
Solanaceae Safeguard: Cnn-Swin Fusion for 
Precision Disease Management

75

Original Scientific Paper

Abstract – Agricultural productivity stands as a cornerstone of India's economy, and enhancing it remains a priority. A pivotal 
strategy in bolstering agricultural output is the timely identification of diseases. In agriculture, disease detection and management are 
crucial for ensuring crop health and yield. This study proposes a novel disease detection system for Solanaceae Vegetables utilizing a 
hybrid deep learning approach. The system integrates SWIN Transformer architecture with Convolutional Neural Networks (CNN) to 
analyze and classify disease patterns in Solanaceae vegetables. The dataset used for training and evaluation is sourced from Kaggle 
repository, comprising comprehensive images of diseased and healthy Solanaceae plants. Through extensive experimentation, the 
proposed hybrid model achieves a remarkable classification accuracy of 96%.  The model demonstrated high precision, recall, and 
F1-scores across most classes, such as Class 0 (0.92, 0.89, 0.91) and Class 14 (0.97, 1.00, 0.99).The system's high accuracy demonstrates 
its potential as a reliable tool for disease detection and effective management strategies in Solanaceae vegetable cultivation, thereby 
contributing to enhanced leaf health and productivity.
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1.  INTRODUCTION

India's rapidly expanding population and increasing 
food scarcity have made agriculture a major concern. 
Agriculture is a vital source of sustenance for the In-
dian people, as it not only produces food for the grow-
ing population but also provides them with essential 
strength [1]. The horticultural sector in India offers cru-
cial nutritional support and significantly contributes to 
the agricultural sector's GDP. Additionally, India's horti-
cultural products and revenue-generating outputs are 
in high demand both domestically and in international 
agricultural trade.Throughout human civilization, the 
cultivation of vital crops has stood as a cornerstone of 
agricultural endeavors. Seasonal changes, the composi-
tion of soil, and a plethora of environmental variables 
collectively shape the performance of agricultural pro-

duction, with any alterations therein invariably leading 
to diminished yields [2]. Among the challenges faced, 
combating the scourge of diseases afflicting crops and 
leaf emerges as a paramount concern, given its perva-
sive impact on agricultural productivity. 

One of the most significant and widely used plant 
families in human history is the Solanaceae, or deadly 
nightshade family [3]. Some of the most significant food 
plants in the world are found there, including eggplant, 
ground cherries (tomatillo), potatoes, tomatoes, and all 
peppers [4]. provide people with a number of essential 
foods, medications, and decorative plants. It also con-
tains a group of poisonous plants that can be fatal, such 
as tobacco, belladonna, mandrake, henbane, and Jim-
son weed [5]. They Fig. 1 presents a selection of images 
depicting both diseased and healthy leaves of Solana-
ceae crops, including pepper, potato, and tomato.
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Fig. 1. Diseased and healthy leaf images of pepper, potato and tomato

Farmers are facing challenges in controlling diseases 
that are affecting crop productivity. Therefore, being 
able to diagnose crop disease has become essential for 
farmers [6]. Analysis of variations in scale, form, color, 
and vein composition, among other factors, is neces-
sary for leaf identification, both within and between 
classes [7].Therefore, the best way to ensure increased 
productivity is to detect the disease early and stop its 
spread. Agriculture experts, researchers, and investiga-
tors are therefore very concerned about automated 
illness identification, diagnosis, classification, and rec-
ommendation of preventive measures [8]. The major 
contributions of the work are listed as follows

•	 Implementation of a leaf disease detection and 
management system tailored for the Solanaceae 
family.

•	 Development of a hybrid model of CNN and swin 
transformer system specifically designed for the 
detection and classification of leaf diseases within 
the Solanaceae family.

•	 Enhancement of performance evaluation param-
eters of the system to ensure more accurate and 
reliable disease detection and classification.

2. RELATED WORKS

In their study, Hidayah et al. [9] focused on utilizing 
CNN architecture for object detection in Solanaceae 

crops to aid robot vision. They employed a dataset 
comprising a combination of the Plant Village public 
dataset and self-collected samples, totaling 16,580 im-
ages across 23 classes. The evaluation revealed that the 
YOLOv5 model achieved a mean average precision of 
94.2%, outperforming Scaled-YOLOv4. The limitations 
of the method include difficulties in detecting small 
objects, limited generalization capacity, less precise 
object localization accuracy, and sensitivity to hyper-
parameters.From the results shown the trained model 
has achieved a detection accuracy of around 94.12%.

Ojo and Zahid [10] explored the detection of bacte-
rial wilt disease. Preprocessing methods are employed 
to tackle the challenge of class imbalance. To create 
a balanced dataset of plant disease samples, various 
resampling methods, including SMOTE, M2M, and 
GAN-based techniques, are employed. Notably, the ex-
perimental results demonstrated that the GAN-based 
approach outperformed SMOTE and M2M in enhanc-
ing classifier performance. The method achieved an av-
erage classification accuracy of 91.69% and an average 
F1-score of 91.62%. Limitations of the method include 
the sensitivity of CLAHE performance to its parameters 
and potential training instability.

Khalid et al. [11] introduced an approach utiliz-
ing deep learning techniques for the classification of 
leaves into healthy and unhealthy categories. The ini-
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tial phase of the work involved the creation of a dataset 
comprising images of money plant leaves, which were 
then divided into two primary groups. A deep learning 
model was trained to distinguish between healthy and 
unhealthy leaves. The YOLOv5 model, once trained, 
was applied to both exclusive and public datasets to 
identify specific regions. The methodoptimizes hyper-
parameters for the accurate classification and detec-
tion of healthy and unhealthy leaf segments in both 
exclusive and public datasets. The model, once trained, 
achieved a 93% accuracy on the test set. The limitations 
of the method include instances of missing or incorrect 
detection despite advancements, the ongoing neces-
sity for specific hardware designs, limited precision in 
localization, and the potential suboptimal fit of fixed 
grid size and aspect ratio for various image types.

Ilyas et al. [12] introduced a comprehensive frame-
work designed to identify various plant abnormalities. 
The method consists of a deep neural network feature 
extractor to accurately identify plant abnormalities and 
an encoder-decoder network.  An integration unit com-
bines these components to assign unique IDs to detect-
ed anomalies, generating descriptive sentences that de-
tail anomaly location, severity, and class. The algorithm 
achieved a precision of 91.7% for abnormality detection. 
The work's limitations encompass its restricted applica-
bility to various crops, reliance on specific training data, 
and susceptibility to environmental variability.

Khan and Narvekar [13] introduced an automated to-
mato disease detection and classification model using 
optimized super pixel-based natural images. Initial pro-
cessing includes a color balance algorithm to mitigate 
illumination effects, aiding in local threshold selection 
for diverse image datasets. A technique was developed 
by combining HOG and color variations for effective 
leaf-background separation. Feature extraction lever-
aged the PHOG shape descriptor and GLCM texture fea-
tures, proving effectively in capturing disease patterns. 
Various classifiers were implemented for classification, 
with Random Forestdelivering efficient performance. 
Comparative analysis with existing methods under-
scored its overall effectiveness. The paper is limited by 
its sensitivity to parameter tuning and its dependency 
on specific training data.Results indicate that the meth-
od achieved an accuracy of 93.12%.

Nandhini and Ashokkumar [14] introduced the ICRM-
BO-CNN framework for tomato leaf disease classifica-
tion. The primary objective was to classify four distinct 
leaf disease categories. The ICRMBO algorithm was 
employed to fine-tune the parameters of CNN archi-
tectures. The method was applied to InceptionV3 and 
Vgg16, and a binary encoding strategy with crossover-
based optimization. Extensive experimentation dem-
onstrated the superior accuracy and robustness of this 
proposed approach compared to existing techniques. 
Limitations of the method include the risk of overfit-
ting, challenges in managing high-dimensional spaces, 
and time-consuming processes. Magaña-Álvarez et 

al. [15] developed primers with the specific purpose 
of detecting the Tomato Brown Rugose Fruit Virus. 
Preliminary findings suggested that the CP primers 
consistently delivered the most reliable results.  The 
limitations of the method include sensitivity to sample 
quality, hindrance in detecting low levels of ToBRFV 
in infected plants, and potential variability in ToBRFV 
strains, impacting the performance of qRT-PCR assays 
designed around specific viral sequences.

Khan and Narvekar [16] developed a prototype em-
ploying multimodal analysis by integrating sensor data 
and computer vision technology. The primary goal of 
this system is to enhance the precision of disorder de-
tection in tomato plants by utilizing a combination of 
IoT, Machine Learning, Cloud Computing, and Image 
Processing. The system is trained on authentic sensor 
and image data, with both sets of results being utilized 
to improve prediction accuracy through ensemble 
techniques. The limitations of the method encompass 
integration complexity, privacy and cybersecurity con-
cerns associated with collecting and sharing sensitive 
data from IoT devices, and a lack of generalization abil-
ity when deployed in new environments with varying 
growing conditions or disease patterns.

2.1. RESEARCh gAP

Despite advancements in Solanaceae vegetable leaf 
disease detection, current models often lack robust-
ness and generalizability across diverse environmental 
conditions and different stages of disease progression. 
Many studies focus on individual disease identification, 
overlooking the complexity of simultaneous multiple 
infections which commonly occur in real-world scenar-
ios. Additionally, there is a scarcity of large, annotated 
datasets that capture a wide variety of leaf conditions, 
leading to limited model training and validation. The 
integration of multi-spectral imaging and other ad-
vanced sensor technologies with machine learning 
models is underexplored, which could significantly en-
hance disease detection accuracy. Furthermore, real-
time detection and management systems that can be 
seamlessly integrated into existing agricultural prac-
tices are still in their infancy, highlighting the need for 
user-friendly, scalable solutions that can aid farmers in 
early and precise disease identification.

3. MATERIALS AND METhODS

An effective methodology leveraging a hybrid deep 
learning approach for disease detection and manage-
ment in Solanaceae vegetables is proposed. The data 
is sourced from the publically available Kaggle deposi-
tory. Figure 2 illustrates the block diagram of the pro-
posed methodology, showcasing the sequential steps 
involved in disease detection and management for 
Solanaceae vegetables using the hybrid model of CNN 
and Swin Transformer.Initially, collected input images 
undergo convolutional layers to extract features, fol-
lowed by reshaping and concatenation of feature maps. 
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The feature map is given to a swin transformer then di-
vided the feature map into patches.Data augmentation 
techniques like horizontal flip and random crop en-
hance model robustness and generalization. Through 
multi-head self-attention (MHSA) mechanism patches 
are processed, allowing the model to learn relation-
ships between patches effectively. Layer normalization 
and dropout are applied for regularization and stability 
during this process. Subsequently, multi-layer percep-
tron (MLP) blocks capture complex nonlinear relation-

ships within and between patches. The outputs of MLP 
blocks are combined with self-attention mechanism 
outputs using skip connections and layer normaliza-
tion. Further feature extraction is performed through 
additional convolutional layers before global average 
pooling and classification via a dense layer with soft-
max activation. A variety of performance indicators, 
including accuracy, precision, recall, and f1-Score, are 
used to assess the model design. demonstrating its ef-
fectiveness in disease detection.

Fig. 2. Block Diagram of Proposed Methodology

3.1. DATASET DESCRIPTION

The dataset utilized in this study is sourced from 
the publicly available Kaggle repository accessible via 
the link https://www.kaggle.com/datasets/emmarex/
plantdisease/data. This dataset comprises images rep-
resenting distinct leaf diseases affecting Solanaceae 
crops, including Tomato Spider Mites Two-Spotted 

Spider Mite, Tomato Early Blight, Pepper Bell Bacterial 
Spot, Tomato Late Blight, Potato Late Blight, Tomato 
Bacterial Spot, Tomato Leaf Mold, Tomato Target Spot, 
Tomato Yellow Leaf Virus, Tomato Mosaic Virus Potato 
Early Blight,Tomato Septoria Leaf Spot. Fig. 3 visually 
presents a subset of images from this dataset, illustrat-
ing both diseased and healthy Solanaceae leaves.

Fig. 3. Sample images from the dataset

Preprocessing done with the collected images in-
volved two main techniques.  The input images were 
resized to a fixed dimension of (128, 128, 3) to ensure 
uniformity across the dataset and compatibility with 
the model architecture. Additionally, pixel values were 
normalized, typically scaling them between 0 and 1, 

to enhance the model's convergence during training. 
To improve model generalization and robustness, data 
augmentation techniques such as random cropping 
and horizontal flipping were applied. Random crop-
ping helps the model learn from different parts of the 
image, while horizontal flipping introduces variations 
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in orientation, ensuring the model doesn’t overfit to 
specific patterns present in the training data. Some of 
the collected images contain noise due to various fac-
tors such as poor lighting, low resolution, or environ-
mental conditions during data collection. 

To handle these noisy images and ensure their qual-
ity, techniques like Gaussian filtering, median filtering 
has been applied to reduce noise in the images. These 

filters help smooth the image while preserving impor-
tant details, ensuring that noise doesn't interfere with 
feature extraction during the convolutional layers.

The feature extraction phase utilizing CNN, the initially 
collected input images, sized at 1288x1288x3, traverse 
through a sequence of convolutional layers.CNN con-
sists of an input layer, hidden layers and an output layer. 
Fig. 4 illustrates the basic architecture of CNN model.

(1)

Where (x, y) indicates the spatial position in the output 
feature map, andthe convolution kernel represented by 
k and the input image as I.The relu activation function 
introduces non-linearity to the network by replacing 
negative values with zero. And it is represented by

(2)

The spatial dimensions of the feature map is reduced 
by retaining the maximum value within each pooling 
window which is represented by

(3)

The fully connected layer is represented by

(4)

Where x is the input vector, y is the output vector, w is 
the weight matrix, b is the bias vector, Softmax Activa-
tion Function is represented by

(5)

Fig. 4 Basic architecture of CNN

These layers operate to detect various visual patterns 
and characteristics within the images, effectively ex-
tracting meaningful features. These convolutional lay-
ers are designed to capture low to mid-level features in 
the image, employing learnable filters, activation func-
tions such as ReLU, and pooling layers like MaxPooling 
to reduce dimensionality and extract dominant fea-
tures from the multi-channel arrays representing the 
input images. Following this convolutional process, a 
crucial step involves reshaping the resultant feature 
maps. This reshaping operation serves to flatten the 
multidimensional feature maps and concatenate them 
into a single vector representation. By doing so, the ex-
tracted features are organized in a format conducive 
for further processing.

3.2. ThE SWIN TRANSFORMER

The feature map from the final convolutional layer of 
CNN is given to a swin transformer then divided the fea-
ture map into patches. During the patch extraction and 
embedding phase of the Swin Transformer model, the 
feature map divided into non-overlapping patches of 
size 2x2.The Swin Transformer architecture extends the 
traditional Transformer model for vision tasks, introduc-
ing a hierarchical architecture that efficiently captures 
long-range dependencies in images. Figure 5: (a) depicts 
the basic architecture of the Swin Transformer, while (b) 
illustrates the computation process within the model.
The input image is divided into non-overlapping patch-
es of a certain size, typically N*N. Let X denote the input 
image, and Pi denote the ith patch. Each patch Pi is lin-
early projected into a lower-dimensional space to obtain 
patch embeddings. This projection is represented by a 
learnable weight matrix Wpatch.

One or more convolutional layers are among the hid-
den layers in a CNN. This usually involves a layer that uses 
the layer's input matrix to perform a dot product of the 
convolution kernel. ReLU serves as the activation func-
tion. The convolution procedure creates a feature map 
as the convolution kernel moves along the layer's input 
matrix; this feature map then feeds into the input of the 
layer after it. Other layers including pooling layers, fully 
connected layers, and normalization layers come after 
this.The convolution operation is represented by
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Query, key, and value matrices obtained from 𝑍 are 
represented by 𝑄, 𝐾, and 𝑉 are the, the dimension of 
the key vectors denoted by , softmax is the function ap-
plied along the patch dimension. 

LayerNorm (x+Sublayer(x)) (8)

(a)

(b)

Fig. 5. (a) Basic block diagram of Swin Transformer (b) Computation Process

Our approach divides the feature map from the last 
convolutional layer into non-overlapping patches of 
size 2x2 during the patch extraction and embedding 
stage. Subsequently, data augmentation techniques 
like random crop and horizontal flip are applied to bol-
ster the model's robustness and generalization. Each 

patch undergoes linear projection into a lower-dimen-
sional space, resulting in patch embeddings. These 
embeddings are then reshaped into sequences to be 
inputted into the subsequent Transformer layers.In the 
Swin Transformer, the transfer block constitutes a stack 
of transformer layers, each comprising multiple atten-

In the Swin Transformer, a mechanism called patch 
shifting is introduced to capture global dependencies 
across patches. Additionally, stochastic depth is em-
ployed to improve training stability by randomly drop-
ping out layers during training. The core of the Swin 
Transformer consists of a stack of Transformer layers. 
Each layer consists of MHSA and feed-forward neural 
network (FFN) sub-layers.  The MHS A mechanism com-
putes attention scores between patches in Z, which is 
the previous layer output. These scores are then used 
to aggregate information across patches. Given Z, the 
attention output A is computed as follows:

(7)

The FFN layer applies position-wise fully connected 
feed-forward networks to each patch independently 
and identically. 

It is typically composed of two linear transformations 
followed by a non-linear activation function like ReLU.

Around each sub-layer, layer normalization and re-
sidual connections are applied to enhance regulariza-
tion and stability:

Where x represents the input to the sub-layer, and 
Sub layer represents either the MHS A or FFN sub-layer. 
After the transformer layer, the sequence of patch em-
beddings is aggregated, typically through mean pool-
ing or another aggregation mechanism. 

The aggregated representation is then fed into a 
multi-layer perceptron (MLP) head for classification.

(6)
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tion heads that compute attention scores between 
patches. These scores facilitate the aggregation of in-
formation across patches, thereby capturing global de-
pendencies. Within each layer, the main sub-layers in-
clude the MHSAlayer, which learns linear relationships 
between patches, and the FFN layer, which applies 
position-wise fully connected feed-forward networks 
to each patch independently and identically. Layer 
normalization and residual connections are applied 
around each sub-layer to ensure regularization and 
stability. Additionally, features undergo further pro-
cessing through multi-layer perceptron (MLP) blocks to 
capture nonlinear relationships which consist of dense 
layers with ReLU activation. These Transformer layers 
are pivotal in capturing long-range dependencies and 
relationships between patches.

Shifted Window Transformer blocks implement a 
mechanism for down sampling, which involves shifting 
the window for self-attention in the spatial dimensions. 

Table 1. Parameters of proposed Swin Transformer 
model

Parameter Values 

Patch Size (2,2)

Image_dimension 128

Label_smoothing 0.1

num_mlp 64

Learning rate 1e-3

Dropout rate 0.2

num_heads 8

Embed_dim 64

Shift_size 1

Window_size 2

Batch size 32

Weight decay 0.0001

Total Parameters 1172527

Trainable Parameters 1172527

Non- Trainable Parameters 0

By doing so, the Swin blocks effectively reduce the 
spatial resolution of the feature maps while increasing 
the number of channels, achieving down sampling in 
a computationally efficient manner. This unique ap-
proach allows the Swin Transformer to capture hierar-
chical information across different scales while main-
taining computational scalability.

In the final classification step, the outputs of the MLP 
blocks and the self-attention mechanism are combined 
through skip connections and layer normalization. The 
resulting feature maps undergo reshaping and ad-
ditional convolutional layers before being globally 
pooled. This pooled representation is then fed into a 

dense layer for classification. Following this, the model 
utilizes a softmax activation function to output class 
probabilities based on the logits obtained from the 
classification head. These logits represent the raw pre-
dictions for each class, and the softmax function is ap-
plied to derive the final class probabilities. 

Effectiveness of Convolutional Layers progressively 
captured different levels of abstraction, from low-
level edges and textures to high-level structures and 
patterns. The multi-head self-attention mechanism 
allowed the model to capture spatial relationships be-
tween different patches of the image. This significantly 
improved the model's ability to focus on important re-
gions, enhancing classification performance. The com-
bination of convolutional layers, self-attention mecha-
nisms, and MLP blocks helped the model learn both lo-
cal and global features from the input images, leading 
to better overall classification performance.

3.3 hARDWARE AND SOFTWARE SETUP

The model was created and trained on Google Col-
laboratory, where the entire process was completed 
using Python and TensorFlow. The hardware setup pri-
marily consisted of a system equipped with a high-per-
formance processor and GPU to efficiently execute the 
computational tasks involved in training and evaluat-
ing the deep learning models. An advanced processor, 
Intel Core i9 or AMD Ryzen was employed to handle the 
computational load effectively. A powerful GPU, NVID-
IA GeForce RTX, was utilized to accelerate the training 
of deep neural networks, which typically involves in-
tensive matrix operations. The optimizer utilized dur-
ing training is Adam, and the loss function employed is 
categorical crossentropy.

A batch size of 32 samples per iteration is utilized for 
training, and the training process is conducted over 
100 epoch. The software stack would have included 
Python as the primary programming language due to 
its widespread adoption and extensive libraries for ma-
chine learning and deep learning tasks. TensorFlow on 
Google Collaboratory, a cloud-based platform offering 
free access to GPU resources, facilitated collaborative 
coding and experimentation with deep learning mod-
els in a web-based environment. 

4. RESULT AND DISCUSSION

The performance of the model is evaluated through 
the following parameters: precision, recall, accuracy, 
and F1-score.These metrics provide insights into the 
model's ability to correctly classify instances and han-
dle imbalances between classes.

(8)

(9)
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Fig. 7. Loss Plot of Proposed Model

A loss plot displays how the loss function, which mea-
sures the error between predicted and actual values, 
changes over each epoch during the training process. Fig. 
7 displays the loss plot of the proposed model, highlight-
ing the changes in loss over the training and validation 
phases.In the initial epochs, the model exhibits high loss 
of 2.7134 as it begins to learn from the dataset. By the final 
epochs, loss significantly decreases to 0.6476 at Epoch 99, 
and accuracy increases dramatically , indicating effective 
learning and optimization. Throughout training, loss gen-
erally decreases, but fluctuations occur, such as a slight 
increase from 1.3765 at Epoch 21 to 1.4065 at Epoch 22, 
due to factors like learning rate adjustments, data variabil-

Performance, highlighting areas for improvement. 
The macro and weighted averages for precision, recall, 
and F1-score, reflecting balanced and effective over-
all performance. Fig. 9 presents the confusion matrix, 
illustrating the true versus predicted classifications of 
the proposed model for each class. Table 2 showcases 
a comparison between the proposed model with the 
existing approaches, highlighting key performance 
metric such as accuracy.

The classification report shows the model’s perfor-
mance on a multi-class classification task, achieving an 
overall accuracy of 96%. Fig. 8 presents the classification 
report, summarizing the performance metrics of the pro-
posed model, including precision, recall, and F1-score 
for each class.Key metrics for each class include preci-
sion, recall, F1-score, and support. Most classes have 
high precision, recall, and F1-scores, such as for Class 0 
(0.92, 0.89, 0.91) and Class 14 (0.97, 1.00, 0.99), indicating 
accurate predictions. However, Class 6 (0.81, 0.79, 0.80) 
and Class 9 (0.90, 0.63, 0.74) show lower 

Fig. 8. Classification Report

Fig. 6. Accuracy Plot of Proposed Model

ity, and complexity of patterns. Despite these fluctuations, 
the model ultimately achieves stable, low loss and high 
accuracy, demonstrating successful learning.

These metrics collectively offer a comprehensive un-
derstanding of the model's performance and are essen-
tial for evaluating its effectiveness in various scenarios. 
An accuracy plot visualizes the model's performance 
over time by showing the accuracy on the training 
and validation datasets for each epoch. Fig. 6 displays 
the accuracy plot of the proposed model.Initially, the 
model starts with a low accuracy of around 6-7% in the 
first few epochs but quickly learns and improves to ap-
proximately 38% by Epoch 10. As training progresses, 
the accuracy continues to rise, reaching about 66% by 
Epoch 20 and 78-80% by Epoch 30. This consistent im-
provement reflects the model's increasing ability to ex-
tract and understand relevant features from the data.In 
the advanced training phases, accuracy surpasses 85% 
by Epoch 40 and reaches around 94% by Epoch 50. 
The final epochs show the model achieving nearly per-
fect accuracy, hovering around 98-99% and ultimately 
nearing 100% by Epoch 100. Minor fluctuations in ac-
curacy, especially noticeable in epochs 81 and 93, are 
typical as the model fine-tunes its parameters. These 
results indicate that the hybrid model is highly effec-
tive for disease detection in Solanaceae vegetables.

(10)

(11)



83Volume 16, Number 1, 2025

Fig. 9. Confusion Matrix

The table presents a comparison of different meth-
odologies and their respective accuracies, highlight-
ing the performance of various models, including the 
proposed method. Specifically, Hidayah et al. used CNN 
and achieved an accuracy of 94.2%. Mahnoor Khalid et 
al. employed the YOLOv5 model and obtained an ac-
curacy of 93%. Ilyas et al. developed a deep learning-
based hybrid model and reached an accuracy of 91.7%. 

Saiqa Khan and Meera Narvekar utilized a deep learn-
ing method and reported an accuracy of 93.12%. The 
proposed method, which is a hybrid model of CNN and 
Swin transformer, achieved the highest accuracy of 
96%. This comparison demonstrates that the proposed 
hybrid model outperforms other models listed, show-
casing its superior accuracy in disease detection and 
classification for Solanaceae Vegetables.

Table 2. Comparison of the proposed model with the existing approaches

Author Methodology Accuracy

Hidayah et al Convolutional Neural Network 94.2%.

Mahnoor Khalid et al. YOLOv5 model 93%

Ilyas et al Deep learning-based Hybrid model 91.7%

Saiqa Khan et al 
Meera Narvekar Deep learning method 93.12%

Proposed Method Hybrid model of CNN and Swin transformer 96%

The proposed method addresses the complexity of 
simultaneous multiple infections in the current work by 
leveraging a multi-head self-attention mechanism that 
enables the model to attend to different regions of the 
leaf image simultaneously, capturing the relationships 

between various disease-affected areas. Additionally, the 
combination of convolutional layers and MLP blocks al-
lows the model to extract both local and global features, 
enhancing its ability to detect and classify multiple infec-
tions occurring concurrently in different parts of the leaf.
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5. CONCLUSION

Detection of plant leaf diseases is a critical issue in 
agriculture, impacting yield and crop production sig-
nificantly. Solanaceae vegetables, including tomatoes, 
potatoes, and peppers, are vital components of the 
global food supply, playing a crucial role in ensuring 
food security and meeting global nutritional needs. 
This research proposes a hybrid deep learning-based 
system for the early and accurate identification of 
leaf diseases in Solanaceae vegetables, leveraging a 
CNN-Swin Transformer model. The integration of deep 
learning techniques into leaf disease detection sys-
tems allows for the development of smart, automated 
solutions capable of continuous monitoring and as-
sessment of crop health. The proposed model has 
been evaluated on the Plant Village dataset and has 
demonstrated superior performance of 96% accuracy, 
highlighting its potential for enhancing agricultural 
productivity and sustainability. The major contribution 
of this work lies in the hybrid integration of convolu-
tional layers, multi-head self-attention mechanisms, 
and MLP blocks, creating a balanced architecture that 
effectively captures both local and global features, un-
like traditional Swin Transformers which rely solely on 
patch-based self-attention. This approach combines 
the strengths of CNNs in capturing fine-grained local 
details and self-attention mechanisms for global con-
text, offering a novel solution with improved feature 
extraction and regularization for image classification 
tasks, including plant disease detection, while being 
computationally more efficient than full transformer-
based models. This advanced detection capability can 
significantly aid farmers in implementing timely and 
targeted interventions, enhancing overall crop health 
and productivity. The findings of this study underscore 
the potential of hybrid deep learning models in devel-
oping smart, automated solutions for continuous crop 
health monitoring, thereby contributing to sustainable 
agricultural practices and improved food security. The 
computational complexity of integrating self-attention 
mechanisms with convolutional layers increases train-
ing time and resource requirements, limiting the scal-
ability of the model for very large datasets.
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