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Abstract – Identifying drug-target binding affinities (DTBA) is crucial in drug discovery, to understand how effectively drugs interact 
with their targets. However, traditional methods often struggle to accurately capture the complex relationships in biological data, 
leading to limitations in their predictive power. This paper introduces FusionNet, an advanced deep-learning model designed to improve 
DTBA prediction. FusionNet combines the strengths of Convolutional Neural Networks (CNNs), Long Short-Term Memory networks 
(LSTMs), and Transformers, to better understand both short-range and long-range interactions in biological sequences and employs 
the Layer-wise Adaptive Moments (LAMB) optimizer, which ensures the model is more efficient and stable, especially when working with 
large datasets. FusionNet achieved an MSE of 0.20 and an rm² of 0.681 on the Davis dataset and an MSE of 0.18 and an rm² of 0.71 on 
the KIBA dataset, significantly outperforming existing models like SimBoost, GANsDTA, DeepCDA, and DeepDTA, making it a powerful 
tool for drug discovery and bioinformatics. This work not only enhances the accuracy of DTBA prediction but also sets new performance 
standards by integrating advanced neural network architectures and optimizing their training process. FusionNet effectively addresses 
the limitations of previous approaches, offering a more reliable and efficient method for predicting drug-target interactions.
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1.  INTRODUCTION

Drug discovery and development is a complex, 
lengthy, and expensive process, often requiring over a 
decade and billions of dollars to bring a new drug to 
market. A critical aspect of this process is understand-
ing the interaction between drug molecules and their 
target proteins, quantified by the drug-target binding 
affinity (DTBA). Accurate prediction of DTBA is essen-
tial for determining the efficacy and safety of potential 
therapeutics. Traditional experimental methods such 
as X-ray crystallography, nuclear magnetic resonance 
(NMR) spectroscopy, surface plasmon resonance (SPR), 
and isothermal titration calorimetry (ITC) are critical for 
understanding drug-target interactions at the molecu-
lar level [1]. However, these methods are labor-inten-
sive, time-consuming, and expensive, often limiting 
their scalability and practical application in early-stage 
drug discovery. For example, X-ray crystallography, 

while highly precise, can take several months to years 
for data collection and structural determination, mak-
ing it impractical for high-throughput screening [2]. 
Similarly, NMR spectroscopy requires a high concentra-
tion of samples and extensive computational resourc-
es, limiting its efficiency [3]. Consequently, there is a 
significant demand for computational methods that 
can predict DTBA accurately, efficiently, and at scale.

Recent advances in computational power and the 
availability of large-scale biochemical datasets have 
catalyzed the development of various computational 
approaches for DTBA prediction. These methods range 
from classical machine learning techniques to more 
sophisticated deep learning models. Traditional ma-
chine learning models, such as random forests and 
support vector machines (SVMs), have been widely 
used in drug-target binding affinity prediction due to 
their simplicity and interpretability [4]. However, these 
models typically rely on manually engineered features, 
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such as molecular fingerprints and physicochemical 
descriptors, which fail to capture the complex, non-
linear relationships inherent in biological data. This 
reliance on handcrafted features restricts the models' 
generalization ability to unseen data, reducing predic-
tion accuracy and reliability [5]. Additionally, SVMs and 
other classical models are computationally inefficient 
when dealing with high-dimensional, large-scale data-
sets, limiting their effectiveness in practical, large-scale 
drug discovery applications [6]. In contrast, deep learn-
ing models can learn feature representations directly 
from raw data, showing promise in overcoming these 
limitations. Convolutional Neural Networks (CNNs) and 
Long Short-Term Memory networks (LSTMs) have been 
particularly effective due to their ability to model spa-
tial and sequential data, respectively. [7]

Although CNNs and LSTMs have achieved great suc-
cess in DIBA prediction, there are still some significant 
challenges. CNNs excel at capturing local spatial pat-
terns but struggle to model long-distance dependen-
cies, which are critical for understanding interactions 
between distant residues or a drug and its binding site 
on a protein. LSTMs, targeted at sequential data pro-
cessing, can partially capture sequential dependencies. 
However, they may run into difficulties such as vanish-
ing gradients and computational inefficiency when 
dealing with lengthy sequences, resulting in their mod-
el for the full complexity of drug-target interactions. [8]

Moreover, both CNNs and LSTMs fall short of effec-
tively leveraging contextual information, which is es-
sential for accurately modeling biological sequences. 
For instance, the interaction between a drug and a 
protein is influenced by the broader context of the 
protein’s structure and the physicochemical properties 
of the drug, which these models struggle to capture 
comprehensively. This limitation hinders their ability 
to provide accurate and reliable DTBA predictions An-
other limitation lies in the optimization of deep learn-
ing models. Standard optimizers, such as stochastic 
gradient descent (SGD) and Adam, may not be efficient 
enough to train large models on complex datasets, 
leading to suboptimal performance and longer train-
ing times, particularly when processing large bioinfor-
matics datasets [9].

To address these challenges, we propose a hybrid 
deep learning model that integrates CNNs, LSTMs, and 
Transformers to improve DTBA prediction. The model 
leverages CNNs for local feature extraction, LSTMs for 
capturing sequential dependencies, and Transformers 
for modeling long-range dependencies and contextual 
information via self-attention [10]. This combination 
provides a comprehensive representation of sequenc-
es, enhancing accuracy and reliability. CNNs extract key 
patterns, LSTMs maintain temporal order, and Trans-
formers capture broader interactions between drug 
and protein sequences.

To further enhance the training efficiency and per-
formance of the hybrid model, the Layer-wise Adap-

tive Moments (LAMB) optimizer is employed. LAMB is 
specifically designed for large-batch training, making 
it well-suited for deep learning models on large datas-
ets. It adapts the learning rate for each layer individu-
ally, ensuring stable and efficient convergence, and 
addressing the shortcomings of traditional optimizers 
in training large models efficiently, which is particularly 
beneficial in the context of our complex hybrid model.

The contributions are:

•	 A novel hybrid model combining CNNs, LSTMs, 
and Transformers to improve DTBA prediction by 
addressing key limitations of existing methods

•	 Implementation of the LAMB optimizer to enhance 
training efficiency and performance.

•	 Extensive experiments demonstrating the superi-
ority of the model over traditional approaches.

2. RELATED WORKS

Deep learning has become a powerful tool for pre-
dicting drug-target binding affinity (DTBA). Öztürk et 
al. introduced DeepDTA, a model that uses CNNs to 
analyze sequence information from both targets and 
drugs, achieving high accuracy in predicting binding 
affinities [11]. Feng et al. developed PADME, which con-
sistently outperformed baseline methods across mul-
tiple datasets using a deep learning-based framework 
[12]. Furthering this, Öztürk et al. introduced WideDTA, 
combining chemical and biological textual sequence 
information to enhance binding affinity predictions 
[13]. Zeng et al. improved upon these approaches by 
integrating multiple attention blocks, effectively en-
coding correlations between atoms and modeling 
drug-target interactions [14]. In other applications, 
Elansary et al. developed a bat-inspired optimizer us-
ing RNNs for predicting anti-viral cure drugs, highlight-
ing the versatility of deep learning in drug discovery 
[15]. Makowski et al. explored machine learning mod-
els for co-optimizing therapeutic antibody affinity and 
specificity, emphasizing their importance in therapeu-
tic development [16].

Hybrid models that integrate CNNs and LSTMs have 
shown significant improvements in drug discovery and 
drug repurposing. These models leverage CNNs' ability 
to capture local features and LSTMs' strengths in mod-
eling sequential dependencies. For example, Yoon et 
al. outperformed traditional models in predicting DNA-
protein binding sites using this hybrid approach [17]. 
In DTBA, hybrid CNN-LSTM models have demonstrated 
remarkable success by extracting key features from 
SMILES representations and protein sequences before 
processing them with LSTMs for accurate affinity pre-
dictions. DeepBind, which also integrates CNNs and 
LSTMs, has been used to predict protein-DNA binding 
affinity with high accuracy.

Transformers have revolutionized sequence model-
ing by effectively capturing long-range dependencies 
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with self-attention mechanisms. In bioinformatics, 
transformers have been applied to tasks like protein 
structure prediction, achieving state-of-the-art results. 
The LAMB optimizer, developed by You et al., enhanc-
es training efficiency and performance in large-batch 
scenarios by adapting learning rates layer-wise, which 
is especially beneficial for models with extensive pa-
rameter spaces [18]. LAMB builds on Adam [19], offer-
ing better generalization and faster convergence. The 
proposed hybrid model, combining CNNs, LSTMs, and 
Transformers with the LAMB optimizer, enhances DTBA 
prediction by leveraging their strengths for improved 
accuracy and generalization.

3. METHODOLOGY

3.1. DATASETS

The study utilizes two well-established datasets for 
predicting drug-target binding affinities: the KIBA da-
taset and the Davis dataset [20]. These datasets provide 

Table 1. The statistics of datasets

Dataset No of drugs No of proteins Known DTI

Davis 68 442 30,056

Kiba 2,116 229 118,254

The KIBA dataset integrates information from multi-
ple sources, including Kinase Inhibitor Bioactivity data, 
to provide a unified measure of drug-target binding af-
finities. It combines data from Ki, Kd, and IC50 measure-
ments, offering a robust and comprehensive resource 
for kinase inhibitor bioactivity.

comprehensive and experimentally validated informa-
tion on drug-target interactions, making them suitable 
benchmarks for evaluating the performance of the pro-
posed hybrid model. These datasets provide compre-
hensive and experimentally validated information on 
drug-target interactions, making them suitable bench-
marks for evaluating the performance of the proposed 
hybrid model.

Fig.1. Proposed Model Structure

Fig. 2. Distribution of binding affinity values in Davis and Kiba dataset

3.2. PROPOSED METHODOLOGY

Predicting drug-target binding affinity (DTBA) is cru-
cial in drug discovery, where the goal is to quantify the 
interaction strength between a drug molecule and a tar-
get protein. The problem can be mathematically stated 
as, given a drug represented by its SMILES (Simplified 
Molecular Input Line Entry System) string, S, and a tar-

get protein represented by its amino acid sequence, P, 
the task is to predict the binding affinity y, which can 
be mathematically represented as 

y = f (S, P) (1)

where f is the predictive model.

The ultimate objective is to optimize the function. 
f (S, P) such that the predicted binding affinity y' close-
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ly approximates the true binding affinity y minimizing 
the mean squared error (MSE) across the dataset.

In the proposed model as in Fig.1, Convolutional 
Neural Networks (CNNs) to extract local features from 
SMILES strings and protein sequences, utilizing mul-
tiple 1D convolutional layers with filter sizes of 4, 6, and 
8, chosen based on empirical testing to capture vari-
ous sequence patterns. Bidirectional Long Short-Term 
Memory (LSTM) networks handle sequential depen-
dencies, with 64 units selected to balance complex-
ity and efficiency. To model long-range dependencies, 
Transformer layers with multi-head self-attention (4 
heads and key dimension of 64) are incorporated, cho-
sen through preliminary experiments to optimize per-
formance while managing computational demands. 
Hyperparameters were tuned using cross-validation 
and grid search, including filter sizes, LSTM dimensions, 
and dropout rates (set at 0.5 to mitigate overfitting). 
The LAMB optimizer was selected for its ability to ad-
just learning rates for each layer adaptively, improving 
training efficiency, particularly with large batch sizes 
(128) and a learning rate chosen to ensure stable and 
rapid convergence. The model was trained for 100 ep-
ochs, with Mean Squared Error (MSE) as the loss func-
tion and evaluation metric to measure the alignment 
between predicted and actual binding affinities.

Mathematically, the convolution operation for each 
filter size i can be expressed as

conv(x)=ReLU(Conv1D(x, filtersi , Kernel_sizei )) (2)

where x represents the input sequence, and filtersi, 
Kernel_sizei  correspond to the filter and kernel size 
for the i-th convolutional layer. Following convolution, 
max-pooling layers are applied to reduce the dimen-
sionality and retain the most significant features, ex-
pressed as

LSTMbi( f )= 
Concat( LSTMforward ( f ), LSTMbackward ( f ))

(3)MaxPooli=Maxpooling1D (Convi (x))

The pooled features are then concatenated to form a 
comprehensive feature representation. Subsequently, 
Long Short-Term Memory (LSTM) networks are em-
ployed to capture sequential dependencies in the data. 
The bidirectional LSTM processes the CNN-extracted 
features f by considering both forward and backward 
contexts, which can be mathematically represented as

(4)

Where LSTMforward(f),LSTMbackward(f)  are the LSTM 
operations in the forward and backward directions, re-
spectively. Finally, Transformer layers are incorporated to 
model long-range dependencies more effectively. The 
Transformer utilizes a multi-head self-attention mecha-
nism, which allows the model to assign different weights 
to various parts of the sequences during the interaction 
between SMILES and protein features.

The multi-head self-attention mechanism applies 
multiple attention layers in parallel (in our model, 4 
heads), each learning distinct patterns from the input 

sequences. The attention weights are calculated by tak-
ing the dot product of queries (Q), keys (K), and values 
(V), where Q, K, and V are derived from the input. This 
can be expressed as:

(5)

where dk is the dimension of the keys (set to 64 in our 
model). This mechanism allows the model to focus on 
different parts of the sequences, making it well-suited 
for tasks like DTBA, where interactions between distant 
parts of the sequences are important.

Following the attention mechanism, the outputs are 
passed through a feed-forward neural network, and 
layer normalization is applied. 

The multi-head self-attention applied to the LSTM-
processed features H can be expressed as

Hattn = Multi_Head_Self_Attention (H) (6)

This is followed by a feed-forward network to process 
the attended features.

Hffn=Feed_Forward_Network(Hattn) (7)

The processed features are then combined and nor-
malized to produce the final feature representation for 
the prediction task.

To optimize the model, we employed the LAMB op-
timizer (Layer-wise Adaptive Moments based on Batch 
size), which is particularly effective in handling large 
batch sizes. Unlike traditional optimizers, LAMB adjusts 
the learning rate for each layer individually, taking into 
account both the gradient magnitude and the layer's 
weight norm. This enables the model to maintain sta-
ble training dynamics, especially in deep networks, 
while benefiting from faster convergence. The LAMB 
optimizer's advantages over traditional optimizers like 
Adam include improved scalability with large batch 
sizes (128 in our model) and more efficient training in 
deep architectures. The learning rate was carefully se-
lected to ensure stable and rapid convergence, while 
a dropout rate of 0.5 was used to mitigate overfitting.

The model was trained for 100 epochs, with Mean 
Squared Error (MSE) as the loss function and evaluation 
metric to measure the alignment between predicted 
and actual binding affinities. The entire workflow is de-
picted in Algorithm 1 and Fig 3.

Algorithm 1 

1. Input: SMILES strings, S Protein sequences P, Labels Y

2. Output: Predicted interaction scores Y'

3. Data Preparation

 3.1. Shuffle the dataset, D containing triplets S, P, Y

 3.2. Split the data into training and test sets: 
train_smiles,test_smiles←S

train_proteins,test_proteins←P
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4. RESULTS AND DISCUSSION

4.1. EVALUATION METRICS

The performance of the model is evaluated using 
metrics such as accuracy, Mean Squared Error (MSE), 
Root Mean Squared Error (RMSE), R-squared (R2), Area 
Under the Precision-Recall Curve (AUPR), and Concor-
dance Index (CI). These metrics provide a comprehen-
sive assessment of the model’s ability to predict drug-
target binding affinities accurately.

Mean Squared Error (MSE) measures the average 
squared difference between the actual and predicted 
values. It is a fundamental metric for regression prob-
lems, providing a clear indication of the model’s predic-
tion error.

(8)

A lower MSE indicates better model performance, with 
an ideal value of 0, which would mean no error. High 
MSE values suggest that the model is not capturing the 
underlying trend in the data. The Concordance Index (CI) 
measures the agreement between predicted and actual 
rankings, commonly used in survival analysis and similar 
tasks. CI provides an evaluation of the ranking accuracy 
of predictions. CI values range from 0.5 (random chance) 
to 1 (perfect prediction). Values above 0.7 are generally 
considered good. Higher CI values indicate better model 
performance in terms of ranking predictions correctly.

4.2. PERFORMANCE OF THE PROPOSED 
 FUSIONNET MODEL

The FusionNet model demonstrates strong perfor-
mance in predicting drug-target interactions on both 
the Kiba and Davis datasets. The Kiba dataset, achieved 
a training loss and MSE of 0.1874, with validation loss 
and MSE of 0.1852, indicating good generalization 
without overfitting. On the Davis dataset, the model 
had a training loss and MSE of 0.2073, and a validation 
loss and MSE of 0.2296, showing slight deviations but 
maintaining strong performance.

The system architecture shown in Fig. 3. displays MSE 
over 100 epochs, where the training MSE drops sharply 
in the first 10 epochs, and the validation MSE stabilizes, 
demonstrating effective learning and good generaliza-
tion. Fig. 4. depicts "Actual vs. Predicted Values" and 
"Residual Plots." For the Davis dataset, predicted values 
show more spread, and residuals indicate areas of inac-
curacy, whereas, for Kiba, predictions are tightly clus-
tered with residuals randomly distributed around zero, 
reflecting better accuracy. Overall, the model performs 
more accurately on the Kiba dataset.

Fig. 3. Training and Validation MSE for Kiba and 
Davis Dataset

4. Tokenization and Padding

 4.1. Initialize a character-level tokenizer, 
  TokenizerSMILES

 4.2. Fit the tokenizer on the training SMILES strings 
  {Si}i∈D

 4.3. Convert the SMILES strings to sequences of 
   tokens, SeqSmiles= TokenizerSMILES (S)

 4.4. Pad the sequences to a maximum length, 
  LSMILES

PaddedSmiles=Pad(SeqSmiles, LSMILES)

 4.5. similarly padding for proteins 

PaddedProtein=Pad(SeqProtein, LProtein)

5. Define two input layers Sinput for SMILES and Pinput for 
 protein sequences.

6. Encode SMILES and proteins using convolutional lay-
ers followed by LSTM layers.

ESmiles = Embedding( Sinput )
CSmiles = Conv1D (ESmiles)
HSmiles

LSTM = LSTM(CSmiles)

7. Apply transformer blocks with multi-head attention 
 and LSTM layers.

HSmiles
Trans = MultiHeadAttention (HSmiles

LSTM)

HSmiles = LayerNormalization (HSmiles
LSTM, HSmiles

Trans)

FSmiles = LSTM (Hsmiles)

8. Similar steps 6 and 7 to be followed for the protein 
 encoder.

FProteins = LSTM (HProteins)

9. Concatenate the outputs of the SMILES and protein 
 encoders.

Fcombined = Concatenate (FSmiles, FProtein)

10. Output the final interaction score, y’. 

Fig. 4. Actual vs. Predicted Values and Residual Plots 
for Kiba dataset
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Fig. 5. Actual vs. Predicted Values and Residual Plots 
for Davis dataset for Davis dataset

Fig. 5 and Fig. 6 show two scatter plots of predicted 
vs. actual values for two models. The Kiba plot, with an 
R-squared of 0.710, indicates that 71% of the variance 
in actual values is explained by the model, showing a 
strong correlation and good predictive accuracy. The 
Davis plot, with an R-squared of 0.681, explains 68.1% 
of the variance, indicating a weaker correlation and 
lower predictive accuracy. 

Fig. 7 displays two precision-recall curves for two 
models. The precision-recall curves for kiba, have an 
average precision (AP) of 0.80, showing a model that 
maintains high precision across various recall levels but 
drops off as recall approaches 1.0. The precision-recall 
curves for the Davis curve, have an AP of 0.86, indicat-
ing better overall performance, with higher precision 
maintained over a broader range of recall values.

Fig. 6. Actual vs. Predicted Values for Kiba and Davis 
dataset

Fig. 8 shows an AUC (Area Under the Curve) of 0.9 
for the Davis dataset, indicating a high level of model 
performance with a good balance between sensitivity 
and specificity. The Fig. 13 shows an AUC of 0.91, which 
is slightly better, suggesting even better performance. 
Both models significantly outperform random guess-
ing (represented by the red dashed line).

Fig. 7. Precision-recall curves for the Kiba and Davis 
dataset

Fig. 8. ROC curve for Kiba and Davis dataset

The Protein Attention Map and SMILES Attention Map 
as in Fig. 9 provide valuable insights into the model's de-
cision-making process by visualizing how attention is dis-
tributed across protein sequences and molecular struc-
tures, respectively. In the Protein Attention Map, each 
vertical strip represents specific positions in the protein 
sequence, with varying color intensities indicating the at-
tention values assigned by the model. This helps capture 
important local and long-range dependencies essential 
for accurate drug-target binding predictions.

Fig. 9. Attention map for protein and smile 
sequences

Similarly, the SMILES Attention Map highlights at-
tention distribution across molecular sequences rep-
resented in SMILES notation, where each vertical line 
corresponds to a token (atom or bond) in the mol-
ecule. The intensity reflects the importance given by 
the model to different parts of the molecular structure. 
These visualizations enhance interpretability, showing 
how the model focuses on crucial areas in both protein 
and molecular data, thereby improving transparency in 
the prediction process.

4.2. COMPARATIVE ANALYSIS OF VARIOUS 
 APPROACHES

In this paper, the proposed FusionNet model has 
been compared to previous state-of-the-art approach-
es like SimBoost[21], GANsDTA[22], DeepCDA[23], and 
DeepDTA[11] using mean squared error (MSE), root 
mean squared error (RMSE), concordance index (CI), 
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area under the precision-recall curve (AUPR), and rm2 
evaluation metrics, as shown in Table 2. In the case of 
the Davis dataset, the proposed model has obtained 
an MSE of 0.20 and an rm2 value of 0.681. This result 
showcases a clear improvement over existing methods 
by offering the lowest MSE and the highest rm2, indi-
cating its ability to make more accurate predictions. 
In more detail, compared to the SimBoost, GANsDTA, 

DeepCDA, and DeepDTA models with MSE values of 
0.28, 0.27, 0.24, and 0.26, respectively, FusionNet dem-
onstrates a higher prediction accuracy due to its abil-
ity to capture both local and long-range dependencies 
within drug-target sequences. Additionally, the rm2 
values of these methods lag, further highlighting the 
efficacy of our approach.

Fig 10. AUPR comparison graph of FusionNet's Vs baseline models on the Davis and KIBA datasets

Similarly, on the KIBA dataset, FusionNet outperforms 
existing methods, achieving an MSE of 0.18 and an rm2 
of 0.71. The Transformer component allows FusionNet 
to model complex drug-target interactions, leading to 
more biologically meaningful predictions. For instance, 
while SimBoost, GANsDTA, DeepCDA, and DeepDTA re-
turned MSE values of 0.22, 0.22, 0.17, and 0.19 respec-
tively, FusionNet’s multi-head attention mechanism 
captures intricate patterns across SMILES and protein 
sequences, improving generalization. Other metrics, 
such as root mean squared error and concordance 

index, reflect this model’s robust performance across 
datasets. Figure 10 provides a side-by-side AUPR com-
parison graph, highlighting FusionNet's performance 
against baseline models on Davis and KIBA datasets.

 The biological implication is substantial, as more ac-
curate drug-target affinity predictions enhance early-
stage drug discovery by efficiently identifying poten-
tial drug candidates. In summary, FusionNet’s superior 
accuracy and generalizability make it highly promising 
for accelerating therapeutic discovery.

Datasets Methods MSE RMSE CI AUPR rm2

Davis

SimBoost 0.28 - 0.83 0.70 0.644

GANsDTA 0.27 - 0.70 0.69 0.653

DeepCDA 0.24 - 0.89 0.s73 0.649

DeepDTA 0.26 - 0.87 0.71 0.67

Proposed (FusionNet) 0.20 0.55 0.89 0.86 0.681

KIBA

SimBoost 0.22 - 0.83 0.76 0.629

GANsDTA 0.22 - 0.86 0.75 0.675

DeepCDA 0.17 - 0.88 0.81 0.682

DeepDTA 0.19 - 0.86 0.788 0.673

Proposed (FusionNet) 0.18 0.40 0.88 0.81 0.71

Table 2. Comparative analysis of various 
approaches
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5. CONCLUSION

This work presents a new deep-learning framework, 
called FusionNet, which substantially improves the 
prediction of drug-target binding affinity. By combin-
ing Convolutional Neural Networks, Long Short-Term 
Memory networks, and transformers, it effectively repre-
sents local patterns, sequential dependencies, and long-
range interactions in biological sequences. The model’s 
novelty lies in its hybrid architecture, which leverages 
the strengths of each component to achieve enhanced 
robustness and accuracy in prediction. It also integrates 
the Layer-wise Adaptive Moments optimizer to improve 
training efficiency and performance, making the model 
scalable and reliable even for large datasets. Extensive 
tests were conducted with FusionNet on both the Davis 
and KIBA datasets, yielding state-of-the-art results. Fusi-
onNet achieved an MSE of 0.20 and an rm2 of 0.681 on 
the Davis dataset, and an MSE of 0.18 and an rm2 of 0.71 
on the KIBA dataset. These results highlight FusionNet’s 
superior performance, surpassing existing methods like 
SimBoost, GANsDTA, and DeepDTA. Unlike traditional 
methods that often focus on either local or global con-
text, FusionNet addresses both simultaneously.

Biologically, this enhanced accuracy could stream-
line drug discovery pipelines by enabling more precise 
identification of potential drug-target pairs earlier in 
the development process, potentially reducing costs 
and timeframes. Additionally, the LAMB optimizer 
not only accelerates the training process but also en-
hances stability and performance on large datasets, 
underscoring FusionNet's scalability and robustness. 
Key takeaways include the hybrid model’s capability to 
capture both local and global features, leading to im-
proved predictive accuracy, and the model’s scalability 
for larger datasets, which is essential for real-world ap-
plications. However, a notable limitation is FusionNet’s 
reliance on sequence-based features without consid-
ering structural or genomic data, which might offer 
further insights into drug-target interactions. Future 
work could address this by expanding the dataset to 
include more diverse biological sequences and incor-
porating additional data such as 3D protein structures 
or genomic information. Scaling the model to larger 
datasets or alternative binding data types could pres-
ent challenges that need further exploration. Another 
avenue could involve the use of transfer learning to le-
verage pre-trained models for related tasks. Finally, en-
hancing interpretability, such as linking attention to bi-
ologically relevant protein or molecular regions, could 
provide deeper insights into the biological mecha-
nisms underlying drug-target interactions, increasing 
the model’s value in biomedical research. This will not 
only establish FusionNet as a robust predictor but also 
enrich our understanding of molecular biology.
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