
Performance Enhancement in OFDM System 
Using Preamble-Based Time Domain SNR 
Estimation 

109

Original Scientific Paper

Abstract – This work proposes a time domain signal-to-noise ratio (SNR) estimator for a single input-single output (SISO) 
orthogonal frequency division multiplexing (OFDM) system using a pre-fast Fourier transform (pre-FFT) SNR estimator. The pre-FFT 
SNR estimator requires no additional overhead since it reuses the preamble for synchronization in the OFDM system. In this work, 
a preamble structure proposed by Morelli and Mengali to overcome carrier frequency offset (CFO) due to Doppler effects is utilized. 
The proposed pre-FFT SNR estimator has been employed to estimate SNR for the SISO-OFDM system, and its performance has been 
evaluated against the corresponding frequency domain SNR estimator, also known as a post-FFT SNR estimator. The normalized 
mean square error (NMSE) of the pre-FFT SNR estimator has also been evaluated against the normalized Cramer-Rao bound (NCRB). 
The simulation results show that for the additive white Gaussian noise (AWGN) and Stanford University Interim-5 (SUI-5) channels, the 
pre-FFT SNR estimator exhibits 0.41 dB and 0.66 dB difference between the estimated SNR and the actual SNR, respectively. The NMSE 
of the pre-FFT SNR estimator outperforms the benchmarker post-FFT SNR estimator, which is close to the NCRB. The proposed pre-FFT 
SNR estimator achieved bit error rate (BER) improvements of about 1 dB and 2 dB for AWGN and SUI-5 channels, respectively, over 
the post-FFT SNR estimator at BER= 10−4. Moreover, there is an approximately 50% reduction in complexity between the proposed 
pre-FFT SNR estimator and the benchmarker post-FFT SNR estimator. 
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1.  INTRODUCTION

The most widely used multicarrier modulation tech-
nology underpinning the fifth-generation (5G) mobile 
communications networks is orthogonal frequency divi-
sion multiplexing (OFDM). It offers strong performance 
in frequency-selective channels and facilitates the effec-
tive use of the available channel capacity [1]. Adaptive 
transmission can significantly enhance an OFDM sys-
tem's performance in the presence of a frequency-selec-
tive channel. Due to this, the signal-to-noise ratio (SNR) 
is a critical component of adaptive transmission. The 
SNR value denotes the channel quality, and an adaptive 

modulation and coding (AMC) scheme adapts param-
eters like modulation and coding schemes by the chan-
nel condition [2]. In the AMC scheme, SNR is computed 
at the receiver to assess channel quality, and its value is 
sent back to the transmitter for parameter adjustment 
[3, 4]. This process imposes feedback overhead.

Unmanned aerial vehicle (UAV) communication is 
an application in which where the AMC technique is 
utilized to alleviate problems in dynamically changing 
communication environments. Recent studies on AMC 
for UAV communication have utilized machine learn-
ing methods to assess channel quality for the modu-
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lation and coding scheme parameters selection [5-7]. 
The authors in [7] studied the AMC scheme in a UAV-
to-ground free space optical communication system, 
which employed a machine learning-based channel es-
timator considering turbulence effects. In [8], deep re-
inforcement learning combined with a neural network 
was used to predict channel conditions for underwater 
acoustic OFDM communication systems, resulting in 
an improved bit-error rate (BER) and spectral efficiency. 
However, the proposed machine learning-based AMC 
schemes depend on the quality of the training data, 
such as the estimated SNR and other relevant channel 
atmospheric parameters. Improving SNR estimation 
accuracy would therefore prove advantageous. 

SNR estimation is beneficial in a high-mobility en-
vironment, in which the channel condition is rapidly 
changing, and the Doppler effect is generated. Such 
fluctuations in the time domain require a well-esti-
mated SNR for an adaptive transmission to achieve a 
significant throughput gain, resulting in an improved 
spectrum efficiency [3]. Therefore, a highly accurate 
SNR estimation method should ensure the intended 
level of communication performance by invoking the 
adaptive adjusted communication rate, modulation, 
and coding schemes [9]. However, a complicated SNR 
estimate method could result in feedback delays and 
worsen throughput performance. 

There are two categories of SNR estimation, namely 
data-assisted (DA) and non-data-assisted (NDA) SNR es-
timation. The NDA-SNR estimator overcomes feedback 
overhead issues at the expense of lower accuracy because 
the transmitted signal's past information is not used to 
estimate SNR. This accuracy shortfall can be eliminated 
by employing a DA-SNR estimator, albeit at the expense 
of a throughput penalty, which increases the system's 
overhead. Nonetheless, research on DA-SNR that does 
not result in a throughput penalty has been done, such 
as the preamble-based SNR estimator of [10,11]. Thus, a 
preamble-based SNR estimator is considered in this study.

A preamble-based SNR estimator uses the OFDM sys-
tem's synchronization preamble to estimate SNR. The 
OFDM system is sensitive to timing errors and frequen-
cy offsets, and various preamble structures have been 
proposed to address these limitations [12-15]. The SNR 
estimators proposed in [16-18] consider the carrier 
interference generated by the frequency offset, while 
most of the proposed SNR estimators assume perfect 
frequency synchronization.

Two main issues to be considered in developing SNR 
estimator are: (i) complexity and (ii) throughput penalty. 
There are two factors that can contribute to the compu-
tational complexity of a preamble-based SNR estimator, 
namely the type of SNR estimation domain and algorithm. 
In OFDM systems, SNR estimation is performed either in 
the frequency domain, also known as post-fast Fourier 
transform (FFT) estimation, or in the time domain, known 
as pre-FFT estimation. In the post-FFT estimation, the SNR 
is estimated after the FFT block of the OFDM system. In 

the pre-FFT estimation, SNR is estimated at the front-end 
of the receiver before demodulation of the received data. 
Thus, a pre-FFT estimation has lower complexity than a 
post-FFT estimation. In addition, pre-FFT estimation is less 
prone to carrier offset errors, hence avoiding losses in sub-
carrier orthogonality [19, 20]. On the other hand, some es-
timation algorithms use probabilistic approaches, which 
have higher computational complexity, in contrast to 
autocorrelation-based SNR estimation algorithms [11, 21].

Motivated by the advantages of the preamble-based 
SNR estimation algorithm in [11, 21], this study aims to 
develop an SNR estimator that has low computational 
complexity and low training symbol overhead. More 
specifically, this study developed a pre-FFT SNR estima-
tion algorithm based on autocorrelation of the received 
signal at the receiver front-end and utilizing one pream-
ble. However, the SNR estimation algorithm developed 
in [11, 21] used synchronization preamble structure in 
[14], which does not consider carrier frequency offset 
(CFO) in the algorithm. Therefore, this paper investigates 
an SNR estimation algorithm with a frequency offset. 
The proposed pre-FFT SNR estimator exploits the pre-
amble structure of [12], where SNR is estimated using 
the autocorrelation function, and its algorithm utilizes 
one synchronization preamble. The performance of the 
proposed pre-FFT SNR estimator is contrasted with the 
benchmarker post-FFT SNR estimator of [16], which uti-
lizes the second-order moment criterion for SNR estima-
tion. The benchmark SNR estimator is referred to as the 
Millan post-FFT SNR estimator. The SNR estimator per-
formance has also been evaluated against the normal-
ized Cramer-Rao bound (NCRB) to assess how well the 
developed pre-FFT SNR estimator could approach the 
theoretically best achievable performance, thus ensur-
ing system efficiency is not compromised.

The contributions of this paper are as follows:

1. A pre-FFT SNR estimator that utilizes the preamble 
structure for synchronization in the OFDM system 
of [12] is contrived. Hence, there is no throughput 
penalty associated with the proposed SNR estimate. 
Moreover, this SNR estimator utilizes one preamble 
that reduces the training symbol overhead.

2. The proposed SNR estimation algorithm has low 
computational complexity for two reasons: (i) the 
SNR estimation is done at the front end of the re-
ceiver, prior to the demodulation; and (ii) it is de-
rived from the autocorrelation function. 

The remainder of the paper is structured as follows: 
The review of the related work is presented in Section 2. 
Section 3 discusses the description of the single-input 
single-output (SISO)-OFDM system that incorporates 
the proposed pre-FFT SNR estimator. Section 4 elabo-
rates on both the proposed pre-FFT SNR estimator and 
Milan’s post-FFT SNR estimator benchmark. Section 5 
compares the performance of the proposed pre-FFT 
SNR estimator with that of Milan post-FFT SNR estima-
tor and the NCRB to assess how well the proposed SNR 
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estimator can come close to the theoretical best per-
formance. This section also presents the computational 
complexity analysis of various preamble-based SNR es-
timators. Finally, Section 6 offers conclusions.

2. RELATED WORK

Many preamble-based SNR estimation methods 
have been developed over the years. The application 
of machine learning to the SNR estimate algorithm 
has garnered more attention lately [22, 23]. In [22], a 
deep-learning-based SNR estimator was reported that 
provided accurate estimation and improved the sys-
tem performance at the expense of computational 
complexity both during training and inference. Super-
vised learning requires a sufficient set of training data, 
including SNR values [23], for a reliable model.

Table 1 provides an overview of previous studies 
on preamble-based SNR estimators in OFDM systems. 
These SNR estimators took advantage of various syn-
chronization preamble structures. 

SNR is an important parameter that reflects channel 
quality. Accurate SNR estimation plays a crucial role 

in ensuring a desired communication performance in 
a rapidly changing environment, such as in UAV com-
munication systems. As discussed in Section 1, the ben-
efits of a preamble-based SNR estimator are two-fold: 
(i) It is a DA-SNR estimator that has higher estimation 
accuracy, and (ii) it utilizes synchronization preamble, 
which eliminates throughput penalty. However, it is 
also favorable to ensure that the SNR estimation algo-
rithm has low computational complexity. Therefore, 
per Table 1, the pre-FFT SNR estimation algorithms in 
[11, 19, 21, 24, 25, 28] are less complex since SNR is es-
timated at the receiver's front-end prior to demodula-
tion of received data. 

Table 1 also shows that the computational com-
plexity of a preamble-based SNR estimator is highly 
dependent on the estimation algorithm, which uses 
maximum likelihood, second-order moment criteria, 
correlation, circular correlation, and autocorrelation 
function. For example, compared to the SNR estima-
tor based on autocorrelation, second-order moment, 
which uses probabilistic approaches, has higher com-
putational costs since it includes more multiplication 
and addition operations. 

Table 1. Summary of preamble-based SNR estimations in the literature

Year Author(s) SNR Estimation 
Domain

SNR estimation 
algorithm Contribution Challenges

2009 Zivkovic, M. & 
Mathar, R. [16] Post-FFT Second-order 

moment 

•	Proposed SNR estimator that exploited preamble structure 
in [12]. 
•	It used only one preamble to minimize the transmission 
overhead

•	Showed poor normalized 
mean square error (NMSE) 
performance in the low 
region of channel SNR

2010 Zivkovic, M. & 
Mathar, R. [17] Post-FFT Second-order 

moment

•	Extension of SNR estimator in [16].
•	Improved SNR estimation for all SNRs
•	Utilized the method for adaptive selection of significant 
channel impulse response

•	Post-FFT estimator 
performance degraded 
in the presence of inter-
carrier interference
•	High complexity

2014 Ijaz, A. et all. 
[24] Pre-FFT Correlation

•	Low complexity time domain SNR estimation is proposed for 
the OFDM system
•	It used one synchronization preamble proposed by Schmidl 
and Cox [13]

•	Poor performance at low 
SNR

2014 Zivkovic, M. & 
Mathar, M. [25] Pre-FFT Second-order 

moment

•	Improved Zadoff-Chu Preamble-based SNR estimation in the 
time domain is proposed for the OFDM system. Improved SNR 
estimation compared to [16, 17] using one preamble with Q 
> 2  equal parts
•	Results are robust if Q > 8

•	High complexity

2016 Ishtiaq, N. et 
al [26] Post-FFT Maximum 

likelihood

•	Data-aided SNR estimation is done in the frequency domain 
using maximum likelihood
•	Use one preamble of [13] with known pilot value insertion
•	The accuracy of the estimates shows improvement in the 
lower region

•	Higher bandwidth 
utilization and higher 
complexity

2018 Aloui, A.  et al. 
[27] Post-FFT

Expectation 
statistical 
method

•	SNR estimation is proposed for IEEE 802.15.4g OFDM
•	Use two preambles, one for synchronization and one for SNR 
estimation, as proposed by Schmidl and Cox [13]

•	In lower SNR values, the 
estimates show a higher 
bias than the actual SNR
•	High complexity.

2018 Abid, M.K. et 
al. [28] Pre-FFT Circular 

correlation

•	Pilot data-aided time domain SNR estimation is proposed for 
the OFDM system
•	Known pilot values inserted in the preamble signal

•	Complexity is higher to 
achieve accurate SNR 
estimates

2018
Manzoor, S. 

& Othman, N, 
[21]

Pre-FFT Autocorrelation
•	The time synchronization preamble of [14] is used for time 
domain SNR estimation in cooperative systems.
•	Enhanced performance at low SNR region

•	Did not consider CFO

2020 Rao, B.N. et al. 
[19] Pre-FFT Second order 

moment

•	Preamble-based noise power estimation for the OFDM system 
is proposed
•	Time domain SNR estimation is less prone to frequency offset
•	Use one preamble having a preamble structure of [12]

•	Did not consider CFO
•	Poor NMSE performance 
at low SNR region

2022
Manzoor, S. 

& Othman, N, 
[11]

Pre-FFT Autocorrelation

•	Utilized a modified synchronization preamble from [14]
•	Enhanced perfromance at low region as compared with the 
SNR estimator in [21]
•	Improved system performance with SNR estimation-based 
adaptive modulation scheme

•	Did not consider CFO
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In [12], Morelli and Mengali proposed a preamble struc-
ture for an algorithm to estimate frequency offset in an 
OFDM system with a reduction of training symbol over-
head by employing a single preamble. Thus, the authors 
in [16] exploited the beneficial feature of this preamble 
structure in the proposed post-FFT SNR estimator. The 
post-FFT SNR estimator exploited the periodic nature 
of the preamble structure and used only one preamble, 
therefore minimizing the transmission overhead. The SNR 
estimation algorithm was derived using the second-order 
moment algorithm. However, the SNR estimator in [16] 
showed poor normalized mean squared error (NMSE) per-
formance in the low region of channel SNR. The post-FFT 
SNR estimation algorithm was further improved by utiliz-
ing the method for adaptive selection of significant chan-
nel impulse response, which resulted in an improved SNR 
estimation for all SNRs, as presented in [17]. Similarly, a low 
complexity pre-FFT SNR estimator proposed in [24] also 
struggled with accuracy in the low region of channel SNR.

As a further enhancement, the authors in [26] pro-
posed a post-FFT SNR estimation using a maximum 
likelihood approach, which improved channel SNR in 
the low region. However, the performance of the post-
FFT SNR estimator degraded in an imperfectly syn-
chronized system due to inter-carrier interference (ICI) 
caused by carrier frequency offset [25].

The preamble structure from [14] was utilized by the 
authors in [21] to construct an SNR estimator invoked in 
a cooperative SISO-OFDM system. In [11], the proposed 
adaptive modulation with SNR estimator utilized the 
modified OFDM synchronization preamble structure de-
veloped in [14]. Both SNR estimators are categorized as 
pre-FFT SNR estimators, in which the SNR is estimated 
in the time domain, and the SNR estimation algorithm 
utilizes autocorrelation. Thus, the SNR estimators devel-
oped in [11, 21] are attractive due to these two criteria, 
which result in low computational complexity. 

Fig. 1. SISO-OFDM system block diagram

3. SYSTEM DESCRIPTION

This paper considers a SISO-OFDM system that in-
vokes the pre-FFT SNR estimator, as shown in Fig. 1. At 
the receiver, SNR estimation is performed before FFT 
processing.

The input data is mapped into symbols using quadra-
ture phase shift keying (QPSK) which are then convert-
ed from serial-to-parallel stream. Next, the symbols 
are transformed into time domain symbols using the 
inverse fast Fourier transform (IFFT). More specifically, 
at the transmitter, the time domain OFDM signal after 
applying IFFT is given as:

(1)

where N is the size of IFFT, X(k) represents the QPSK 
constellation point modulated data on the kth subcar-
rier, while in the time domain, x(n) denotes the nth data 
sample.

(2)

where w(n) is the noise signal at the receiver antenna, 
and ε is the CFO normalized to the subcarrier spacing. 
The SNR estimation is performed on the CFO compen-
sated received signal before FFT processing.

4. PROPOSED PRE-FFT SNR ESTIMATION

As discussed in Section 1, the proposed pre-FFT SNR 
estimator performs SNR estimation in the time domain. 
It utilizes the preamble structure that was proposed in 
[12], which comprised of one OFDM symbol with Q 
equal sections that are all having N/Q length, where 
N is the IFFT size and Q>2. Fig. 2 shows the pream-

A cyclic prefix, CP is inserted into each QPSK symbol 
as the guard interval to avoid inter-symbol interfer-
ence to form an OFDM symbol. Then, the OFDM signal 
is transmitted to the receiver via a wireless channel.

The OFDM signal at the input of the receiver in the 
presence of the CFO can be described as follows:
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ble, which has a repetitive structure is utilized, where 
PN represents the pseudo-noise sequence, Q=4 and     
N=256 bits. The same preamble is also used for syn-
chronization in the OFDM system. Thus, its use in SNR 
estimation does not penalize the system throughput. 
For benchmarking, the proposed pre-FFT SNR estima-
tor's performance is evaluated against the Milan post-
FFT SNR estimator [16]. Both estimators use the same 
preamble structure as shown in Fig. 3, with Q=4, N=256 
bits and CP=64 bits for the SNR estimation algorithm.

Fig. 2. Morrelli synchronization  
preamble structure [12]

Fig. 3. Morrelli synchronization preamble structure 
with cyclic prefix

The Morelli and Mengali preamble structure in [12] has a 
periodic structure in the time domain, which corresponds 
to a comb-type structure in the frequency domain. Thus, 
for the SNR estimation algorithm in [16], the total number 
of N subcarriers are divided into Q parts. Each part con-
sists of Np=N/Q subcarriers. In each part, starting from the 
zeroth, every Q-th subcarrier was modulated with a QPSK 
signal, XP (n) for n=0,…,(Np-1), while the remainder of the 
subcarriers are not used (null). The same Morelli preamble 
structure and the modulation technique are utilized in the 
proposed pre-FFT SNR estimator.

The SNR estimation algorithm of the proposed pre-FFT 
SNR estimator utilizes the autocorrelation function of the 
received signal of Eq. 2 to estimate the signal and noise 
power. The autocorrelation of the received signal with ad-
ditional noise from the channel, rrx (t), can be written as:

(3)

where rtx (t) denotes the autocorrelation of the trans-
mitted OFDM signal. For the noise signal's autocorrela-
tion, rnw (t) for the AWGN channel with the noise vari-
ance of σ2, can be expressed as follows:

(4)

where δ(t) is Dirac delta function. Similarly, the trans-
mitted OFDM signal's autocorrelation can be written 
as rtx(t)=Ptx δ(t), where Ptx is the signal power. Hence, 
at zeroth lag, the received OFDM signal's autocorrela-

(a)

(b)
Fig. 4. Autocorrelation illustration at SNR=10 dB  

(a) The transmitted OFDM signal (Transmitted 
Signal Autocorrelation at SNR = 10 dB).  

(b) The corresponding received OFDM signal 
(Received Signal Autocorrelation at SNR = 10 dB).

Fig. 4 shows the autocorrelation plot of the transmit-
ted and the received OFDM signals at 10 dB channel 
SNR. In Fig. 4, the X-axis represents the lag between 
the signal and its shifted version, while the Y-axis rep-
resents the autocorrelation values at each lag. There is 
one prominent peak at LT, and there are four side peaks 
on its right and left sides. The four side peaks on the left 
side appeared at specific lags of (LT-NT), (LT- (3/4) NT), 
(LT- (1/2) NT) and (LT- (1/4) NT).

Fig. 5 illustrates the autocorrelation stages resulting 
in the plot in Fig. 4. As a result, the estimation of signal 
power can be written as:

(5)

where NT is the OFDM signal length and LT= NT + CP is 
the total length, which includes CP = LT-NT. 

Having the estimated signal power defined by Eq. 5, 
the noise power can be estimated as:

(6)

where rrx (LT) is the maximum peak indicating the re-
ceived OFDM signal's autocorrelation value at zeroth-
lag. Therefore, the estimated SNR can be calculated by 
utilizing Eq. 5 and Eq. 6, which can be written as:

(7)

tion consists of both the signal and noise power. On the 
other hand, the transmitted OFDM signal's autocorrela-
tion consists of signal power only. Thus, the difference 
between the received OFDM signal's autocorrelation 
value at zeroth lag and the estimated signal power can 
be used to estimate noise power.
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Fig. 5. The transmitted OFDM signal's autocorrelation 
function, which includes the cyclic prefix

4.1. POST-FFT SNR ESTIMATION 
 BENChMARKER

Milan's post-FFT SNR estimator benchmarker of [16] 
is used for comparison with the proposed pre-FFT SNR 
estimator. More specifically, the SNR estimation in the 
benchmarker SNR estimator is performed in the fre-
quency domain after FFT processing. For a fair compari-
son, both the proposed pre-FFT SNR estimator and the 
benchmarker SNR estimator utilize the Morelli and Men-
gali preamble structure of [12], as shown in Fig. 2, which 
consists of Q parts, each containing NP=N/Q samples.

Similarly, the same OFDM modulation method is 
used for both the proposed pre-FFT SNR estimator and 
the benchmarker SNR estimator, where the QPSK sig-
nal, XP (m) for m=0,…,(Np-1) is loaded in every Q-th sub-
carrier. The remainder (N-Np) of the subcarriers are not 
used (nulled). Therefore, the transmitted signal on the 
kth subcarrier can be expressed as [16]:

where k=mQ+q, with m=0,…,(Np-1) and q=0,⋯,(Q-1). 
Hence, the index of the loaded subcarriers is k=mQ, 
with m=0,…,(Np-1) and q=0.

Milan’s post-FFT SNR estimation algorithm was de-
veloped based on the second-order moment of the 
demodulated OFDM signal to estimate the SNR at the 
receiver. After the CFO compensation, the received sig-
nal on the loaded subcarrier can be expressed as [16]:

(9)

where SQ is the total transmit power and HP (m) is the 
channel response on the loaded subcarriers. W is the 
noise power on each subcarrier, and σ(m) is the corre-
sponding sampled zero-mean AWGN with unit variance.

The received signal on the nulled subcarriers consists 
of only noise signal and is given as [16]:

(10)

where q=1,…,(Q-1).

The second-order moment is applied to the received 
signal, Y(mQ) on the loaded subcarriers as shown in Eq. 
10, using expressions of [16]:

(11)

Similarly, the received noise power from the nulled 
subcarrier is given as [16]:

(12)

Thus, the SNR estimation can be determined using 
the following equation:

(13)

5. RESULTS AND DISCUSSION

In this section, the performance of the proposed pre-
FFT SNR estimator is characterized when it is invoked 
in the SISO-OFDM system, as described in Section 3. 
The comparison performance of the proposed pre-FFT 
SNR estimator is also investigated against the post-FFT 
SNR estimator benchmarker using estimated SNR, BER, 
NMSE, and computational complexity. Table 2 displays 
the simulation settings for the SISO-OFDM system, 
which were selected from the IEEE802.16d standard [29]. 

Parameters Value

IFFTLength, Nifft 256

SamplingFrequency, Fs 20 MHz

SubCarSpacing, Δf=Fs/N 1×105

SymbolTime, Tsy=1/Δf 1×10-5

GuardInterval, Tgi=Gi×Tsy 2.5×10-6

OFDMSymb-time ,Ts=Tsy+Tgi 1.25×10-5

ChannelUsed AWGN, SUI-5(8)

Table. 2. IEEE802.16d Standard Parameters 
for OFDM [29]
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As discussed in Section 4, the preamble structure 
with Q=4, N=256 bits and CP length of N/4=64 bits 
are utilized in this work. Thus, the total frame length 
is LT=N+CP=320 bits. The simulation results consider 
the advocated scheme when communicating over the 
AWGN and SUI-5 channels. The SUI-5 channel param-
eters used in this study are shown in Table 3, indicating 
the multipath delay and power profile. The SUI chan-
nels are designed to model three outdoor-terrain cat-
egories, as shown in Table 3, and have been adopted by 
IEEE802.16d standard [30]. Table 4 also shows that the 
SUI-5 channel models type A terrain, which deals with 
huge path loss and it is most suited for hilly terrain with 
high densities of foliage. The estimated SNR is obtained 
for both the SNR estimators, and estimates of SNR are 
obtained by averaging over Mt=2000 iterations.

Table. 3. Channel Description of SUI-5 Wireless 
Channel [30]

SUI5 channel Path 1 Path 2 Path 3 Unit
PathDelay 0 4 10 μsec
PathPower 0 -11 -22 dB

KFactor 2 0  0 –

Table. 4. Types of Terrain Corresponding to SUI 
Channels [30]

TerrainTypes SUIChannels
C SUI-1, SUI-2

B SUI-3, SUI-4

A SUI-5, SUI-6

Fig. 6 shows the estimated SNR performance of the 
proposed pre-FFT SNR estimator and the correspond-
ing benchmarker post-FFT SNR estimator for transmis-
sion over the AWGN channel.  The proposed pre-FFT 
estimator is further compared against the preamble-
based pre-FFT estimators proposed in [11]. More spe-
cifically, in [11], the preamble pre-FFT estimators ex-
ploit the synchronization preamble structure proposed 
in [14], referred to as the CAZAC pre-FFT SNR estimator.

Fig. 6. Performance of the pre-FFT SNR estimator 
invoked in QPSK-SISO-OFDM system for transmission 

over AWGN channel in terms of estimated SNR

The close-up of Fig. 6 is shown in Fig. 7, where it can 
be observed that the proposed pre-FFT SNR estimator 
exhibited 0.41 dB difference from the actual SNR, which 
is referred to as bias. The benchmarker Milan post-FFT 
SNR estimator exhibited bias of 0.454 dB. On the other 
hand, the CAZAC pre-FFT SNR estimator exhibited bias 
of approximately 0.419 dB. The SNR estimation perfor-
mance was estimated with the presence of CFO.

Fig. 7. Close-up of Fig. 6

Fig. 8 shows the estimated SNR performance of the 
proposed pre-FFT SNR estimator when communicating 
over the SUI-5 channel. The close-up of Fig. 8 is shown 
in Fig. 9, and it can be observed that the proposed 
pre-FFT SNR estimator exhibited a 0.66 dB difference 
between the estimated SNR and the actual SNR. The 
benchmarker Milan post-FFT SNR estimator exhibited 
0.72 dB bias. Hence, the proposed pre-FFT SNR esti-
mator outperformed its corresponding benchmarker. 
The CAZAC pre-FFT SNR estimator of [11] was outper-
formed by exhibiting a 0.663 dB difference between 
the estimated and actual SNR values.

Fig. 8. Performance of the proposed pre-FFT SNR 
estimator invoked in the QPSK-SISO-OFDM system 
for transmission over the SUI-5 channel in terms of 

estimated SNR
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Fig. 9. Close-up of Fig. 8

In both cases, the preamble-based pre-FFT SNR estima-
tors demonstrated better SNR estimation than the Milan 
post-FFT SNR estimator. Thus, the pre-FFT SNR estimators 
exhibit beneficial performance for dynamic environments 
in the presence of the CFO due to Doppler effects, such 
as in UAV or vehicular communication systems [18]. Thus, 
employing such an SNR estimator is beneficial for apply-
ing AMC to maximize throughput performance in the 
dynamic fading of wireless channels. Moreover, the pro-
posed pre-FFT SNR estimator performed better in terms 
of SNR estimation under the CFO scenario.

Fig. 10 shows the average difference between the es-
timated SNR and the actual SNR, which is referred to 
as bias. It is observed that the average bias of the pre-
FFT SNR estimator exhibits better performance in the 
region of low values of the actual SNR for transmission 
over the SUI-5 channel than that of its corresponding 
benchmarker post-FFT SNR estimator.

Fig. 10. Estimated SNR bias versus actual SNR 
performance

The pre-FFT SNR estimator performance has also been 
evaluated in terms of NMSE. Hence, the NMSE perfor-
mance is quantified using Eq. 14, where SNRact denotes 
the average value of the actual SNR, while SNREst for the 
proposed pre-FFT SNR and the benchmarker post-FFT 
SNR estimators can be calculated using Eq. 7 and Eq. 13, 
respectively:

(14)

The performance of the proposed SNR estimator is 
evaluated against the NCRB for frequency selective 
channel to assess how effectively the proposed SNR 
estimator performance approaches the theoretical op-
timum. The CRB was derived in [31] as follows:

(15)

where N=256 bits is the preamble length, Q=4 is the 
number of preamble parts, as discussed in Section 4. 

The variance of CRB can be found by taking the 
inverse of the Fisher information matrix (FIM) [31]. 
Hence, the NCRB can be obtained by dividing Eq. 15 by 
(SNRact)

2 and written as follows:

(16)

where SNREst for the proposed pre-FFT SNR and the 
benchmarker post-FFT SNR estimators can be calcu-
lated using Eq. 7 and Eq. 13, respectively. 

Figs. 11 and 12 illustrate the NMSE comparison per-
formance of the proposed pre-FFT SNR estimator and 
the benchmark post-FFT SNR estimator for AWGN and 
SUI-5 channels, respectively. The pre-FFT SNR estimator 
outperforms its benchmarker post-FFT SNR estimator, 
as seen in Fig. 11. In the region of high values of an ac-
tual SNR of more than 6 dB, the NMSE performance of 
the pre-FFT SNR estimator improves with an increase in 
actual SNR for the AWGN channel. On the other hand, 
the NMSE performance of the benchmarker post-FFT 
SNR estimator shows no further improvement in the 
region of actual SNR of more than 12 dB. It can also be 
seen that the NMSE performance of the proposed pre-
FFT SNR approaches the NCRB and outperforms the 
considered post-FFT SNR estimator. 

Fig. 11. Comparison of NMSE performance of the 
pre-FFT SNR estimator and that of its corresponding 
benchmarker for transmission over AWGN channel
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Similarly, for transmission over SUI-5 channel, there is 
no more NMSE improvement in the region of high val-
ues of actual SNR of more than 16 dB for post-FFT SNR 
estimator, as shown in Fig. 12. The NMSE performance 
of the proposed pre-FFT SNR outperforms the post-FFT 
SNR estimator at all regions of SNR. It is observed that 
the pre-FFT SNR NMSE performance approaches the 
NCRB. In both cases, the preamble-based pre-FFT SNR 
estimators demonstrated similar NMSE performance 
with the CAZAC pre-FFT SNR estimator. This obser-
vation aligns with the SNR estimated performances 
shown in Fig. 7 and Fig. 9.

Fig. 12. Comparison of NMSE performance of the 
pre-FFT SNR estimator and that of its corresponding 

benchmarker for transmission over the SUI-5 channel

Fig. 13 and Fig. 14 compare the BER performance of 
the proposed pre-FFT SNR estimator and that of its cor-
responding post-FFT SNR estimator benchmark for the 
AWGN and SUI-5 channels, respectively. From Fig. 13, 
the QPSK-SISO-OFDM scheme that invokes the pre-FFT 
SNR estimator outperforms the benchmark scheme with 
post-FFT SNR estimator by about 1.0 dB at BER=10-4. 
Similarly, it can be seen in Fig. 14 that the pre-FFT SNR es-
timator outperforms the post-FFT SNR estimator bench-
mark scheme by about 2.0 dB at BER=10-4.

Fig. 13. Performance of the QPSK-SISO-OFDM 
system for transmission over AWGN channel in 

terms of BER

Fig. 14. Performance of the QPSK-SISO-OFDM 
system for transmission over the SUI-5 channel in 

terms of BER

The simulation results show that the SNR estimation 
in time domain is less prone to CFO error than the SNR 
estimation in frequency domain.

5.1. COMPLExITY ANALYSIS

The floating point operations per second (FLOP) 
complexity metric is used to assess the complexity of 
the pre-FFT SNR estimate. Table 5 depicts the complex-
ity comparison. Generally, FLOPs refer to the number of 
computations needed for a single SNR estimate.

Table. 5. Complexity Analysis

SNR Estimator SNR estimation 
algorithm

SNR Estimation 
Domain FLOPs

PTD [28] Circular 
correlation Pre-FFT 2NP (QP)+3NP+L

TLSE [24] Second order 
moment Pre-FFT 5N

TPSE [20] Second order 
moment Pre-FFT 7.5N+4

TDZCE [25] Second order 
moment Pre-FFT 4N+2

Milan [16] Second order 
moment Post-FFT 4N+2

Proposed Autocorrelation Pre-FFT 2N-1

The pre-FFT SNR estimator proposed in this study 
is based on the autocorrelation of the received signal 
in the time domain. As explained in Section 4, the sig-
nal power and noise power are estimated using Eq. 5 
and Eq. 6, respectively. Generally, the autocorrelation 
function calculates the product of the received signal 
and its lagged version at each time step and then sums 
these products for all time steps within the overlapping 
range. Moreover, the autocorrelation function is com-
puted at zeroth lag; the computational complexity is 
only based on the multiplications of N bits and (N −1) 
additions. Hence, the pre-FFT SNR estimator required 
(N+N-1= 2N–1) FLOPs for one SNR estimation. 

The complexity of the proposed pre-FFT SNR esti-
mator is compared with SNR estimators developed in 



previous studies as [16], [20] [24, 25], [28]. According to 
[28], the pilot-based time domain SNR estimator (PTD) 
requires (2NP(Q)+3NP+LP) FLOPs, and the complexity 
relies on the number of pilot subcarriers NP = N/Q., and 
LP channel taps, in which Q represents the number of 
preamble parts, as discussed in Section 4.

The time domain low complexity SNR estimator 
(TLSE) was investigated in [24]. This requires 5N FLOPs 
and depends on the number of periodic parts Q. The 
authors in [20] introduced the time domain preamble-
based SNR estimator (TPSE), which requires (7.5N + 4) 
FLOPs to perform estimation of one SNR estimate. Time 
domain Zadoff-Chu preamble-based SNR estimator 
(TDZCE) presented in [25], needs (4N + 2) FLOPs. The 
Milan SNR estimator [16], presented in Section 4.1, in-
volves (4N + 2) FLOPs to compute one SNR estimate. 

Therefore, Table 5 shows that the proposed SNR es-
timator has the lowest complexity for estimating SNR. 
It can also be observed that the benchmarker post-FFT 
Milan SNR estimator requires (4N + 2) FLOPs, in com-
parison with the proposed pre-FFT SNR estimator, 
which allows a 50% reduction in FLOPs. 

6. CONCLUSION

This work presents a pre-FFT SNR estimator that utilizes 
preamble structure for synchronization in OFDM system 
in [12]. The performance comparison between the pro-
posed pre-FFT SNR estimator and Milan post-FFT SNR es-
timator is presented, in which both SNR estimators utilize 
the same preamble structure. On the other hand, the au-
to-correlation function is the basis for the pre-FFT SNR es-
timation algorithm. The second-order moment is utilized 
in the post-FFT SNR estimator algorithm, which incurs 
higher computational complexity. The estimated SNR 
using the pre-FFT SNR estimator exhibited 0.41 dB and 
0.66 dB bias when communicating over AWGN and SUI-
5 channels, respectively. The benchmark post-FFT Milan 
SNR estimator exhibited 0.454 dB bias and 0.72 bias over 
AWGN and SUI-5 channels, respectively. Similarly, the pre-
FFT SNR estimator outperformed the benchmarker Milan 
post-FFT SNR estimator in terms of NMSE. More specifical-
ly, the NMSE performance of Milan SNR estimator showed 
no further improvements in the region of actual SNR of 
more than 12 dB and 16 dB for AWGN and SUI-5 chan-
nels, respectively. It was also demonstrated that the NMSE 
performance of the proposed pre-FFT SNR estimator ap-
proached the theoretical limit set by the NCRB. Moreover, 
the NMSE performance of the benchmarker post-FFT 
in comparison to the post-FFT Milan SNR estimator, the 
proposed pre-FFT SNR estimator achieved BER improve-
ments of about 1 dB and 2 dB, respectively, at BER=10-4 
for transmission over AWGN and SUI-5 channels. There is 
about a 50% reduction in complexity between the pro-
posed pre-FFT SNR estimator and the benchmarker post-
FFT SNR estimator. Further studies should consider the 
development of a preamble-based SNR estimator for UAV 
communication, which considers the Doppler effect due 
to the flight speed. OFDM technology can successfully 

be leveraged into UAV communication. However, knowl-
edge of exact UAV communication channels is required. 
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