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Abstract – There is a rapid advancement in Artificial intelligence (AI) and Machine Learning (ML) that has extensively improved 
the object detection capabilities of smart vehicles today. Convolutional Neural Networks (CNNs) based on small, medium, and large 
networks have made significant contributions to in-vehicle navigation. Simultaneously, achieving higher level accuracies and faster 
response in autonomous vehicles is still a challenge and needs special care and attention and must be addressed for human safety. 
Hence, this article proposes a heterogeneous features-based machine learning framework to distinguish road scenes. The model 
incorporates object-based, image-based, and diverse conventional features from the road scene images generated from four distinct 
datasets. Object-based features are acquired using the YOLOv5m model and modified VGG19 networks, whereas image-based 
features are extracted using the modified VGG19 network. Conventional features are added to the object-based and blind features by 
applying a variety of descriptors that include Matched filters, Wavelets, Gray Level Occurrence Matrix (GLCM), Linear Binary Pattern 
(LBP), and Histogram of Gaussian (HOG). The descriptors are used to extract fine and course features to enhance the capabilities of 
the classifier. Experiments show that the proposed road scene classification framework performed better in classifying two scene 
categories, including crosswalks, parking, roads under bridges/tunnels, and highways achieving an average classification accuracy 
of 97.62% and the highest of 99.85% between crosswalks and Parking. A marginal improvement of approximately 1% is seen when 
all four categories were considered for evaluation using a multiclass SVM compared to other competing models. 

Keywords:	 Artificial intelligence, Machine Learning, smart vehicles, CNN, object-based, image-based, diverse conventional features,  
	 YOLOv5m, and VGG19.
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1.		 INTRODUCTION

Safer autonomous vehicles work on algorithms 
based on computer vision that can distinguish certain 
scenarios and accurately predict labels. Related scenes 
consist of several details and are infinite. Varying image 
classification achievements are significant and include 
a wide range of image classes [1, 2]. Remarkable results 

have been obtained on the ImageNet dataset using 
convolutional neural networks and frequent improve-
ments are suggested by many researchers [3]. How-
ever, further initiatives are needed in scene categori-
zation to improve visual perception in autonomous 
driving. Work introduced in [4] considered 2.5 million 
images for training with 205 categories of worldwide 
places that included outdoor scenes. This was based 
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on scene-centric Places and used CNN for recognition/
classification. The work was extended in [5] for 365 cat-
egories from 2.1 million images. Object-centric feature-
based training is easier than scene-level tasks due to 
their varied scene diversities and possible scene com-
binations. 

Several techniques infer scene categories based on 
object detection related to certain scenes. Semantic 
information was also used to guide a mobile robot [6, 
7] in the indoor environment for high-level navigation. 
Thus, semantic mapping within a scene image is wide-
ly used for navigating vehicles with better accuracy. It 
uses semantic information that includes parking lots, 
objects beside roads, buildings, towers, sidewalks, and 
constructions to represent rural or urban road scenari-
os. However, rural conditions are different and are con-
cerned with the abundance of plants, trees, and several 
vegetation. Open broad roads and heavy vehicles are 
dominant over highways which are different from the 
crowded streets in rural and urban areas. Scene cate-
gories are prominently defined based on weather and 
light conditions [8], stationary objects in the scene [9], 
special traffic scene categories (An example to quote 
- Square with Street lights), and intersections. Related 
datasets are not provided with labels, however, they in-
clude an overall description and attributes for objects 
in the scene [10]. Scene videos are typically summa-
rized on a clip basis, since they are not annotated frame 
by frame, making the labeling process more time-con-
suming and costly.

In this article, we have collected road scene images 
from different source datasets and segregated them 
using a machine-learning tool. The work comprises 
heterogeneous features that are extracted from the 
scene images which assist the classifier in distinguish-
ing two classes with better accuracy. The quality fea-
tures used as input to the support vector machine 
are based on semantic information about the scene, 
objects in the scene, and conventional attributes. Pre-
trained networks are used to extract the object-based 
and image-based features whereas diverse descriptors 
are used to lift different details of the scene images. The 
scene images are manually selected and labeled [11]. 
We believe that the proposed scene classification net-
work can be used for offline and real-time applications 
including driver assistance and mapping semantically 
autonomous datasets. 

Despite several deep-learning and machine-learning 
models, AI is still not capable of annotating and distin-
guishing the RS environment autonomously, without 
human intervention. Numerous experiments were 
conducted considering the good road conditions and 
weather, but more recent experiments include real 
road and weather conditions. Adverse weather condi-
tions such as rain, fog, thick pollution, and snow are still 
to be evaluated properly for self-driven cars. The reso-
lution of the LiDAR cameras has been enhanced to a 
great extent and is not the image quality that matters, 

relating to object recognition and classification. Many 
findings infer that autonomous robots are no longer a 
question, but when and how they would be launched 
in human society. The only question is how safely they 
will drive on the real roads, irrespective of the geo-
graphical structures and conditions. 

This emphasizes a critical need for reliable detection 
of the scene objects using efficient techniques, math-
ematical modeling, and simulations that can exactly 
represent reality and converge at the best performance 
parameters and architectures to adapt to variations in 
the surroundings. Various contextual factors are re-
quired to be considered to improve the generalization 
capability and confident predictions for the road scene 
classification, from where the images were acquired. 
Vision-based perceptual systems are greatly influenced 
by contextual factors such as geographical locations, 
weather conditions, and illuminations, geographical or 
artificial processes. 

Findings reported that recent state-of-the-art tech-
niques incorporated deep learning for object detec-
tion and scene understanding in the scene images, and 
there is a broader scope for additional improvements. 
Still, the performance of CNNs is yet to be investigated 
under realistic conditions, that when and under what 
fatal conditions it will cease to operate and can pose 
a great threat to precious human life in self-driven cir-
cumstances.

The weaknesses and deficiencies found after survey-
ing most of the recent and persistent studies are: 

1.	 The inability to detect and classify large objects in 
the scenes. 

2.	 False detections for small objects.

3.	 Lack of generalization ability due to changes in 
weather conditions.

4.	 Lack of scene content representation, and 

5.	 Complexity of time and computation.

Therefore, there is always room for improvement in 
distinguishing scenes based on their contents to assist 
Automated Vehicles. The present research aims to de-
sign an intelligent scene classification framework with 
higher accuracy and lower complexity irrespective of 
the object dimensions, weather conditions, and un-
even illuminations.

The paper claims the following contributions:

1. There is an extraction of object-based features us-
ing the VGG19 pre-trained network after detecting the 
objects with the YOLOV5 network and resizing them to 
a predetermined dimension.

2. Handcrafted low- and high-level features on gray-
scale images are also extracted to improve the dis-
parities among the classes and improve classification. 
The features include wavelet-based features, local bi-
nary pattern-based features, gray-level co-occurrence 
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matrix features, histograms of Gaussian features, and 
matched filter coefficients. 

3. Blind features (Image-Based features) using VGG19 
from the color scene images are extracted from the last 
fully connected layer of the VGG19 network to obtain 
the depth level information of the images. 

4. The analysis based on the experiments displayed 
that the proposed Machine learning framework em-
ploying a diverse set of features can classify road scenes 
with higher accuracy.

The remaining paper is framed as follows: Work car-
ried out by different researchers is summarized in the 
forthcoming section and our proposed scene classifica-
tion framework is elaborated in the preceding section 
after the literature review. The last section concludes 
by discussing the experimental results and avenues 
of future studies after analyzing the results obtained 
through our proposed framework.

2.	 RELATED WORK

The objects associated with the road scene images 
need accurate detection and classification for precise 
decisions to assist the driver in taking different actions 
along the road. Nowadays, for a better 3D perspective, 
object identification has taken its place as a subdomain 
in computer vision tasks [12]. The objective is to provide 
safety, save lives, minimize accidents, and make trans-
portation reliable, and efficient [13, 14]. A variety of tech-
niques are found in the literature for detecting objects in 
images relative to several applications. Specific objects 
for specific applications are now a sub-problem of the 
generalized recognition task. It includes attribute and 
name assignments for specific objects [15]. The most 
crucial and challenging part is dealing with 3D objects 
for autonomous vehicle driving using an optical navi-
gation system. Several sensors are mounted to provide 
road scene details to the navigation module. In the end, 
a classifier system is used to collect information and 
guide the vehicle along a derivable region [16]. Udacity 
recognized multiple transportation means in the scene 
by employing HOG features and classified them using 
various classifier networks. They primarily used the GTI 
(Grupo de Tratamiento de Imágenes, Madrid, Spain) and 
the KITTI (Karlsruhe Institute of Technology, Karlsruhe, 
Germany and Toyota Technological Institute, Nagoya, 
Japan) benchmark datasets. They obtained superior re-
sults using the logistic regression module [17] as com-
pared to SVM and decision trees. 

The BDD100K dataset was constructed using several 
images making it large and comprehensive includ-
ing a variety of objects acquired in diverse weather 
situations, places, and times, with occlusions and a 
wide range of intensity conditions. The YOLO model 
constructed using the Deep CNN is based on learned 
features extensively used to detect objects in the real-
time environment in videos and images. The work pro-
posed in [12] used YOLOv3 and YOLOv4 models on the 

BDD100K dataset and obtained significant results im-
proving the detection rate. The authors replaced Leaky 
RLU with advanced activation functions (MISH and 
SWISH) and further improved the detection accuracy 
over the Leaky RLU [12].   

Objects of different dimensions (small, medium, and 
large) were detected in [14] using a single–shot multi-
box detector (SSD), faster region-based CNN (RCNN), 
and algorithms present in PyTorch. Experiments were 
carried out on the BDD100K dataset images. Further 
research included the KITTI dataset where the perfor-
mance was measured using average precision for de-
tecting 3D objects in the scene images. The outputs 
were significantly enhanced by dividing the 3D objects 
into easy, moderate, and difficult levels. The last level 
included classifying objects in foggy environments for 
autonomous vehicles [18]. 

Object detection in the dark (night) was better in [19] 
using YOLOv3, Aggregate view object detection, and 
PointPillars. The techniques resulted in better average 
precision over the KITTI dataset than others. PointPillars 
performed the best over objects at night, however, it 
failed to detect objects in rainy conditions [19]. Sparse 
LiDAR Stereo Fusion Networks were incorporated in [18] 
to improve object detection in foggy weather (Multi-fog 
environment – KITTI) [18]. A combination of YOLOv3 
and Darknet-53 was used for detecting and classifying 
various objects [20]. The work suggested in [21-22] used 
CNN to convert semantic details from sensory data in 
the images on the road to recognize cycle riders, pedes-
trians, vehicles, etc. A novel approach was proposed to 
process ambulance sounds from a long distance to de-
termine the direction of the emergency vehicle [23]. 

3D object detection and classification on real and 
synthetic samples was implemented in [24]. Most stud-
ies are compared using the average precision as the 
evaluation measure. The weaknesses and deficiencies 
found after surveying most of the recent and persistent 
studies [25-33] are time complexity, inability to detect 
and classify large objects in the scenes, lack of gener-
alization ability due to changes in weather conditions, 
and false detection for small objects. Therefore there is 
always room for improvement in distinguishing scenes 
based on their contents to assist autonomous vehicles. 
The present research aims to design an intelligent 
scene classification framework with higher accuracy 
and lower complexity irrespective of the object dimen-
sions, weather conditions, and uneven illuminations.

3.	 MATERIALS AND METHOD

The authors of this work collected the road scene 
images from four different sources. The objective was 
to consider the worst possible scenario for scene clas-
sification to assist automated vehicles. The manually 
separated scene images possess complexity related to 
multiclass, poor illumination on account of different 
weather conditions and dimensions. The familiar data-
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sets that were used to generate a custom dataset for 
this work include the LabelMe [34], KITTI [35], BDD100K 
[36], and Places365 [37] datasets. The crucial parameter 
to list out the complexity of scene images is their poor 
imperceptibility. The significant class was still undistin-
guished even with visual perceptivity. The challenge 
was to detect the relevant objects in the scene that 

were not easily detectable. The authors customized 
the dataset that contained a sum of 2725 scene images 
from the four benchmark datasets and included road 
scene images with highway roads (HR), vehicle parking 
lots (VPL), crosswalks (CRW), and roads under bridges/
tunnels (RB/T). Fig. 1 shows road scene images from all 
four classes.

Fig. 1. Road scene images. From top left to bottom right - A crosswalk on the street, vehicles along a 
highway, a road under an overpass, and vehicles parked at a parking lot

The generated dataset consists of an equal num-
ber of images (700 each) for classes HR, VPL, and 
CRW, while RB/T included 625 images thus resulting 
in an unbalanced dataset. Fig. 2(a-d) below shows 
some examples that are difficult to distinguish since 
the significant objects are either missing or cap-

tured during the night due to which significant ob-
jects are not clear. Fig. 2(a) shows a highway without 
vehicles, Fig. 2(b) depicts vehicles parked at night, 
Fig. 2(c) is an underpass that is not clear, and Fig. 
2(d) has a partial crosswalk covered due to vehicles. 

(a)

(b)
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(c)

(d)
Fig. 2. Sample road scene images from each category. (a) A deserted Highway. (b) A dimmed roadside 

parking at night. (c) A non-significant under-tunnel road. (d) An Occluded crosswalk

The classification framework is based on the fact that 
road scenes can be categorized with higher accuracy 
when the details in the scene images are extracted care-
fully to represent the road scene correctly. Researchers 
have suggested that the features extracted from the 
scene should carry details regarding the objects in the 
scene, the global or overall characteristics of the scene 
(image-level), and the fine or local details in the scene 
images (conventional/handcrafted). Due to the high re-
semblance among the variety of road scenes, sufficient 
discriminative information from the scene images is re-
quired to properly distinguish scene classes. Redundant 
information would certainly mislead the classifier, thus 
increasing the possibility of false detection. Therefore, 
the proposed scene classification framework is based on 
an efficient integrated feature-based machine learning 
approach. Diverse features including overall, fine, and 
object-based features are integrated using modified 
pre-trained networks and handcrafted or conventional 
descriptors. The overall or global features and the ob-
ject-based features are extracted from the scene images 
using a modified pre-trained network VGG19 whereas 
the fine patch-based or window-based features are ac-
quired using eight different descriptors.

3.1.	 Object-oriented features

 – All the scene images are resized to 256x256 and 
the scene objects are detected using the YOLOV5m 
pre-trained network. The capabilities of the YOLOV5m 
network to identify 80 different objects are utilized to 
recognize objects in the scene images. Fig. 3 shows an 

example of object detection on a road scene using the 
YOLOv5m network. The identified objects include bi-
cycles, cars, persons, and benches. Due to the varying 
dimensions of objects in the scene, the objects were 
priory detected from the scene image and then resized 
to a dimension for further feature extraction. The ob-
jective was to consider the contribution of every single 
object either small or large in dimension from the im-
age. Experimental analysis displayed that every detect-
ed object from the scene should be resized to 32x32 so 
that their contribution is guaranteed. The strength of 
the feature vector was made dependent on the num-
ber of objects detected in the scene. The resized object 
was subjected to the feature extraction to a modified 
VGG19 network. The last layer of the VGG19 network 
was replaced with 1024 and 512 fully connected layers. 
Thus, for every single object a feature vector of 512 was 
obtained. The feature vectors obtained from different 
objects of a single image were then added to deter-
mine the strength of each element of the feature vec-
tor. The summation also mitigates the presence of zero 
values in the feature vector. 

3.2.	 Scene-level features

These features are directly obtained from the scene 
image. The original color image of size 256x256 is sub-
jected to the pre-trained network (modified VGG19) 
and features are extracted from the image. For each im-
age, a feature vector of 512 lengths was obtained and 
appended to the object-level feature vector.
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Fig. 3. YOLOV5m object detection

3.3.	 Conventional features

Local features from the scene images (reduced to 
half-dimension) were extracted using various global 
and local descriptors. The descriptors include matched 
filters (kernel-based and orientation-based), wavelets 
(coarse features using 6 wavelets and fine features us-
ing the haar wavelet), linear binary pattern (using 3x3 
and 5x5 window), histogram of Gaussian, and Gray lev-
el co-occurrence matrix. Kernel-based matched filters 
[38], haar-based wavelet features [39], and LBP features 

[40] were used for extreme details whereas orientation-
based match filters, wavelet-based (['bior3.1', 'bior3.5', 
'bior3.7', 'db3', 'sym3', 'haar']), GLCM [41] and HOG [42] 
were used to contribute in terms of slight or medium 
details. The words extreme and medium correspond to 
details acquired from the image. The former represents 
details with more elements as compared to the latter 
one. The total number of feature elements correspond-
ing to all the descriptors was 2310. The following Fig. 
4 shows the variety of features and their dimensions.

Fig. 4. Object-based, Image-based, and Conventional features with dimensions

Additional details for the conventional/handcrafted 
features can be found in [43]. These quality features im-
prove the ability of the classifier network or a machine 
learning classifier. After all the dataset images are com-
pletely used for the feature extraction process, the fea-
tures are normalized using the Max-normalization to fit 
the values in the range [0 1]. The normalization process 
was carried over the individual feature column while 
the missing values in the columns were substituted 
using the column mean. Fig. 4 shows objects detected 

by the YOLOv5m network from a street image and Fig. 
5 (b-c) depicts the segmented objects from the cross-
walk class image shown in Fig. 5(a).

The detailed scene classification framework is shown 
in Fig. 6. The global FEM uses the VGG19 network with-
out the top layer directly on the input image resized to 
256x256. The number of features extracted using the 
VGG19 network is 512. The blind features thus extract-
ed depend on the scene information and ability of the 
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network. This is to ensure that regions not belonging to 
the objects detected using the local FEM contribute to 
the feature set. The only problems with such features 
are too many missing values which depend on the 
quality of the image. Even though the local features are 
considered using the two-stage deep network frame-
work using the YOLOV5 and the VGG19 networks, the 
resizing stage for the detected objects may suffer from 
information loss. A size of 32x32 is considered to uplift 
the fine features concerning small objects but objects 

greater than 32x32 would suffer data loss. Therefore, 
we added fine and coarse features to the local and 
global features to improve the classification accuracy.

A total of 2310 HF are extracted using various feature 
descriptors which include wavelet-based, matched 
filter-based, LBP-based texture, GLCM-based, and the 
HoG features. The classifier (SVM) is used to learn the 
representation and predict the sample class for the as-
sessment sample.

(a)

(b)

(c)

Fig. 5. Object detection using the YOLOV5m network from a single road scene image shown in (a) - 
Crosswalk Class image). (b)- Objects located in the image by YOLOV5m) Vehicles were detected at the 

scene. (c ) - Other detected objects: keyboard, person and traffic light) Other detected objects include a 
keyboard, a person, and a traffic light.

Fig. 6. The framework for the scene classification system

4.	 RESULTS

The performance metric that is used to evaluate the 
performance of the proposed road scene framework is 
classification accuracy. It is simply computed by calculat-
ing the ratio of scene samples correctly classified to total 
samples. It is expressed by the following expression (1):

Heterogeneous features of all the 2275 images be-
longing to four different classes were extracted and 
stored in a CSV file. The proposed binary scene clas-
sification framework was developed in Python 3.9 on 

(1)
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Spyder 5, Windows 11 Environment, i5 Processor, 16 GB 
RAM, and 512 GB SSD. The feature samples were parti-
tioned in the ratio of 80:20% for training, and testing 
randomly from the available set. 

The training and testing sequence was iterated 10 
times to note the classification accuracy between any 
two classes or categories at any instant. Support vec-
tor machine (SVM) with a ‘Gaussian’ kernel was used 

to train the feature samples and the maximum accu-
racy for any two classes was considered. Table 1 below 
shows the results obtained in terms of classification 
accuracy between two different categories considered 
for this research work. The heterogeneous features us-
ing different descriptors are uplifted and stored. Finally, 
the features are split as shown in Fig. 7 for training and 
testing. The SVM is trained on the training set to learn 
the scene representation and classify the test samples.

Fig. 7. The SVM-based classification model

Table 1. Classification Accuracy relating to Two 
Class performance

Class 1 Class 2 Accuracy- 
Training Accuracy- Test

CRW HR 100% 99.22%

CRW RB/T 100% 93.87%

CRW VPL 100% 99.85%

HR RB/T 100% 97.54%

HR VPL 100% 99.51%

RB/T VPL 100% 95.74%

As seen from Table 1, the SVM was successful in train-
ing the samples with 100% accuracy. However, the test 
samples were not classified up to the 100% mark. The 
reason behind the low accuracy particularly in the case 
of CRW-RB/T, HR-RB/T, and RB/T-VPL is due to the mul-
tiple classes' existence in a single road scene image. 
Fig. 8 and Fig. 9 show some examples from the scene 
images. Fig. 8 below shows a crosswalk along with an 

underpass, a crosswalk below a tunnel, and a mislead-
ing crosswalk under a tunnel. Similarly, Fig. 9 shows ve-
hicles parked beside a crosswalk, an unseen crosswalk 
under a tunnel, and far away parking with a crosswalk. 
Such images when falling under test samples would 
probably increase the chances of false detection. The 
research work uses the YOLOv5m network in its stan-
dard form and no transfer learning approach has been 
carried out to train the existing network for scene-
based objects. The YOLOv5m network trained on the 
ImageNet dataset does not include several objects that 
are associated with road scene images. Therefore, sig-
nificant objects are not detected by the network from 
the scenes which also amounts to the reason for low 
accuracy while detecting scene images. Also, no pre-
processing is carried out to eliminate the uneven illu-
mination effects caused by street-side lightning and 
vehicle lights. Several scene images were acquired dur-
ing night, rain, and fog which need special attention.

(a) (b) (c)

Fig. 8. Multi-category scene samples. 
(a) Crosswalk and an overpass. (b) Crosswalk under a tunnel and (c) Misleading crosswalk under tunnel.
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(a) (b) (c)

Fig. 9. Closely correlated objects (Ambiguous) classes.
(a) Partial Crosswalk with parking (b) Unseen crosswalk under a tunnel and (c) Multiclass scene.

Similar work was suggested in [44] that used the con-
textual semantic relationship between the objects of 
the scene to classify the indoor and the outdoor scenes. 
The authors used visual attention regions marked with 
context-based saliency and deep CNN. They selected 
scene images from four different datasets including the 
MIT67, UIUC-Sports, LabelMe, and the Scene 15 datas-
et. They obtained a maximum classification accuracy of 
97.70% over the LabelMe dataset and the lowest over 
the MIT67 dataset with 72.37%. However, the authors 
worked to differentiate indoor and outdoor scenes, 
the work carried out in this work is to classify different 
street scenarios which is more complex.

We have gone through several research papers to com-
pare our results based on two-class road scenes however 
we found two research papers [27, 44] that included the 
categories considered in this work. Work introduced by 
Jianjun Ni et al. [27] particularly was oriented toward clas-
sifying the scenes into five different categories includ-
ing crosswalks, gas stations, parking lots, highways, and 
streets using a deep network. While work by Jing Shi et al. 
[44] classified indoor and outdoor scenes utilizing a deep 
network. For comparison, we used a multi-class SVM and 
subjected all scene images for training and testing using 
the same ratio. Table 2 shows the total samples that were 
considered for the evaluation purpose.

Table 2. Number of sample images considered in 
each category for scene classification

Class Class Number of images

0 CRW 700

1 HR 700

2 RB/T 625

3 VPL 700

Although the work introduced by Jianjun Ni et al. 
and Jing Shi et al. is not comparable with our proposed 
work, we tried to obtain a better picture regarding the 
framework that considered diverse features extracted 
from the scene for multi-class configuration using SVM. 
The work differs in classes that were considered for the 
research. The competing models used deep learning 

networks for classifying the scenes, the proposed work 
utilizes a machine learning classifier. Table 3 shows the 
comparison between the competing models and re-
sults obtained through our proposed framework.

Table 3. Comparative test results based on Average 
Accuracy

Method Categories Classes Average 
Accuracy %

Jin Shi et al. 2 Indoor, Outdoor 85.06

Jianjun et al. 5 CRW, Gas Station, HR, 
VPL and Street 75.99

Proposed 
Work 4 CRW, HR, VPL, and RB/T 86.01

Although the performance using our framework 
outperformed the other two competing models by 
approximately 1%, a lot of research is required in this 
area to incorporate a scene classification module in an 
automated vehicle. Better scene representation and 
advanced classifiers would obtain higher results and 
assist the unmanned vehicle over densely populated 
streets under rigorous road and climate conditions.  

5.	 ABLATION STUDY

Maintaining the ML hyper-parameters, the researchers 
conducted experiments using any two sets of features 
at a time from object-oriented, scene-level, and con-
ventional features. Table 4 shows the classification ac-
curacies on 20% of test samples which were randomly 
chosen from the available samples about each of the 
categories. The average accuracies computed reveal that 
the object-oriented features and conventional features 
are crucial in classifying the scene classes but the scene-
level features are essential to enhance the performance 
as seen in Table 1. Also, object-oriented features play an 
important role in representing the scene as seen from 
the last column of Table 2. Merely using the scene-level 
and conventional features would not differentiate com-
plex scene images. Thus dropping any of the features 
has a greater influence on the performance. 
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Table 4. Classification Accuracies for Various 
Feature Combinations

Class 1 Class 2 Accuracy - 
Test

Accuracy – 
Test

Accuracy - 
Test

Object-
oriented & 
Scene-level 

features

Object-
oriented & 

Conventional 
features

Scene-level & 
Conventional 

features

CRW HR 91.10 93.94 89.68

CRW RB/T 89.25 90.45 87.25

CRW VPL 91.43 91.98 88.39

HR RB/T 90.22 92.62 89.88

HR VPL 92.15 93.94 90.10

RB/T VPL 89.98 90.00 86.97

Average 90.69 92.16 88.71

6.	 CONCLUSIONS

 This article introduces a road scene classification 
framework based on heterogeneous features that are 
extracted at image-level, object-level, and local–level. 
The features that are extracted, are column normal-
ized, and the missing entries are filled using the col-
umn mean. The feature samples are separated for train-
ing and testing in an 80:20 ratio and further classified 
using the support vector machine. The classification 
results that are obtained, reveal the proposed scene 
classification framework in classifying two classes that 
showed higher performance despite partial occlusions, 
ill-illumination due to diverse weather conditions, low 
inter-class disparities, multi-class ambiguities, and data 
imbalance. 

There can be an improvement in the classification ac-
curacy by adding quality preprocessing to mitigate the 
uneven illumination effects from the scene, YOLOv5m 
transfer learning for common road scene objects, other 
than the objects found in the ImageNet dataset, and 
using custom CNN networks. Due to heterogeneous 
features and three networks (YOLv5m and VGG19), the 
time required to extract features from the scene im-
ages is large. The future work will be based on the con-
centration of considering more than two classes (mul-
ticlass model) that will consider three or four classes as 
the classifier. 
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