, k̂), and the latter 
depicts the trends of PSNR and SSIM with the increase 
in patch size and iteration. In terms of S(k, k̂), both al-
gorithms show no considerable variation when differ-
ent patch sizes are used. Only the number of iterations 
exhibits a crucial effect on S(k, k̂), which increases with 
the increase in the number of iterations. This trend is 
expected because k approaches k̂ as the iteration in-
creases. Moreover, S(k, k̂) converges to almost the same 
value for both algorithms after eight iterations (Fig. 5). 
A striking difference is noted upon close examination 
of this figure. Although the S(k, k̂) values calculated 
from the proposed approach show no significant dif-
ference from those computed in [7], the former regis-
ters slightly and consistently higher values (Figs. 5(b-
c)). The same trend is achieved for SSIM, as suggested 
by the results in Figs. 6(a-d)(ii). The competitiveness 
of the proposed method is best shown in terms of 
the PSNR. Fig. 6 reveals the significantly higher PSNR 
values of the proposed method compared with those 
in [7], especially for smaller patch sizes. The proposed 
solution attains a PSNR of 29 dB compared to 26 dB 
in [7] for a patch size corresponding to SF=0.025. This 
findings translates to an approximately 11% increase 
in the PSNR. Results displayed in Figs. 5–6 also sug-
gest a SF=0.025 as the best patch size for the proposed 
method. Hence, this size is used for the restoration of 
NR images in Fig. 4. The results are discussed in the fol-
lowing subsection. Meanwhile, Appendix IV provides 
results obtained using an image from Levin dataset, 
which prove the accuracy of the proposed method in 
the restoration of optical or synthetic images.
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(a)

(i) PSNR (ii) SSIM

(i) PSNR Iteration (ii) SSIM

(b)

(i) PSNR (ii) SSIM

(c)

(i) PSNR (ii) SSIM

(d)

Fig. 6. Effect of varying patch sizes on PSNR and SSIM  
in the comparison of the proposed method and that of [7].  

(a) SF=0.020, (b) SF=0.025, (c) SF=0.030, (d) SF=0.035
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(i) Blured image (ii) Restored image by [2] (iii) Restored image by [12]

(iv) Restored image by [4] (v) Restored image by [7]

(a)

(vi) Restored image by 
proposed method

4.2. IMAgE RESTORATION 

The settings determined from the above investigation 
are used in image deblurring experiments involving the 
real neutron images in Fig. 4. The performance of the pro-
posed method is first evaluated visually (Fig. 7). The fig-
ure reveals the restoration findings corresponding to six 
neutron images of a hard-disk, a honeycomb, lily flower, 
aerosol spray can, rose flower, and laptop battery pack. 
Selected regions are zoomed-in to highlight small and 
fine details. Here, restorations are performed using the 
parameters determined heuristically through trial-and-
error experiments: μ=0.004, γ=2, β0=2μ, βmax=105, α=2, 
λ=0.1, and itermax=5. The thoroughness of investigation 
results are compared with those of state-of-the-art meth-
ods published in [2], [4], [7], and [12]. The default settings 
proposed by these authors are used in restorations.

Referring to Fig. 7(a) and Fig. 7(b), the hard-disk and 
honeycomb resemble images captured from natural 
sceneries given the possible similar grayscale values of 
pixels in the same area and very slow gradient changes. By 
contrast, rapid changes can be observed in the grayscale 
values of pixels located in the vicinity of dominant ob-
jects. Thus, images with such pixel values exhibit a heavy-
tailed distribution and local smoothing. For this reason, 
their intensity distributions are highly disorganized. As a 
result, the restoration of these images frequently results 
in the presence of geometrical artifacts. Despite this diffi-

culty, overall, the proposed method produces results that 
are comparable to those of [7] (Figs. 7(a-b)(vi)). A close ex-
amination of Fig. 7(a)(v) reveals geometrical errors in the 
result produced by [7]. Visually, the locations of five small 
anomalies on the controller unit shifted slightly to the top. 
Other established methods, particularly [2], [12] and [4], 
resulted in blurry restoration, as evident from Figs. 7(b)
(ii-iv), 7(c)( ii-iv), 7(d)(ii-iv), 7(e)(ii-iv), 7(f)(ii-iv), respectively. 
Although the hard-disk anomalies and fine honeycomb 
structures show slight improvement in their appearance, 
they remain blurry. Indirectly, these findings suggest that 
the heavy-tailed prior in [2] is an inefficient PSF estimator 
for textured images. Similar to the hard-disk and honey-
comb, the restoration of lily flower is equally challenging 
because this object features a few grayscale tones during 
radiographical reconstruction. Such an image exhibits 
a low dynamic range (Fig. 7(c)(i)). As a result, the image 
contains very limited information that is useful for PSF 
estimation. Fig. 7(c)(vi) shows that the proposed method 
performs exceptionally well compared with other es-
tablished methods. Visually, this result shows a relatively 
sharper and cleaner image compared with other images 
in the figure. In this case, the fine elements on the left side 
of the petal exhibit more distinct and clearer details. Other 
established methods also perform reasonably well, but 
the findings remain blurry (Figs. 7(c)(ii-iv)). The restoration 
of remaining images in Appendix III are shown in Appen-
dix V. Similar trends can be observed from these results.
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(i) Blured image (ii) Restored image by [2] (iii) Restored image by [12]

Fig. 7. Restoration results correspond to images in Fig. 4.  
(a) Hard-disk dive, (b) Honeycomb, (c) Lily flover

(b)

(c)

(iv) Restored image by [4] (v) Restored image by [7] (vi) Restored image by 
proposed method

(i) Blured image (ii) Restored image by [2] (iii) Restored image by [12]

(iv) Restored image by [4] (v) Restored image by [7] (vi) Restored image by 
proposed method

In addition to visual quality, the performance of the 
proposed method is examined quantitatively using three 
evalution indices, including the Blind or Referenceless 
Image Spatial Quality Evaluator (BRISQUE)[16], image 
information entropy, and image contrast. As a unitless 
quality, the smaller the BRISQUE index, the better the im-

age quality. Meanwhile the image contrast is a measure 
of the difference in brightness between the highest and 
lowest gray values in an image, directly indicating the 
degree of gray level variation. Essentially, the larger the 
image contrast, the clearer the image is. The entropy, in 
the other hands, indicates the richness of information 
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Table 1. Quantitative evaluation comparing proposed and established methods.

Methods

INDEX Images Origial [2] [12] [4] [7] Proposed method

BRISQUE

Fig. 7 (a) 48.50 42.02 48.49 43.46 43.80 43.45

Fig. 7(b) 66.86 44.44 43.60 43.50 49.50 43.50

Fig. 7(c) 57.30 43.60 46.00 46.10 43.60 43.50

App.III(a) 44.76 44.68 43.67 43.79 43.92 43.98

App.III(b) 57.88 57.88 57.88 56.99 57.29 56.94

App.III(c) 44.90 44.90 44.90 44.42 45.05 44.93

Ave. 55.72 46.25 47.38 46.37 47.19 46.05

ENTROPY

Fig. 7 (a) 7.39 7.43 7.44 7.43 7.43 7.51

Fig. 7(b) 7.64 7.70 7.69 7.70 7.74 7.75

Fig. 7(c) 7.32 7.33 7.36 7.35 7.34 7.37

App.III(a) 7.17 7.18 7.19 7.19 7.18 7.19

App.III(b) 5.99 6.05 6.06 6.04 6.06 6.07

App.III(c) 6.99 6.68 6.68 6.68 6.68 6.69

Ave. 7.03 7.06 7.07 7.06 7.07 7.09

CONTRAST

Fig. 7 (a) 0.89 0.86 1.02 1.30 1.00 1.05

Fig. 7(b) 0.87 0.87 0.93 0.97 1.33 1.35

Fig. 7(c) 0.88 0.90 1.15 0.99 1.06 1.24

App.III(a) 0.98 0.98 0.93 1.01 1.02 1.03

App.III(b) 0.53 0.52 0.65 0.61 0.64 0.71

App.III(c) 0.88 0.88 0.96 0.91 0.94 0.95

Ave. 0.83 0.84 0.94 0.96 0.99 1.05

4.3. RUNTIME 

Finally, the runtime performance of the proposed algorithm is evaluated in comparisom with established tech-
niques. Table 2 tabulates the results.

Table 2. Runtime comparing proposed and established methods

Images Runtime (s)

[2] [12] [4] [7] Proposed method 

Fig. 7(a) 119 293 4125 138 127

Fig. 7(b) 129 1077 4085 265 298

Fig. 7(c) 103 234 3990 284 296

App.III(a) 85 123 1501 201 136

App.III(b) 416 82 1580 112 117

App.III(c) 276 66 1364 109 111

Mean=188 
Min=85 

Max=416

Mean=313 
Min=66 

Max=1077

Mean=2774 
Min=1364 
Max=4085

Mean=184 
Min=109 
Max=284

Mean=180 
Min= 111 
Max=298

or details contained in the image. In this case the larger 
the entropy, the more complete the image is. These me-
trices are calculated for all restored images used in this 
paper. The values are then averaged and tabulated for 
each method, and Table 1 summarizes the results. The 
BRISQUE, entropy and contrast values for each blurred 
image are included in the table for reference. 

Referring to Table 1, overall, the proposed method of-
fers a superior performance, which leads to the small-
est and stable BRISQUE measures. On average, the pro-
posed method attains a BRISQUE index of 46.05. The 
highest and hence the least accurate restoration are 
those from [12], with a BRISQUE index averaging 47.38. 
Their algorithm works well with images dominated 
by low-intensity pixels because it uses dark channels 
when enforcing the sparsity of solutions. 

This condition is difficult to meet in NR because the 
images that produced by the algorithm usually contain 
many brightly illuminated pixels (Fig. 4). This finding 
mainly explains the reduced performance in [12]. Mean-
while, the performances of the algorithms in [4] and [7] is 
in between BRISQUE indices of 46.37 and 47.19, respec-
tively. Similarly the proposed method acheived highest 
scores in term of entropy and contrast, averaging at 7.09 
and 1.05 respectively. In comparison the algorithm of [2] 
resulted in the lowest entropy and contrast, averaging at 
7.06 and 0.84 respectively. 

The entropy and contrast values produced by other 
algorithms fall within this range. Like subjective evalua-
tion, similarly, in this case the proposed method is con-
sistently the best performing algorithm compared to 
established techniques. 
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Referring to Table 2 it can be seen that the proposed 
method is the fastest algorithm with a runtime averag-
ing at 180 s; minimum and maximum runtimes of 111 s 
and 298 s respectivelly. 

Clearly the soft thresholding helps speed-up the pro-
cessing since only nonzero elements are used in the 
computation as previously explained. In comparison 
the algorithm of [4] resulted in the highest runtime 
of 2774 s, while its minimum and miximun runtimes 
range from 1364 s to 2774 s. Hence, [4] is the slowest, 
and hence, the most complex algorithm. This is mainly 
due to this algorithm utilizing joint prior operation 
which is a very time-consuming procedure. Meanwhile 
the performance of other algorithms lie between the 
proposed method and [4] as evident from Table 2. 

5.  CONCLUSIONS

This work presented a relatively novel, simple, and ef-
fective patch-wise enhanced prior for image restoration 
in a blind deconvolution framework. Inspired by the de-
creased intensity of high-intensity pixels due to blurring, 
the proposed method incorporates the EPI prior in a non-
overlapping patch combined with the existing image 
gradient prior to regularization of the solution. A coarse-
to-fine adjustment with a multilayer scaling approach is 
implemented within the MAP framework. Overall, these 
steps provide an accurate estimation of PSF and hence 
a superior restoration performance. Experiments using 
real degraded neutron images produce competitively 
important results, visually and quantitatively. Important-
ly, the restored results reveal important structures and 
minute details in images. Hence, the proposed method 
can potentially improve the visibility of blurry neutron 
images, which is crucial in applications, such as mate-
rial characterization. It also performs reasonably well in 
challenging problems that involved large PSF kernels. 
Nevertheless, the algorithm may yield dissatisfactory re-
sults for images that are severely degraded by gamma 
noise. Such a degradation is inherently observed in small 
nuclear reactors. Thus, an effective denoising strategy 
may be needed prior to restoration. 
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APPENDIX I. 

The main steps involved in solving L and k subproblems are summarized in Algorithms 1 and 2, respectively. In 
the latter case, the main parameter γ is set to 2.

Algorithm 1 L subproblem

Input: Downscaled blurred image 𝐵, interim kernel ki

β←β0, L0←B

while β≤βmax, do (t=0,1,2,…)

 Lt+1,0←Lt

 For j=0:J-1 do

 Obtain Ls̃
t+1, j via Equation (16)

 Compute Mt+1, j via Equation (17)

 Update Lt̃+1, j  via Equation (19)

 Calculate gradient thresholding to obtain 
 Gt+1, j+1 via Equation (21)

 Update Lt+1, j+1 via Equation (23)

 End of

 Lt̃+1←Lt+1, j

 β←aβ

 End while

 Li+1←Lt+1

Output: Intermediate latent image estimation Li+1

Algorithm 2 k subproblem

Input: Blurred image 𝐵

Initialize k0 from the previous layer of pyramid

For i=1:itermax do

 Estimate Li via Algorithm 1 using ki-1

 Estimate ki via Equation (25)

End For

 k←̂ki,  L←̂Li

Output: estimated PSF k,̂ intermediate image L ̂
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APPENDIX II. 

Detailed flowchart of the algorithm for solving L and k subproblems. The dotted line indicates subsequent 
processing following all major calculations (solid lines).
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APPENDIX III. 

Another three examples of blurry neutron images of three common objects produced by RTP.  
Regions containing vague useful features are marked with solid-line circles.

(a) Aerosol spray can (1180 x 1380)

(b) Rose Flower (1143 x 1509)

(c) Laptop battery pack (966 x 1734)
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APPENDIX IV. 

Example of a deconvolution result from Levin’s dataset showing (a) the ground truth and (b) the blurred version 
of (a). (c), (d), (e), (f ), and (g) Restored images produced using the methods of Kotera et al. (2013), Pan et al. 
(2017), Dong et al. (2017), and Wen et al.(2021), and the proposed method, respectively.

(a) (b) (c) s(k, k)̂ 0.69, PSNR 28.5 dB
SSIM 0.87

(d) s(k, k)̂ 0.69, PSNR 30.1 dB
SSIM 0.90

(e) s(k, k)̂ 0.63, PSNR 29.3 dB
SSIM 0.65

(f ) s(k, k)̂ 0.63, PSNR 27.5 dB
SSIM 0.87

(g) s(k, k)̂ 0.73, PSNR 30.1 dB
SSIM 0.90
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APPENDIX V. 

Restoration results correspond to images in Appendix III.

(i) Blured image (ii) Restored image by [2]

(iii) Restored image by [12] (iv) Restored image by [4]

(v) Restored image by [7] (iii) Restored image  
by proposed method

(a) Aerosol spray can
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(i) Blured image (ii) Restored image by [2]

(iii) Restored image by [12] (iv) Restored image by [4]

(v) Restored image by [7] (iii) Restored image  
by proposed method

(b) Rose flover
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(iv) Restored image by [4]

(v) Restored image by [7] (iii) Restored image  
by proposed method

(c) Laptop battery pack

(i) Blured image (ii) Restored image by [2]

(iii) Restored image by [12]


