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Abstract – Roads and highways represent a crucial lifeline between communities in all countries. They have to be healthy enough 
for safe and effective transportation. The traditional ways of inspecting roads by human inspectors consume time, and the 
inspection results may be subjective. For this reason, researchers are motivated to automate pavement distress detection to help 
the road monitoring and maintenance process. Additionally, many researchers have tried to present models to detect distress on 
road infrastructure. However, these models face accuracy challenges and overfitting because of the nature and complications of 
distress images. This paper proposes a model that combines pre-trained VGG16 with a multi-head attention layer. The proposed 
paradigm began with smoothing as a pre-processing step to eliminate the granular effect of the asphalt gravel and make asphalt 
damage more distinct. Then, data augmentation was conducted to improve model generalization by adding various distress scenes 
to the dataset in geometric, color, and intensity cases. This work also contributes to the broader body of research by collecting a 
local dataset that contains three types of asphalt distress (cracks, potholes, and ruts). The proposed model was tested using three 
benchmarked datasets in addition to the locally collected one, and it showed efficiency in detecting asphalt distress using offline and 
real-time images. The model achieved an accuracy 1.00 in the Pavmentscapes dataset, outperforming the UNET model, and a fully 
connected network was trialed with the same dataset. With the Deep Crack dataset, our model scored an accuracy of 1.00.
In contrast, ResNet achieved an accuracy of 0.72 on the same dataset. The NHA12D dataset was also used to test the proposed model 
and achieved an accuracy of 1.00, but the VGG16 without an attention layer used on that dataset scored only 0.64. All previous 
obvious tests prove that the proposed VGG16 and multi-head attention paradigm outperform the earlier models. Additionally, the 
proposed model has undergone a real-time test on local roads. The future directions are to try to make the self-attention mechanism 
more explainable and implement an attention layer for multi-scales.
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1.	 	INTRODUCTION

As the asphalt pavement is the major part of the 
transportation infrastructure that leads to possible 
transportation operations, it is substantial in the long-
term investment maintenance to ensure safety and 

prolonged useful pavement life. However, the em-
pirically controlled system for monitoring schedules 
can no longer meet the demands in many global ar-
eas, such as long waiting times, unstable inspections, 
and low adequate verification. The asphalt pavement, 
which has a poor ability to resist huge impacts from cli-
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mate and traffic loadings, will exhibit various distresses, 
such as the effects of friction conditions, climatic con-
ditions, and traffic loading classifications [1]. Therefore, 
many developed countries aim to maintain roads and 
highways as strategic target to boost their economies 
and reduce poverty  [2]. For example, in 2018, the Phil-
ippines set aside 11 billion dollars to maintain their na-
tional roads and bridges. In 2019, the US spent about 
29 billion dollars on infrastructure, with highway and 
roadway infrastructure accounting for nearly 50% of 
federal transportation spending [3]. In comparison, 
China spent about 702.6 billion Yuan in 2023 on high-
speed roads, a 12% increase from the year before [4].

Many factors, such as road aging, traffic loads, con-
struction materials, lack of maintenance on time, and 
weather conditions, significantly impact pavement 
damage. As a result, Pavement distress rates can instru-
mentally amount to the risk of losing significant worth 
of pavement around the world because of restated up-
keep rather than rebuilding. This information helped to 
strengthen the concerning asset management and to 
promote the reorientation of the interests to fewer re-
sources while maintaining infrastructure by adopting 
life cycle production. Detecting pavement distress in 
good time plays a crucial role in eliminating the degra-
dation of pavement surfaces [2]. Conventional detection 
primarily depends on manual techniques and is plagued 
by solid subjectivity, expensive implementation costs, 
and is time-consuming and unsuitable for quick detec-
tion. Pavement distress detection has been undertaken 
utilizing different image processing technologies (DIP) 
for nearly two decades. Almost all the aforementioned 
methodologies lay down some limitations without pro-
viding ways to improve them. Existing methodologies 
lack the capability to accurately model the entire spec-
trum of pavement distresses for asphalt suitability in 
either environmental factors or management. The DIP 
methodologies encompass processes such as edge de-
tection [5], threshold segmentation [3], and morpho-
logical processing [4]. Advancements in DIP for pothole 
detection have been significant, yet the system still faces 
challenges in achieving impeccable accuracy and reli-
ability in automatic pothole detection. Simultaneously, 
machine learning (ML) techniques utilized training clas-
sifiers – Naive Bayesian Classifiers (NBC), Support Vector 
Machines (SVM), and Artificial Neural Networks (ANN) – 
to identify diverse forms of pavement distress, including 
damages and cracks. The process involves these specific 
classifiers to learn how to recognize particular pavement 
defects by focusing on their distinctive features within 
images. This necessitates prior knowledge coupled with 
engineering expertise. However, the complexity inher-
ent in feature extraction may occasionally impact detec-
tion accuracy, which could demand customization, such 
as refining an algorithm for a particular detection sce-
nario [6]. Recent years have highlighted the significant 
efficiency of deep learning models in solving various 
computer vision problems, including object detection, 
image classification, and segmentation [7]. Image seg-

mentation and pothole/crack detection tasks often em-
ploy Convolutional Neural Networks (CNNs) due to their 
ability to extract crucial features from asphalt images, 
such as texture, edges, and corners [8]. U-NET is the most 
common type of CNN used for pothole segmentation. It 
depends on the encoding-decoding feature, which uses 
a bounding connection inside neural architecture to 
save most of the information after the down-sampling 
process. The U-NET mechanism aided in preserving the 
spatial information from images, yielding an accurate 
segmentation process. U-NET works more accurately in 
pothole segmentation and has begun to be used widely 
by researchers in this field [9]. After the success of CNN, 
a new approach was developed called transfer learn-
ing (TL), which uses one performed task to implement 
another job. TL is a set of models already trained with 
a vast dataset related to the problem under investiga-
tion. These models allow researchers to build accurate 
models with much less training time and they need to 
be fine-tuned for the dataset of the specific problem. 

Rangoli et al. 2018 explored a transformers-based ob-
ject recognition model for distress detection purposes 
called (YOLOv4) which stands for You Only Look Once. 
The model demonstrates a noticeable performance 
as it was pre-trained based on the asphalt distress de-
tection objective. The model registered a precision of 
about 0.87 in identifying asphalt distress from images. 
The crucial issue in that work is the quality of images 
taken by echoes, which can be attracted by various 
conditions like camera settings, position, speed of the 
vehicle, and degree of sunlight. All the mentioned fac-
tors may cause a decrease in the accuracy of any trans-
fer model [10].

In 2024, Vinodhini et al. utilized a pre-trained AlexNet 
model modified by adding a final layer to detect asphalt 
distress from images. Despite that, the model achieved 
an accuracy of 0.96, but this work does not mention 
other metrics like precision and recall. Furthermore, the 
paper did not discuss the conditions that might affect 
the model’s efficiency, such as lighting conditions and 
weather effects in real-time implementations [11]. 

Apeagyei et al. (2023) proposed a deep convolution 
network (DCNN) pre-trained using TL to detect eight 
pavement distress classes. Seven models were used 
for comparison. Low false negative values specified 
the best models. However, despite their low general 
accuracy, various models performed well in detecting 
specific distress types. Researchers have noticed that 
image quality impacts model performance regarding 
prediction speed and precision [12].

Recently, a more efficient novel multi-head attention 
mechanism was proposed, which enhances the net-
work's learning capability to focus on different locations 
separated in the feature space in parallel. The attention 
mechanism can improve the performance of machine 
learning tasks such as NLP, speech recognition, object 
detection, recommendation systems, and time series 
data tasks, for example, in forecasting and diagnosis [13] 
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. For example, Xue et al. (2021) used the multi-head at-
tention layer with a transfer model in face expression 
recognition. The model relies on a multi-head layer to 
drop attention maps during learning. This technique 
makes the model focus on various local points in the 
face while ignoring the weak points or features [14]. 

 Zhao et al. (2023) designed a multi-head attention 
based on two-stream EfficientNet. The proposed mod-
el architecture recognizes human actions. Their model 
consists of two streams utilizing EfficientNet-B0 to ex-
tract spatial/temporal features from the video.  Then, 
the model incorporates multi-head attention to extract 
crucial key points from extracted features [15].

 Hong et al. (2021) model consists of convolution 
extraction blocks and attention modules to detect CO-
VID-19. The first two convolutional blocks are made up 
of two depth-wise separable convolution layers and 
a maximum pooling layer.  The multi-head attention 
mechanism (MHAM) is used to extract effective feature 
information from COVID-19 X-rays and CT images. This 
mechanism allows the model to focus on different parts 
of the input image simultaneously, enhancing the abil-
ity to capture relevant features across various scales. 
The multi-head worked by taking various filtered CNN 
features and putting these features into a multi-head 
layer to get attention arrays for various image parts[16]. 
Accordingly, using the multi-head mechanism pro-
posed in the Transformers architecture, a multi-head 
attention method can get the different channels that 
can effectively extract different features from the in-
put. In our case, the multi-head attention mechanism 
can learn different features from the hidden vector to 
get the different features of the input as well as get the 
different features across the multiple hidden vectors 
projected in parallel as vectors at the same input and 
then reduce to the final number of features. Therefore, 
applying the multi-head attention mechanism to the 
detection model can enhance the feature extraction 
from the input data.

According to previous works, the poor performance 
of several deep-learning transfer models can be largely 
attributed to image quality. However, this sparked an 
ingenuity that helped formulate a new and effective 
strategy to enhance the distress detection of asphalt 
surfaces. Image degeneration results from different 
factors, such as being captured as a low-resolution im-
age due to, for example, using mobile phone cameras 
under variable lighting and weather conditions. More-
over, the coarse texture of road surfaces and irrelevant 
objects (e.g., pedestrians, vehicles, or trees) may ad-
versely influence the detection rate [14]. 

We conclude from all the above that the distress in 
asphalt pavements may cause a reduction in the ser-
vice life of the road. Humans inspect the road by tra-
dition; however, an objective and unbiased evaluation 
using computer vision techniques is crucial to aid hu-
man inspectors in decision-making. The main problem 
addressed in this paper is caused by the local variabil-

ity in the surface texture, and the distress contributes 
to the difficulty of automatic detection. The difficulties 
also result from (1) the fast weather changes resulting 
in changes in road surface coloration or asphalt tex-
ture, (2) the various distress, and (3) the artifacts of the 
road expansion joints. Consequently, the following are 
the primary contributions of the current study: 

1.	 Develop an accurate asphalt distress detection 
model using TL by improving the VGG16 model 
with a multi-head attention layer that consists of 
four heads. The multi-head attention layer focuses 
on crucial features extracted from the VGG16 mod-
el that formulates the pattern of asphalt distress. 
The attention layer with a pre-trained VGG16 mod-
el has been tested for the first time in this type of 
application. 

2.	 Collect a local dataset for asphalt-damaged images 
from Baghdad streets. This dataset comprised three 
classes (cracks, potholes, and ruts). This dataset is 
the first national dataset, and its distinction comes 
from the uniqueness of crack shapes and potholes 
caused by the abnormally high temperature in 
Iraq, which may reach over 50 degrees Celsius.

3.	 Propose a series of pre-processing and augmenta-
tion of the dataset that are used to evaluate the 
proposed paradigm. These augmentation opera-
tions enlarge the dataset to contain images of the 
various intensity conditions. 

4.	 Evaluate the model on real-time stream images to 
detect asphalt distress.

The rest of this paper discusses the following sub-
jects. First, the related works and image pre-processing 
techniques are discussed, including the steps (smooth-
ing, edge detection, and dilation). After that, the pro-
posed model is illustrated in detail with results and dis-
cussions. The paper ends with a conclusion.

2.	 RELATED WORKS 

 In the past few years, researchers have conducted 
numerous computer vision-based studies with the 
specific aim of automatically identifying asphalt dis-
tress. These investigations employ various approaches, 
including Gabor filters [17], binary patterns [18], tree 
structure algorithms, and shape-based methods [19], 
among others. Although generally valuable, these 
methods require assistance to extract distinguish-
ing characteristics from images to discern between 
non-cracked and cracked pixels. Furthermore, these 
techniques must enhance their ability to detect as-
phalt distress in real-world scenarios accurately, vary-
ing pavement textures and lighting conditions. Deep 
learning (DL), however, has demonstrated significant 
potential to address comparable problems and deliver 
superior accuracy results, notably through the utiliza-
tion of DCNN equipped with TL – an approach that 
Gopalakrishnan et al. employed within the context of 
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computer vision-based pavement distress detection 
[20]. After initial training with the ImageNet database, 
the DCNN detects pavement image cracks on Hot-mix 
asphalt (HMA) and Portland cement concrete (PCC) 
surfaces. The research achieved a significant increase in 
complexity by training a classifier using combined im-
ages of pavements featuring diverse surface properties 
- HMA and PCC. Optimal results are achieved when uti-
lizing a single-layer neural network classifier that is pre-
trained on ImageNet and trained with features from 
the DCNN. Employing pre-trained DCNN models for 
cross-domain image classification, a general approach, 
has proven to be efficient in computer vision-based au-
tomated pavement crack detection. However, certain 
drawbacks were also observed, like the inclusion of 
non-crack characteristics such as joints, the inhomoge-
neity of cracks, and diversity within surface texture, all 
compounded by background complexity.

 In 2019, Liu and his colleagues proposed a Deep 
Crack CNN model. This innovative approach featured 
multilevel convolutional layers. Additionally, demon-
strating their commitment to advancing research, they 
introduced an invaluable dataset termed 'Deep Crack.' 
The utilized model, a variation of the VGG architecture, 
employed its first 13 layers. Deep crack with augment-
ed data emerged as the most exemplary tested model; 
it yielded unprecedented performance in experimental 
tests, with an F-score and precision both measuring at 
0.96 and recall registering at 0.86. The sole constraint 
identified in this work was the need to supplement 
the dataset with additional non-crack images [21]. In 
their 2020 study [22], Fan et al. introduced a system 
of multiple DCNNs specifically designed for automat-
ed crack detection and measurement in pavements. 
These CNNs, working collectively, recognize patterns 
of small gaps within raw images. They combine these 
findings to produce not only an overfitting-reducing 
result but also a predictive probability map. The ap-
proach outperforms alternative methods, achieving 
superior precision, recall, and F1 scores in evaluations 
using two publicly available crack databases. The pro-
posed algorithm also facilitates the length and width 
measurement for various types of cracks. However, the 
suggested model faced two limitations: firstly, the sys-
tem failed to detect cracks from the video streaming as 
it necessitates a more extensive and diverse dataset on 
which to offer performance evaluation, and secondly, 
an improved functioning is required, i.e., there is a need 
to test the system using more data. The researchers as-
sembled a dataset consisting of 21,000 images taken 
from three different nations containing four different 
crack types. 

Mandal et al. (2020) used three pre-trained models 
to detect pavement distress. These models were Hour-
glass-104, CSPDarknet53, and EfficientNet. The CSP-
Darknet53 model received the highest F1 score (0.58). 
Hourglass-104 came in second with (0.48), and Efficient-
Net came in third with a score (0.43). When compared 

to such models, the YOLO-based CSPDarknet53 model 
performed quite well; however, it has some drawbacks 
in terms of shadow-related conditions. In addition, Ef-
ficientNet encountered difficulties when attempting to 
locate cracks in roads that were wet [3].

A TL method was presented by Li et al. [23] in their ar-
ticle from 2021. This approach was designed to solve the 
difficulty of varying model performance across various 
types of cameras as well as mounting positions in the 
context of pavement distress detection. The approach is 
comprised of two primary components: model transfer 
and data transfer. The use of a distress detection model 
in unfamiliar settings is made possible through compo-
nents that significantly reduce the requirement for con-
siderable training data by no less than 25%. Also, such 
an approach enhances model accuracy by an amazing 
26.55% compared to traditional approaches. Yet, it is es-
sential to keep in mind that the efficiency of the training 
model could be affected by differences brought about 
by the use of multiple cameras that capture a wide va-
riety of data and settings. This might potentially limit 
the potential for the model to be generalized. It turns 
out that obtaining labeled data for new scenes is very 
necessary, but given the framework that we have sug-
gested, this process could cost a significant amount of 
time and effort. The utilization of GANs in data synthe-
sis and transfer could result in a potentially hazardous 
circumstance. Distress annotations that have been cre-
ated could contain inaccuracies or errors, which is one of 
the consequences that might have adverse impacts on 
model performance. It is necessary to perform manual 
screening of synthesized images after the completion of 
GAN style transfer to mitigate that danger. Even though 
this can be time-consuming and may require the remov-
al of some training data validities, this stage is crucial for 
achieving optimal results. Errors or inconsistencies in the 
model's initial labeling could negatively affect the qual-
ity of the synthesized images and, consequently, the 
model’s performance.

Smadi and Gosh (2021) used DL techniques, includ-
ing YOLOv3 and Faster R-CNN, to perform the auto-
matic categorization and identification of pavement 
problems from high-resolution 3D surface images. This 
was a powerful strategy. In terms of demonstrating ro-
bust performance, such models performed quite well, 
with an average precision rate for distress detection 
and classification reaching as high as 89.2% through 
Faster R-CNN. YOLO achieved an even higher level of 
efficiency, reaching 90.2%. A feasible alternative to 
manual Quality Assurance and Quality Control (QA/QC) 
methods is presented by the developed methodology. 
It reflects the outputs of QA/QC in an efficient manner, 
which is a big step towards streamlining operational 
procedures. One of the research's limitations is that its 
testing and training datasets are smaller than the im-
age datasets that are typically used [24].

Abbas et al. (2021) used advanced image process-
ing techniques to automate the detection of pave-
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ment distress like cracks and potholes. The proposed 
model employs various image processing techniques 
like mathematical morphology to identify cracks. In 
addition, the model used segmentation methods to 
improve crack detection, using dynamic segmenta-
tion techniques that relied on six segmentation algo-
rithms. Their model outperforms ML models because 
of the dynamic optimization approach designed to 
handle noise better than traditional methods, allow-
ing for more precise identification of crack patterns 
even in less-than-ideal imaging conditions. The pro-
posed model can also detect the degree of curvature 
and make the model distinguish between potholes 
and cracks accurately. This model's limitations are as-
sociated with variability in lightning conditions, as the 
model's performance can be reduced under various 
lighting conditions. Second, environmental factors like 
strain lane marking may affect the view of the cracks. 
Third, the model's effectiveness depends significantly 
on the image's quality. Lastly, the model may not de-
tect all types of pavement distress. These limitations 
resulted in the need for further collaboration to build a 
more generalized model [25]. 

During their research conducted in the year 2022, 
Zhu and colleagues [5] suggested using an Unmanned 
Aerial Vehicle (UAV) equipped with a high-resolution 
camera to collect pavement damage data. To train a 
dataset that contained images of pavements show-
casing six different kinds of damage, they used three 
object-detection algorithms: YOLOv3, Faster R-CNN, 
and YOLOv4. The YOLOv3 algorithm produced a good 
performance with a mean average precision (MAP) 
score of 56.6%. This result considerably improves the 
effectiveness of non-destructive automated pavement 
condition evaluations. Yet, in order to have a compre-
hensive understanding of this study, additional infor-
mation regarding dataset size throughout the training 
of the model is required. It is expected that the research 
would provide significant insights into the adaptability 
of trained models to a wide variety of types of pave-
ment conditions and surroundings.

Yihan et al. (2022) introduced a new Transformer-
based approach called LeViT for automatically clas-
sifying asphalt pavement images. LeViT's architecture 
incorporates convolutional layers, transformer stages, 
and two classifier heads. This method has been found 
to achieve excellent performance in terms of accuracy, 
precision, recall, and F1 score when tested on Chinese 
and German asphalt pavement datasets, surpassing 
the capabilities of existing state-of-the-art models. 
LeViT exhibits faster inference speed than the original 
Vision Transformer and other CNN-based models. Ad-
ditionally, the paper proposes a visualization technique 
that combines Grad-CAM and Attention Rollout to en-
hance the interpretability of the results, while it does 
not provide information regarding overfitting [26].

Zheng et al. (2022) have contributed to collect-
ing a benchmarked Pavementscapes dataset. Pave-

mentscapes comprised 4000 images with a resolution 
of 1024 x 1024 pixels for each image. Several pre-
trained DCNN models were examined. The CNN mod-
els used were variations from VGG16 to detect cracks, 
potholes, and ruts. The best model was the segmenta-
tion transform. The main limitation noticed while con-
ducting this work is the inefficiency of detecting small 
damage instances [27].

Huang et al. (2022) collected a dataset of cracks 
called NHA12D. Their work is a comparison study be-
tween a set of state-of-the-art crack detection algo-
rithms. The NHA12D dataset comprised 80 pavement 
images divided into 40 asphalt and 40 concrete imag-
es. Three models were tested using the proposed da-
taset: first VGG16, Deep Crack and ResNet 3. The Deep 
Crack model shows performance with a 90.3 recall and 
precision of 0.35 for asphalt cracks. Meanwhile, for con-
crete cracks, the recall was 0.96, and the precision was 
0.25. The Huang et al. work's limitation was the failure 
to classify concrete joints from cracks [28]. 

Eslami et al. (2023) [29] examined the performance 
of DCNN classifiers in the context of automated pave-
ment assessment. Among all the factors tested, using 
multi-scale inputs had the most significant positive 
impact, resulting in an average performance improve-
ment of 20% as measured by the F-score. Interestingly, 
when distinguishing between road distress and non-
distress classes, the CNN classifiers performed better 
on area-based objects (patches) than linear objects 
(cracks). The M-VGG19 model achieved the highest F-
score and demonstrated reduced variation in classifica-
tion accuracy across different class types. Additionally, 
adding more layers to shallow networks with fewer 
than four convolution layers improved classification ac-
curacy, particularly for smaller objects. However, there 
are some limitations to consider in this study. Firstly, 
the paper should provide a more detailed explanation 
of the rules governing the DCNN classifiers used in the 
research. Secondly, it is essential to note that the study 
focuses exclusively on pavement assessment and does 
not explore the broader applications of DL algorithms. 
Furthermore, the paper must compare non-deep learn-
ing-based methods for classifying road objects. Lastly, 
the study should address the computational require-
ments and training time associated with the DCNN 
classifiers used in the research.

The model known as Crack Forest was designed 
by Shi et al. for crack detection using a function for 
specifying features relying on detecting cracks based 
on intensity inhomogeneity. The method is based on 
a random structure forest, which is an improved ML 
method that combines algorithms for learning pat-
terns to make decisions without being programmed 
explicitly. The proposed algorithm is superior to the 
previous models. Crack forest based on the SVM classi-
fier registered a precision of about 90.28%, recall 0.86, 
and F1 89.39%. The only limitation of this work is that 
video streaming was not taken into consideration [30]. 



168 International Journal of Electrical and Computer Engineering Systems

All the previous researchers either implemented ex-
isting transfer models or proposed their own models. 
They implemented the models directly on the images 
without pre-processing steps. In contrast, the current 
study presents an innovative improvement on the pre-
trained CNN VGG16 model by adding a multi-head at-
tention layer with a vast number of augmented images.

Cano-Ortiz et al. (2024) focused on comparing vari-
ous YOLOv5 variants. These models have been evalu-
ated according to their efficiency in detecting the tar-
geted objects. Their main contribution is a novel filtering 
post-processing mechanism. This filtering mechanism 
is used to reduce false positive detection by 20.5%. The 
proposed post-processing mechanism relies on a rule-
based approach that includes several rules to reject 
overlapped detection cases. The proposed model was 
evaluated on two datasets and achieved a precision of 
about 0.56 and 0.57 for the RDD2022 and CPRI datasets, 
respectively. This study has limitations because it evalu-
ated the model on the existing dataset, which may not 
accommodate real-world conditions. Also, this study fo-
cused on one type of distress, cracks, which means that 
this model may not assess all types of distress compre-
hensively. Lastly, the results were validated on an open 
dataset that raises concerns about the generalization 
capabilities of the proposed architecture [31]. 

A. Nasertork et al. (2024) designed a model to im-
prove the detection of pavement distress inception. 
This work utilized a proposed image processing feature 
extraction with AI techniques. The proposed model 
combined a set of texture features such as Gray Level 
Co-occurrence Matrix (GLCM), Local Binary Patterns 
(LBP), and Histogram of Oriented Gradients (HOG). 
All these features are used as discriminators to de-
tect pavement images. Various ML algorithms trained 
by the extracted features, including XGBoost (XGB), 
Logistic Regression (LR), K-Nearest Neighbors (KNN), 
Support Vector Machine (SVM), Random Forest (RF), 
Artificial Neural Networks (ANN), and Convolutional 
Neural Networks (CNN) were used. The best classifiers 
that achieved accuracy higher than 90% were SVM, 
XGB, and KNN. The most crucial limitation of this work 
was the variation of the feature selected effectiveness 
that relied on the dataset itself. The datasets were lim-
ited, leading to the specific model, because the model's 
training and evaluation depended on the quality and 
diversity of the image dataset [32].

M.Guerrieri et al. (2024) employed a pre-trained DL 
model YOLOv3 detection algorithm, which is known 
because of its efficiency in real-time object detection. 
YOLOv3 utilized Darknet, which used 3x3 filters in-
spired by ResNet that efficiently detect small objects 
in real-time.  The dataset includes a diverse range of 
pavement damage types. The variety in the dataset al-
lows the model to learn and extract relevant features 
that distinguish between different types of distress, 
enhancing its classification capabilities. The limitation 
of YOLOv3 is its difficulty in managing scale variations, 

especially when detecting small or large objects. The 
model faced a challenge from relying on a public data-
set for training and validation. While this dataset pro-
vided substantial data, it may not encompass [33].

K. Ijari et al. (2024) utilized the EfficientNetB3 archi-
tecture, one of the EfficientNet variations. This model is 
notable for its compound scaling method that optimally 
adjusts depth, width, and resolution. The EfficientNetB3 
model achieved superior performance with fewer pa-
rameters than traditional models like ResNet. The model 
detects various types of distress, like cracks and potholes. 
The researchers utilized a Swin Transformer-based GAN 
to generate images of synthetic pavement cracks. This 
augmentation was crucial for improving the efficiency 
and accuracy of the pavement damage assessment pro-
cess. The efficientNetB3 model, when combined with 
the SwinGAN data augmentation process, achieved im-
pressive testing accuracy ranging from 76.7% to 78.2%. 
This paper addressed a set of limitations. First, data qual-
ity issues, such as poor data quality, can lead to inaccu-
rate predictions and classifications. Second, the model's 
sensitivity to environmental factors: the model's per-
formance can be adversely affected by environmental 
factors such as shadows, reflections, and road markings, 
which can introduce noise into the image data. Third, 
handling complex crack geometry because the study 
identifies the lack of existing models for complex crack 
topologies. Many CNN models face difficulties classify-
ing cracks with irregular shapes, which can decrease 
their accuracy in real-world applications [34]. 

3.	 BACKGROUND 

This research paper proposes a model for asphalt dis-
tress detection. The proposed model is based on a pre-
trained model that relies on improving the VGG16 with 
a multi-head attention layer. Before that, a batch of pro-
cesses was conducted to prepare the datasets prior to 
training the model. These processing procedures includ-
ed a smoothing process and then data augmentation 
processes. The following sections illustrate the meth-
ods used in implementing the proposed system. These 
methods make the datasets more suitable for efficiently 
training the model to produce more accurate results.

3.1. Smoothing process

Smoothing, also known as averaging, is used to 
smooth any image by spatial filters to reduce sharp 
details in images. It is used to lessen the sharpness of 
irrelevant details in the image [35]. A bilateral, linear fil-
ter replaces each pixel's intensity with a nearby pixel's 
average weight. The bilateral smoothing can preserve 
edges at the same time. Each neighbor is weighted by 
spatial components, considering the distant pixels and 
the difference between pixels of various intensities. 
Their combination value ensures that only nearby simi-
lar pixels contribute to the final pixels of the same re-
gion. Bilateral works are based on Eq.1 for each pixel p 
and q, whose loop is nested within p. The equation re-
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lies on taking the central pixel p and its neighborhoods 
such that |p-q| <2 σs, considering the contribution of 
pixels outside the range of σs is negligible because of 
the spatial kernel.

(1)

It is used for unwanted texture removal. In our ap-
proach, the granular texture in asphalt must be re-
moved [36]. (Fig. 1) illustrates how the smoothing pre-
process has been applied to the original asphalt image.      

3.2. Transfer learning

TL models are those pre-build models trained us-
ing a specific dataset to be used later for building new 
models for various purposes using a different dataset. 
The TL principle relies on generating a model for one 
purpose and utilizing it for other activities. In these 
models, knowledge is gained from previously trained 
models on past tasks. As a result, this paradigm is bene-
ficial when the data is limited because the limited data 
makes the model difficult to generalize. In addition, 
TL makes the model faster to train than developing 
the training model from scratch. The idiom of transfer 
learning comes from transferring existing knowledge 
to learn a new model with or without a labeled dataset 
[37]. (Fig. 2) summarizes the principle of TL.

The source dataset domain Ds and training task Tt, 
and target domain Dt with training model for task Tt. 
The target of TL is to use the knowledge in Ds and Tt to 
learn the targeted prediction model f in Dt given that 
Ds≠Dt and Ts≠Tt [37].

(a)

(b)

Fig. 1. Crack image a) Before smoothing,  
b) after smoothing

3.3. Attention layer 

The paradigm of using the attention layer was in-
spired by how humans penetrate a specific region of 
a scene. The attention layer works as a spotlight within 
the architecture of neural networks, specifying essen-
tial features in an image.

Therefore, the neural can adaptively adjust the neu-
ral weight according to the image features to learn 
from special regions in an image [38]. Special attention 
is widely used to focus on specific regions in any image. 
Generally, the operations of the attention layer consist 
of the following steps. First, compute addressing scores 
between various regions of the input image, such as 
pixels in an image. Second, weights are determined 
based on scores to indicate the importance of areas. 
Third, weight is used to refine the output, focusing on 
the most relevant features [39].

Fig. 2. TL for a new model [36]

Self-attention can be defined as an attention spatial 
filter applied to a single context or pixel instead of mul-
tiple contexts. So, queries, keys, and values are used to 
extract features from the spatial domain.

For example, in (Fig. 3) below, to extract the feature 
set of a pixel xi, j ∈ Rdin. 

(2)

As a spatial region, the attention layer has to extract 
the local regions of pixels in position around the specif-
ic pixel xi, j or ∈ Nk (i, j). Then, the single-head attention 
process is computed by applying softmax on the query 
multiplied by the key to get the attention-focused fea-
tures in the Eq. 2 below 

Fig. 3. The technique of attention layer [36]
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Where qijT is the query, kab is the key, and vab are 
values Wvxab, which represent the transformation of 
the pixel in position ij and the surrounding pixels. The 
softmax operation is conducted on all learned trans-
forms. Self-attention works in a way that is similar to 
a spatial convolution filter by collecting information 
over the pixel and its neighbors, and the aggregation 
is done by using a convex combination of value vec-
tors by using the softmax function [40]. This operation 
is repeated for every pixel in an image.

The advanced type of attention mechanism is the 
multi-headed attention that is illustrated in (Fig. 4) The 
multiple attention heads paradigm is used to gain vari-
ous representatives for the input. The multi-head at-
tention begins with partitioning the pixel features into 
N parts xi, j ∈ Rdin/N by conducting a single-head atten-
tion operation on each group separately with various 
transformations Wn Q, WnK, Wnv ∈ Rdout/N x din/N for each 
head. Then, concatenating the output from each head 
into one final output yij ∈ Rdout/N. CNN begins by extract-
ing the features from the image, and then the attention 
layer maps the essential features using the weighted av-
erage of the values. Lastly, the multi-headed attention 
blocks output are concatenated into one feature set [41].

Fig. 4. The mechanism of multi-head attention 
layers [40]

3.4. Data Augmentation

Data augmentation is a technique used to gener-
ate new training samples from the existing seed of the 
dataset. This operation is like taking from the existing 
training samples and producing modified copies to 
train any classification model. There are various aug-
mentation processes:

•	 Geometric transformations: These operations alter 
some geometric features in images like flipping im-
ages, cropping parts from an image, scaling an im-
age (zooming in, zooming out), rotating to a spe-
cific degree, and shearing by distorting the image 
along an axis to rectify the perception angles. 

•	 Color space augmentation: relying on modifying 
color within an image. The image is augmented by 

changing lights, saturation, and hue. Changing the 
colors within images can add realistic light varia-
tions and other color elements. This process makes 
the model less susceptible to overfitting.

•	 Noise injection is a technique in image augmen-
tation that depends on adding a specific amount 
of noise to existing samples of images. This injects 
variations that simulate real effects or camera 
noise. For example, Gaussian noise, which is com-
monly used, is implemented by adding random 
values with normal distributive values to each im-
age pixel. The intensity of noise is controlled by 
standard deviation [42]. 

4.	 THE PROPOSED MODEL 

The proposed asphalt distress detection model has 
been inspired to detect three types of asphalt damage: 
cracks, potholes, and ruts. This system overcomes the is-
sues noticed in previous works, as some systems have 
low accuracy or overfitting. The issues in accuracy came 
from datasets with a small number of images in each class 
or specific classes or poor-quality images. The proposed 
system consisted of stages. This work proves the system is 
free from overfitting because the model must be general-
ized to unseen data, not just memorize the training data. 
(Fig. 5) represents the proposed system stages. 

Fig. 5. General view of the proposed model
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In Fig. 5, the model begins with the pre-processing 
stage to enhance the asphalt image quality. This en-
hancement is conducted by applying a smoothing op-
eration to eliminate the granular shape of the gravel 
within the asphalt texture because pieces of gravel add 
noise to the image, especially when the system tries to 
detect cracks from non-cracked asphalt cases. The result 
of pre-processing is saved in a dataset repository. 

The second stage is data augmentation to increase 
the number of training samples that make the system 
more generalizable. The augmentation process is use-
ful in asphalt distress classification because it aids the 
classification model in being responsive to variations of 
the scenes in the real world. For instance, asphalt cracks 
may look different according to various lighting condi-
tions. So, by implementing augmentation operations 
like cropping, flipping, blurring, and adding noise, we 
can make the dataset wider, containing various cases 
of images that will help the model learn as much dis-
tress in as many conditions as possible. (Fig. 6) Shows 
the steps for each of the augmentation operations

According to (Fig. 6), we begin the data augmenta-
tion with geometric transformation. The first process in 
geometric transformation is flipping; flipping the image 
from left to right horizontally helps the model to identify 
the distress pattern regardless of the image orientation. 
The second geometric transformation is cropping part 
of the image because the image does not always cap-
ture the entire area of interest. Consequently, cropping 
helps the classifier detect the distress area even when 
the damage does not occupy all the image scenes. The 
next operation is scaling the image by zooming in and 
zooming out. Zooming in can make the model focus on 
a magnified area. Zooming out lets the model learn the 
pattern from a more comprehensive view.

Consequently, these provide a broader context, allow-
ing the model to learn to identify larger-scale distress 
features like potholes. The fourth process is the rotation 
of the image by a slight random angle. Rotation may 
simulate the variations in camera orientation. The last 
geometric transformation is shear, which tilts the image 
slightly in a specific direction, either horizontal or verti-
cal. The next batch of operations is the color space aug-
mentation, which begins with the flowing operations. 
First, Gaussian blur is an image augmentation technique 
widely used in computer vision tasks such as asphalt 
distress detection applications. Gaussian blur applies a 
Gaussian filter to the image, yielding a smooth image by 
blurring its details. The second is multiplying the image 
by a value greater than 1 to increase brightness.

In contrast, multiplying the image with a value less 
than 1 increases the darkness of the image. Third, con-
trast normalization is a data augmentation technique 
used in image processing to improve the overall con-
trast and visibility of features within an image. It is par-
ticularly helpful for DL tasks where models rely on ex-
tracting meaningful features from image data. The last 
augmentation process noise injection is implemented 

by adding Gaussian noise. It involves adding random 
noise following a Gaussian distribution to the image. 
This injects a controlled level of "artificial noise" that 
mimics real-world variations or sensor imperfections.

Fig. 6. Image augmentation stage process

The third stage is the proposed VGG16 model with a 
multi-head attention layer that has to be trained using 
the prepared dataset. (Fig. 7) illustrates the details of 
the improvement. 

Fig. 7. VGG16 with multi-head attention layer 
structure
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The image is size 180x180 and has three channels 
entering the model. The first part of the model is the 
VGG16, which consists of five layers. Each layer has CNN 
filters and one pooling layer. The output feature set from 
the VGG16 layer consists of a two-dimensional 512 ar-
ray. Then, this feature set is flattened to be a one-di-
mensional array. The flattened feature set is the input to 
the multi-head attention layer that focuses on different 
parts in the feature set to extract the best representative 
for each image. The final output from the attention layer 
enters the final component of the deep dense neural 
network DDNN. This DDNN is used to classify the input 
image into one of three classes after learning from the 
features of each image during the training epochs. 

(Fig. 8) illustrates the details of the mechanism used 
to extracting the features from the dataset’s images. 
Initially the image was divided into four parts. Each of 
the parts entered the VGG16 transfer model. Extracting 
features from the image parts gives the attention pro-
cess a richer understanding of the data. This can lead to 
more accurate and informative attention weights. In ad-
dition to that, dividing the image into parts allows the 
system to catch different aspects of the input image. By 
concatenating them, we allow the attention mechanism 
to consider these various aspects simultaneously, poten-
tially leading to a more comprehensive understanding 
of the data. All the feature sets extracted by VGG16 are 
flattened into a 512 array. These feature sets enter the 
process of a multi-head attention layer that consists of 
four heads, one head for each part of the divided im-
age. Accordingly, the number of iterations within the 
multi-head attention layer would be 16. Each element 
corresponds to a different region or aspect on the in-
put image. Multiple heads allow the capture of various 
patterns. The multi-head attention layer begins the it-
eration 16 times by choosing arbitrary values of K and 
Q. Q: Represents the information you want to attend to, 
K Represents the information you want to attend with, 
and V: Represents the information you want to retrieve 
if there's a match between query and key. (Fig. 9) rep-
resents the details of each attention head. Fig. 9 shows 
the architecture of the single-head attention layer. The 
similarity between the query and key is scaled between 
+1 and -1, calculated by finding the dot product of two 
vectors. Multiplying the key (K) and query (Q) yields an 
attention filter.

(3)

Then, scale the attention scores in the attention filter. 
The attention filter scores enter the softmax process to 
get more detailed crucial features, as in Eq. 4.

(4)

After that, the attention filter is multiplied by the 
original image to remove unnecessary details. The fea-
tures set is concatenated with the original image to 
obtain a more focused and detailed final image. The 
concatenated values are projected back to the original 
dimensionality using a projection matrix WO:

(5)

The multi-head attention allows one to focus on vari-
ous parts of the image. So, each attention head outputs 
an attention filter that may focus on different details in-
side the image. 

The proposed VGG16 with a multi-head attention 
layer has been developed using a mathematical model, 
and the details of the mathematical model are in the 
following steps:

4.1.	 Convolution  
	 (Feature Extraction in VGG16)

The VGG16 operations are repeated four times to 
get the feature set map. Suppose I represent the input 
image of a 3-dimensional tensor (height, width, chan-
nels). The filter W is the learnable weight of 3 dimen-
sions. The convolution operation of VGG16 to extract 
the feature set is as follows: 

(6)

Where Oij is the value of the output of position (i, j) in 
the feature map. Wkhw is a single value from the filter W. 
I(i+k)(j+h)(c) represents a specific pixel value in the input im-
age at a shifted position (k, h) within the kernel and chan-
nel (c). b is the bias term for that particular feature map.

4.2. Pooling

The pooling function is used to select more significant 
features by applying either average pooling or max pool-
ing. Pooling also reduces the dimensionality of the fea-
ture set. The max pooling function is applied after con-
ducting each CNN layer as in the equation. 

(7)
For all k, h within the window, where F(i+k)(j+h)

 is a 
single element in the features set.

4.3. Multi-Head Attention: 

This process is used to extract the distress region pat-
tern within the asphalt images and produce a feature set 
that is focused on the distressed parts in the asphalt. The 
attention process is done by conducting self-attention 
with many parts within the image to extract the more 
crucial part in deciding the image class. So, suppose X is 
the flattened feature vector extracted by the VGG16 pre-
trained model. Now, define three weight matrices, WQ, 
WK, and WV, for projecting the input vector into a query 
(XQ), key (XK), and value (V) vectors, respectively.

The attention process is implemented as in the equa-
tion:

Oij = max(F(i+k)(j+h)
)

S = XQ * XK
T (8)

Where S is the attention score. 

After that, the softmax is applied to extract important 
features from the attention layer as in the equation: 

A = softmax(S) (9)

International Journal of Electrical and Computer Engineering Systems
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Fig. 8. Detailed architecture of the extraction 
features process in the proposed model

Now highlight the significant feature by multiplying 
the value of the image by the max-pooled feature set in 
the equation below:

Context vector: C = A * XV (10)

Fig. 9. Attention layer architecture

4.4. Dense Layers

A deep dense classifier consists of four layers, trained 
over the features extracted from the multi-head atten-
tion layer to predict the input images later as cracks, pot-
holes, or ruts. So, C represents the features vector, W is a 
set of weights, and B is the bias vector. The decision of an 
image is calculated by implementing the equation: 

Y = ReLU(W * C + b) (11)

So, the image is predicted by multiplying the W after 
training to the feature of an image after adding the bias 
vector.

4.5. Softmax (Output Layer)

SoftMax is implanted on Y to reach the final decision 
about the image class, which is either a crack, pothole, 
or rut. So, suppose Y is the output vector from the final 
dense layer. Then implement the softmax function for 
each class probability (i): 

P(i) = exp(Zi) / Σ(exp(Zj)) (12)

For all classes j, the last stage in the proposed model 
is the deep dense neural that accepts the feature set 
from the proposed VGG16 to decide the input image to 
which class it belongs.

5.	 EXPERIMENTAL RESULTS

This section presents the tests conducted on four da-
tasets for various transfer models for computer vision 
problems. Initially, the experimental environment, da-
tasets, and evaluation metrics must be explained. 

5.1.	 Experimental environment and 
	dataset

The experiments were conducted using Python 
version 3.1.10 on Windows 10, CPU core I 7, and GPU 
Gforce 940 MX to accelerate the data training time 
while the transfer models are executed. Libraries like 
TensorFlow and Keras were used to build the proposed 
models. Three well-known benchmark datasets were 
utilized and divided into training and testing sets with 
a proportion of 0.8 training and 0.2 testing sets to eval-
uate the performance of the suggested models more 
precisely. The details of each dataset are as follows:

•	 The Pavementscapes dataset conducted by Zhang 
et al. contained 4000 images, each with a size of 
1024*1024 pixels. The dataset was labeled with six 
classes related to asphalt detection. In this work, 
we use only the data related to cracks, potholes 
and ruts, which are 2300 in total. (Fig. 10) illustrates 
the three types of asphalt distress.

•	 The Deep Crack dataset contains 537 RGB color im-
ages, each of which is a fixed size of 544*304 pixels. 
The dataset was annotated manually and labeled 
into two classes: cracks and non-cracks. 

Volume 16, Number 2, 2025
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•	 NHA12D dataset consists of 80 pavement images 
divided into 22 cracks and 58 normal images. Each 
image has a size of 1920*1080 pixels.

•	 Iraq asphalt dataset: This dataset was collected from 
Iraqi streets because there is a need for a national 
dataset because of the shape of the cracks and dis-
tress in this country. The asphalt distress in Iraq is pro-
duced by high temperatures over 50 degrees Celsius 
and unauthorized digging. The dataset images were 
collected using a mobile camera with 48 megapixels. 
Each image consisted of 3000 x 4000 pixels and was 
saved as a JPG file. The photos were labelled by the 
research group of this paper and consisted of 250 for 
each class (cracks, potholes and ruts). Anyone who 
wants the data should contact the authors. 

Fig. 10. Three types of asphalt distress under the 
study

5.2.	 Evaluation Metrics

Four evaluation metrics were used to check the pro-
posed model's efficiency. First, accuracy in Eq. (12) mea-
sures the model and predicts the outcomes correctly.

(12)

Second, precision in Eq. (13) represents how often 
the model correctly predicts the positive class. Preci-
sion will be better when it is closer to 1.

(13)

Third, recall in Eq. (14) measures how often classifica-
tion learning correctly identifies positive instances of the 
positive class. Recall will be better when it reaches 1.

(14)

Lastly, the harmonic mean of precision and recall.

(15)

We have to introduce the following idioms to under-
stand the metrics used to evaluate the performance of 
the models. (Fig. 11) explains the components of the 
confusion matrix. True positive Tp represents when 
the classifier correctly predicts an instance related to a 
positive class. For example, when the model predicts 
an image holding crack damage to the crack class. True 
negative TN represents when the model correctly pre-
dicts an instance related to a negative class. For exam-
ple, when a classifier predicts an input image without 
a crack as a normal image without damage. False posi-

tive FP means the classifier model incorrectly predicts 
a case as positive when it belongs to the negative class. 
For example, if a normal asphalt image is classified as 
a damaged case. False negative FN represents an error 
case. This happens when the predictor model mispre-
dicts an instance as negative. For example, an image of 
damaged asphalt can be classified as normal.

Fig. 11. Confusion Matrix Shape

6.	 RESULTS AND DISCUSSIONS

The performance of this proposed asphalt distress 
detection  model was evaluated relying on matrices 
of accuracy, precision, recall, and F1 score. We depend 
on Macor's average accuracy with related matrices be-
cause the datasets are imbalanced. This research tested 
the possibility of overfitting by plotting the difference 
between training and validation accuracies and loss 
during the training epochs. Table 1 illustrates the per-
formance of the proposed model.

The proposed pavement distress detection model was 
conducted on four benchmarked datasets, including 
the IRAQ asphalt dataset. The Pavementscapes dataset, 
consisting of three distress types (cracks, potholes, and 
ruts), has been used to evaluate the proposed model. 
The precision and recall for cracks both reached 1.0. At 
the same time, the general macro average precision and 
recall were 0.99. Pothole precision is 1.00, while the ruts 
precision reached 0.99. Ruts predicting achieved a true 
positive of about 0.99, as in the confusion matrix in (Fig. 
12). The imbalanced data caused these differences be-
tween the precision values of classes. 

Dataset Precision Recall F1 Accuracy

Pavementscapes 0.99 0.99 0.99 1.00

NHA12D 0.99 0.99 0.99 0.99

Deep Crack 1.00 1.00 1.00 1.00

Crack Forest 1.00 1.00 1.00 1.00

IRAQ dataset 0.96 0.96 0.96 0.96

Table 1. Performance Of Various Transfer Models

The behavior of the proposed system towards the 
possibilities of overfitting was acceptable during the 
training process. (Fig. 13) registers the system's accura-
cy during training epochs, which refers to high training 
accuracy compared to the validation accuracy in the 
same training cycles. At the same time (Fig. 14) shows 
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the difference between the validation loss and training 
loss. Validation loss was lower than the training loss in 
all the training epochs. An early stop mechanism was 
used to terminate the training process in five epochs to 
ensure achieved weights for the model.

Fig. 12. Pavement scape dataset confusion matrix

Fig. 13. Model training accuracy to validation 
accuracy for Pavement scape dataset

Fig. 14. Model training Loss to validation loss 
Pavement scape dataset

NHA12D was also used to check the validity of our 
paradigm, although this dataset consisted of two classes 
(crack, non-cracked) of asphalt images. The precision and 
recall were 0.99 despite the difference in precision be-
tween cracks and non-cracks classes. The model predicts 
crack classes with a precision reaching 0.98, while the pre-
cision for the non-cracked class was 1.00. This small differ-
ence is because of the imbalanced dataset. The confusion 

Fig. 15. Model confusion matrix on the NHA12D 
dataset

In this experiment, we also used an early stop mech-
anism; the model needed seven epochs for training. 
(Fig. 16) shows that the validation accuracy is close to 
the training accuracy during the training process. In 
contrast, the validation loss was lower than the train-
ing loss except for the last epoch before conducting 
the early stop, as shown in (Fig. 17). Model training ac-
curacy. Early stop is used to prevent any possibility of 
overfitting or overtraining in the process.

Fig. 16. Model training accuracy relate to validation 
for NHA12 Ddataset

Fig. 17. Model training loss relate to validation loss 
for NHA12 Ddataset

matrix is clear in (Fig. 15). The 0 label refers to the crack 
class, and the 0 class refers to the non-crack class.
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Fig. 18. Model confusion matrix for the deep crack 
dataset

Fig. 19. Model training accuracy towards validation 
in deep crack dataset

The Deep Crack dataset also contains two classes 
(cracks and non-cracks). The cracks of multiple scales 
and scenes make this dataset a crucial benchmarked 
dataset to evaluate crack detection models. The data-
set is relatively balanced, resulting in an efficient model 
for detecting cracks and normal asphalt without dam-
age. The model achieved high precision and recall in 
this dataset, reaching 1.00 in the prediction of both 
classes. The confusion matrix is clear in (Fig. 18). Label 
(zero) represents the crack class, while Label (one) rep-
resents the non-cracks class in the confusion matrix. 

The model’s behaviour during the training was also 
investigated by plotting accuracy and loss. (Fig. 19) 
shows the accuracy during eight epochs of the training 
process. The X-axis in the figure represents the number 
of epochs, while the y-axis represents the accuracy. In 
all the training epochs, the validation accuracy was 
close to the training accuracy in a consistent trend be-
tween the two groups. 

In (Fig. 20), the validation loss is less than the train-
ing loss during the training process. Both accuracy and 
loss plots refer to the efficient behavior of the model in 
detecting new instances of cracks and non-cracks dur-
ing the training and the trend of the model to stay away 
from overfitting in the working process.

Fig. 20. Model training loss towards validation loss 
in deep crack dataset

The fourth test dataset was a Crack Forest that con-
sisted of two classes (crack class and non_cracked 
class). The precision and recall for the cracked asphalt 
class were consistent and registered 1.0. The non-cracks 
class precision was 1.0; in contrast, the recall was 0.96. 
The low recall of the non-cracks class is due to the small 
number of images in the test set. The model's accuracy 
was 1.00, according to the confusion matrix in (Fig. 21). 

Fig. 21. Model confusion matrix on Crack Forest 
dataset

The model's behavior towards overfitting was appar-
ent in the trend of increasing accuracy within training 
epochs, as in (Fig. 22).

Fig. 22. Accuracy of the training model for crack 
forest dataset
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Validation accuracy increases gradually during the 
model training. The loss of the validation also went 
lower than the loss of the training set except for the 
fourth epoch, which scored lower in the last two ep-
ochs, as in (Fig. 23).

Fig. 23. loss of training model for crack forest 
dataset

The system has been tested on the Iraqi distress da-
taset. This dataset contains images taken under bright 
sunlight. Additionally, this dataset is distinguished by 
unique crack shapes due to the high temperature and 
drilling works, as mentioned. The system achieved an 
accuracy of 0.96. According to the confusion matrix in 
(Fig. 24), cracks were detected with an accuracy of 0.97. 
In contrast, potholes were detected with an accuracy of 
0.91, and ruts were detected accurately in 1.0. The rea-
son behind the low accuracy of pothole detection is 
that some overlap with cracks, as some images contain 
cracks and potholes at the same time. (Fig. 25). tracks the 
difference in training versus validation accuracy during 
the training process. In all 18 training epochs, the valida-
tion accuracy was close to the training accuracy.

In (Fig. 26), by comparing the loss validation to the 
loss of training in the 18 epochs, we can notice that the 
validation loss was generally less than the training loss, 
especially from epoch ten forward. Fig. 25 and Fig. 26. 
Refer to the fact that the system was far from entering 
the overfitting case within the training epochs.

Fig. 24. Iraqi dataset confusion matrix

The system shows efficient behavior for both asphalt 
concrete distresses. The dataset Deep Crack contains 
the cracked concrete images used to train the pro-
posed model in this research. (Fig. 27) represents a 
crack in concrete.

Fig. 25. Training accuracy of Iraqi dataset

Fig. 26. Training loos of Iraqi dataset

Fig. 27. Crack in concrete surface

The proposed model efficiently detects asphalt dis-
tress under various circumstances like high lighting in-
tensity, shadows, and the existence of traffic signs. This 
efficiency of the proposed model is due to training rely-
ing on augmented datasets and the successes in cover-
ing most scene cases like rotating image, flipping and 
shear, providing a variety of scenes and angles of the 
same image. Color augmentation provides the system 
with high or low-intensity images by multiplying pro-
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cesses and contrast normalization. Additionally, Gauss-
ian blur generates images with noise. (Fig. 28) shows 
samples of the augmented images for both concrete 
and asphalt cracked areas. The augmentation process 
resulted in building a generalized system responsive to 
a wide range of crack, pothole and rut scenes. In the 
real world, the system was tested on Iraqi streets.

Fig. 28. samples of augmented images

The photos were captured using a web camera and 
sent directly to the system operated on a laptop. The 
system worked efficiently in the high-intensity light at 
noon and low-intensity light intensity near sunset. The 
time consumed was considerable, and the system took 
about 5 to 6 seconds to detect distress in the asphalt. 
The model is connected to a web cam of 1080p with 4k. 

The execution time to detect the cracks increases 
gradually as the number of frames increases. (Fig. 29) 
represents the time of execution while the number of 
frames increased.

Additionally, the model was trained to detect special 
cases in Iraqi streets caused by insurgent drilling pro-
cesses from people to establish water pipes through 
the streets, representing a crucial public problem in 
this country. (Fig. 30) presents one of the illegal drilling 
operations on Asphalt Street. We also compared the re-
sults of the proposed model with previous works that 
used the same benchmarked dataset adopted to evalu-

ate this work. Table 2 compares those results with our 
proposed model’s results.

Zhang et al. registered 0.6 accuracy using the pav-
mentscapes dataset in their work. This low accuracy is 
caused by a wide variety of distress taken in their study 
model in addition to the noisy images that contain 
trees or other obstacles, such as environmental reasons 
like rain, snow, and sunlight, which may affect the qual-
ity of the image. 

In contrast, our proposed model shows a perfor-
mance accuracy of 1.00. The precision and recall in 
our model were higher than Zhang's work because we 
took three damage types to be predicted: cracks, pot-
holes, and ruts. The second model used for compari-
son is Liu's Deep Crack model. Our model outperforms 
the Deep Crack model regarding precision, recall, and 
F-score metrics. Liu's model has about 0.87 precision, 
0.85 recall, and 85.7 as the F-score, while our model got 
1.00 for both precision and recall. 

Fig. 29. proposed system execution time relate to 
the number of frames

Fig. 30. cracks from illegal drilling from Iraqi streets

Paper Dataset Model Accuracy Precision Recall F-score
Zhang Tong Pavementscapes Segmentation transformer 0.60 0.4 0.73 8.42

Yahui Liu Deep crack Proposed model 1.00 0.99 0.99 0.99

Zhening 
Huang NHA12D

Deep crack ----- 0.86 0.84 85.7

Proposed model 1.00 1.00 1.00 1.00

VGG16 ---- 0.35 0.90 0.5

Proposed model 0.99 0.99 0.99 0.99

Shi et al. Crack forest
Crack forest model ----- 0.82 0.89 95.68

Proposed model 1.00 1.00 1.00 1.00

Table 2. compare the proposed model results with previous works
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This difference in accuracy between the proposed 
model and the Deep Crack model is caused by a small 
number of non-cracked images in addition to the com-
plexity of the surface that is coming from different as-
phalt textures and colors. The third work for compari-
son with the proposed system is for Huang et al. and 
the NHA12D dataset. Our model registered an aver-
age accuracy of 0.99 for the same dataset.In contrast, 
Huang used the straight VGG16 and achieved a preci-
sion of 0.35 and a recall of 0.90. The first reason behind 
the recall being higher than the precision in Huang's 
research is that the model is more biased toward the 
crack class than the non-crack class. 

The second reason is that detecting concrete joints 
as cracks increases the false positive number, which 
leads to decreased precision. The Shi et al. model, 
called Crack Forest, achieved a precision of about 82.28 
and a recall of 89.44, referring to the high number of 
false negative cases or high accuracy in detecting non-
cracks in their model rather than cracks. Our model 
was implemented with the same dataset and achieved 
consistent precision and recall of 1.00, referring to bal-
anced and efficient work predicting cracks and cracks 
cases. Furthermore, leveraging ImageNet pre-trained 
weights with the VGG16 model reduced the training 
time. In addition to this, VGG16 has efficient low-level 
feature crafting, helping the attention layer focus on 
high-level pattern understanding. 

Our results are compared with a bench of baseline 
models such as (VGG16, ResNet, Unet, FCN, self-attention 
network, YOLOv8, YOLOv7, and RCNN). Table 3 presents 
a comparison of the main models used with the dataset 
used in this paper. These models were tested with the 
same datasets to test the proposed model. In [21], Liu et 
al. (2019) tried two models, VGG16 and ResNet. VGG16 
achieved an accuracy of 0.30, while ResNet achieved an 
accuracy of 0.72 for the same dataset because ResNet has 
a residual connection that can collect deeper features 
without the gradient vanishing. Tong et al. [27] experi-
mented with three models in their paper. The first model 
was UNET, which scored an accuracy of about 69.56. 

Model Dataset Accuracy IOU

VGG16 [20] Deep crack 
NHA12D

0.30 
0.64 0.54

ResNet [20] Deep crack 0.72 0.77

UNET [26] Pavementscapes 69.56 54

FCN[27] Pavementscapes 67 52

Self-attention 
network [27] Pavementscapes 73.07 58.71

Yolov8 [43] 
Yolo v7 
RCNN

RDD2022
78.4 
57.8 
49.4

Texture feature 
extraction + Machine 

learning [28]
RDD2022 90.00

Table 3. Compression table between a set of 
essential models

The second model, the fully connected network FCN, 
was better, with 67% accuracy. The third model was the 
best, with the same dataset of Pavementscapes and an 
accuracy of 0.73. UNET shows low-performance returns 
due to noisy images in the Pavementscapes dataset 
containing shadows, traffic marks, etc. Therefore, FCN 
might work better than UNET in such cases. We noticed 
that a self-attention network was more effective be-
cause it can capture long-term dependencies. YOLOv8, 
YOLOv7, and RCNN were tested by Dong et al.(2024) 
[43] on the dataset, RDD2022. YOLOv8 outperforms 
YOLOv7 and RCNN with an accuracy of 78.4. YOLOv8 
sometimes integrates label smoothing to regularize 
training and prevent overfitting. 

In [29], their model combined a set of texture fea-
tures such as GLCM, LBP, and HOG. Just the SVM, XG-
BOOST, and KNN classifiers gain an accuracy of over 
0.90. The proposed model outperforms all mentioned 
models because the model incorporates VGG16 fea-
ture extracting with a multi-head attention layer that 
can understand long-range dependencies as one inte-
grated feature set. 

7.	 CONCLUSION

The infrastructure of roads and highways plays a vi-
tal role in the economy by connecting producers to 
markets and enabling more accessible transportation 
across regions and countries. Because of that, many 
countries are trying to enhance their transportation 
networks. 

Detecting cracks and other damaged areas is essen-
tial because asphalt distress creates unseen surfaces 
that may increase the risk of accidents for drivers. Con-
sequently, catching small cracks early is much cheaper 
than waiting for the damage to turn into major repairs.

As a result, the early detection of these issues allows 
repairs to be undertaken before damage worsens. Pre-
vious researchers have worked on designing CNNs to 
detect distress and damaged parts, while others have 
experimented with pre-trained models. However, their 
efforts have faced issues with accuracy because of an 
imbalanced dataset or the nature of the images. 

The proposed system leverages the strength of 
VGG16 and the multi-head attention approach to focus 
on asphalt distress parts. VGG 16, a pre-trained CNN 
model on a massive dataset, extracts general features 
from images. Then, adding a multi-head attention layer 
makes the system focus on specific relationships be-
tween different parts of images. The proposed para-
digm is beneficial for asphalt distress detection where 
the spatial context or how the cracks or potholes are 
internally connected is essential for accurate classi-
fication. For future work, a large, diverse dataset en-
compassing various climates and pavement types is 
needed to enhance model generalization. The models 
also require a lightweight architecture that enables 
real-time deployment on mobile devices for on-the-go 
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road inspections. Last, the researchers must work on an 
explainable model that produces reasoning behind the 
classification or decision. 
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