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Abstract – Accurate disease severity evaluation is crucial for managing the disease and yield loss. The classification of disease stages is 
essential for the estimation of disease severity. It takes extensive time for cultivators and botanical researchers to meticulously examine 
each leaf image and identify the disease stage to assess the severity of the disease at the field scale. Extracting the damaged leaf area is 
also achievable with image segmentation, although there are drawbacks such as threshold selection and lack of grayscale difference.  
Thus, deep learning has produced recent breakthroughs in various fields, such as high-resolution image synthesis, recognition, and 
categorization of images. In this work, the disease stages of two diseases (Alternaria leaf blight and Powdery Mildew) are classified using 
sunflower leaf images taken from sunflower farms in India (Marathwada State) during the Rabi season. With the help of botanists, images 
are labeled as three disease stage classes and one healthy stage as ground truth. A series of deep convolutional neural networks (Visual 
Geometry Group models with 16 and 19 neurons, respectively) with transfer learning and fine-tuning approach is trained, validated, and 
tested using stratified k-fold values four and five. The findings indicate that VGG16, with k-fold=5, gives the highest testing accuracy, 
which is 90.25%, with fine-tuning for Alternaria Leaf Blight. For VGG19 with kfold=5, the highest testing accuracy is 86.89% with fine-
tuning for Powdery Mildew. Additionally, confidence interval calculation shows smaller intervals of 3% and 4% with a significance level 
of 95% for the VGG16 and VGG19 models, respectively.
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1.		 INTRODUCTION

The sunflower plant serves several important func-
tions. It recycles nutrients and organic matter from the 
soil through its roots, produces oil from its seeds, pro-
vides feed for animals, acts as green manure when its 
leaves are used, and also produces flowers and honey 
[1]. In various regions of India, diseases like Powdery 
Mildew, Alternaria leaf blight, and Downy Mildew have 
impacted sunflower plants [2]. Growers can make in-
formed decisions at the field level to protect plants using 
early disease prediction and forecasting. Predicting and 
forecasting diseases will be essential for safeguarding 
plants, enabling prompt action to prevent crop loss and 
enhance oilseed yield and production. This research will 
develop technologies to enhance the nutritional and 
medicinal benefits of sunflower oilseed crops, which are 
widely used as functional food [3]. Sunflower has various 

nutrients which are beneficial for humans as well as for 
animal health. It is rich in essential nutrients, including 
protein, fiber, unsaturated fats, copper, zinc, selenium, 
iron, and vitamins, especially vitamin E. Sunflower seed 
meal is commonly used as animal and pet feed due to its 
high content of sulfuric amino acids. It can also be used 
as a salted or roasted snack or used as cooking oil. [4] Sun-
flower seed production Vol. in India was 544 in the fiscal 
year 2013. It decreased to 228 in the fiscal year 2022, then 
rose to 250 in the fiscal year 2023, and finally increased 
to 279 in the same year. [5] In contemporary times, CNN 
is often used in agricultural research due to its powerful 
image feature processing capabilities. The most com-
mon applications of deep learning include plant and 
crop classification, which aids in robotic harvesting, 
pest control, yield forecasting, and disaster monitoring.  
At the field scale, manual diagnosis of plant diseases and 
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their severity is time-consuming. [6] Deep learning has 
greatly enhanced computer vision by enabling comput-
ers to analyze, understand, and make intelligent deci-
sions based on visual data.

Computer vision advances through the development 
of convolutional neural networks and deep learning al-
gorithms [7]. Harm to the plant and its growth is based 
on the extent of the disease. Growers assess disease 
severity on a field scale by observing individual plant 
leaves. This manual process is expensive and takes a 
lot of time. As a result, by employing various new deep 
learning technologies, this lengthy procedure could 
become automated, allowing growers to make deci-
sions earlier and, in less time, to protect plants.

2.	 RECENT STUDIES:

Numerous researchers have focused on agriculture 
to assist growers in identifying and classifying various 
crop diseases, as well as in diagnosing and forecasting 
them. Field observations can often be slow and inef-
ficient. Deep learning approaches have been applied 
by multiple researchers to automate disease assess-
ment for rice, apple, corn, and cotton crops. Zahraa Al 
Sahili et al. [8] provided an AgriNet dataset of 1.6 lakh 
images recorded from 19 distinct places and grouped 
into 423 plant types and illness classifications. Five 
ImageNet architectures were used to categorize plant 
species, diseases, pests, and weeds, including VGG16, 
VGG19, Inception-V3, InceptionResNet-V2, and Xcep-
tion pre-trained networks. The VGG19 model provided 
the highest accuracy of 94%, whereas the InceptionV3 
model achieved the minimum accuracy of 87%. To 
further enhance the AgriNet project, the authors sug-
gested performing more complex data augmentation 
on its datasets. However, due to the limited number of 
agricultural public datasets, the research community is 
recommended to convert the data set's private infor-
mation to publicly available at any moment.

Srinivasa Rao Dammavalam et al. [9] recommended 
employing Deep Learning models such as VGG16 and 
VGG19 to classify leaf images. From the Kaggle data 
sets [10], 14 crop leaf images were used and classified 
as healthy and infected images. Both models gave bet-
ter results than others, such as ResNet50, DenseNet121, 
ResNet50V2, MobileNet, MobileNetV2, etc. The study's 
authors strongly advocate for including unique leaf dis-
ease classifications for each crop in future research.

Le Yang et al. [11] suggested a model for identifying 
corn weeds using SE-VGG16, which was evaluated on an 
image dataset [12] of corn seedlings and weeds. Using a 
Canon PowerShot SX600 HS camera, 6000 photos from 
the dataset were taken. These photos include one corn 
seedling and four weed categories—bluegrass, Cheno-
podium album, Cirsium setosum, and sedge—each with 
1200 photos. Squeeze-and-Excitation mechanism is used 
with the VGG16 model to concentrate an important part 
of images and it gave superior weed identification results 

than VGG16. To support the complete agricultural pro-
duction process and increase agrarian efficiency in pro-
duction, deep learning combined with agricultural out-
put will be applied to other fields in the future.

Prabira Kumar Sethy et al. [13] used 11 CNN models 
with fine-tuning approaches and deep feature plus 
support vector machine (SVM). Four types of rice leaf 
diseases—bacterial blight, blast, brown spot, and tun-
gro—were identified using 5932 on-site photos gath-
ered from agricultural sites in Odisha, India's Sambal-
pur and Bargarh districts. To perform feature extrac-
tion, the mentioned deep learning models were ap-
plied: InceptionResNetV2, GoogleNet, AlexNet, VGG16, 
InceptionV3, VGG19, ResNet18, ResNet50, ResNet101, 
DenseNet201, and XceptionNet. A Support Vector 
Machine is used to classify the extracted features. The 
transfer learning approach was used again to identify 
the four diseases of rice leaf. Finally, the outcomes of 
transfer learning and feature extraction were assessed.

Ghazanfar Latif et.al [14] proposed detecting and 
classifying six distinct diseases: healthy, narrow brown 
spot, leaf scald, leaf blast, brown spot, and bacterial 
leaf blight using deep CNN transfer learning with the 
VGG19 model. The image dataset [15] used has 2167 
photos classified based on the six diseases listed. The 
final evaluation uses accuracy, precision, and the F1 
measure. This article proposed that the future scope is 
to acquire field-scale images using drone technology in 
conjunction with IoT technology and a deep learning 
approach in real-world circumstances.

3.	 Disease Severity Estimation:

Guan Wang et al. [16] mentioned that the degree of 
damage caused by a plant disease is determined by its 
severity. Usually, experienced professionals use visual 
inspection of plant tNo. to rate the extent of plant dis-
eases. To estimate disease severity, based on disease 
extent, classes made as Healthy, Initial, Middle, and Last 
with the help of a botanist. Deep learning networks are 
trained and tested using such class-wise images and 
evaluated further to classify disease stages.

3.1	 Dataset Information:

This article considers two sunflower leaf diseases: Al-
ternaria Leaf Blight and Powdery Mildew. The images 
used are collected from India.  A total of 378 sunflower 
leaf images were considered for this study. These im-
ages belong to two diseases, Alternaria leaf blight, and 
Powdery Mildew, with their disease stage, and 105 are 
healthy images. A smartphone camera with 64 Mega-
pixels was used to take images of the Rabi season. With 
the aid of plant researchers, the disease's extent was 
determined and divided into three stages: the initial 
stage, which ranged from 0 to 30%. The middle stage 
ranged from 31% to 60%, and the last stage ranged 
from 61% to 100%. The following table shows the 
count of images for each disease and its stage.
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Table 1. Disease Stage count per disease

Sr. 
No Disease Name Disease Grade 

and Stage
Count of Original 

images

1. Powdery Mildew
1-Stage1 64
2-Stage2 84
3-Stage3 38

2. Alternaria Leaf Blight
1-Stage1 34
2-Stage2 33
3-Stage3 20

3 Disease Free Healthy-Stage0 105
Total 378

3.2.	 Disease Information

1.	 Alternaria Leaf Blight:

The disease affects the stems, sepals, petals, and 
leaves, causing brown spots. The disease stage is shown 
in Fig 1 a), b), and c). The leaves have dark brown spots 
with a golden circle around them and a pale edge. Lat-
er on, the spots become larger and take on an irregular 
shape with concentric rings. Leaf fall and dryness are 
caused by bigger, uneven lesions formed when mul-
tiple spots come together [17].

(a) (b) (c)

Fig.1. Brown spots of Alternaria Leaf Blight,  
a) Stage1, b) Stage2, c) Stage3  

2.	 Powdery Mildew:

On the leaves, the disease causes white, powdery 
growths. The disease stage is shown in Fig 2 a), b), and c). 
A white to grey mildew occurs on the upper surface of 
older leaves. As the plant ages, areas of white mildew 
can be seen with black pinhead-sized leaves. The im-
pacted leaves lose color, curl, become chlorotic, and 
eventually die. [17] 

(a) (b) (c)

Fig. 2. White powdery growth on Sunflower Leaves, 
a) Stage1, b) Stage2, c) Stage3  

4.	 Concepts and Methodology used

4.1.	 Data Preprocessing

The ImageDataGenerator class from Kera's library 
was used to apply data augmentation, increasing the 

Fig. 3. Methodological block diagram

Table 2. Sample Size after Augmentation

Stage 
Number of images per class after Augmentation

Alternaria Leaf Blight Powdery Mildew

Healthy-Stage0 610 610

1-Stage1 685 641

2-Stage2 672 732

3-Stage3 598 767

Total 2565 2750

4.2.	 Deep Learning Proposal:

1.	 Convolution Neural Network:

The foundation of Artificial Intelligence is Deep 
Learning. Deep Learning technologies have multiple 
uses in agriculture, including disease detection, dis-
ease identification and categorization, and disease 
severity assessment. The Convolution Neural Network, 
a component of Deep Learning architecture, is a multi-
layered, hierarchical network that functions nonlinear-
ly and resembles the human brain. Convolution neu-
ral networks (CNN) have so far exhibited the greatest 
power in image classification.[19].

2.	 Model Regeneration:

The deep learning model's potential is to acquire 
knowledge from a hierarchical representation of fea-
tures effortlessly. The first layers of CNN-extracted fea-
tures are always generic, while features at later layers 
are increasingly specialized. Hence, to perform classifi-
cation based on required interest, the model needs to 
be regenerated by adding a new classifier as per the 
interest, and finally, the model needs to be fine-tuned 
based on three approaches:

1.	 Train the entire model learning from scratch.

2.	 Train some layers and freeze the other layers—The 
network's weights can be controlled by keeping 
more layers frozen for small datasets and training 
more layers for large datasets.

sample size. This procedure comprised a rotation range 
of 40, a shear and zoom factor of 0.2, and a brightness 
range of 0.5 to 1.5 with a horizontal flip. The desired im-
age size is (224,224), and a total of images, including 
training and testing, were generated after the dataset 
augmentation [18].
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3.	 Freeze layers of the convolution model—Keep the 
convolution layer base model as it is and use its 
output to give to the classifier.

In the first two approaches, the learning rate must be 
carefully selected (usually smaller) to avoid knowledge 
loss. In the last approach, the pre-trained model can be 
used as it is and based on extracted features to classify 
required interest [20]. For this approach, the Adam op-
timizer is used with a learning rate of 0.0001. 

3.	 Fine-tuning with Transfer Learning:

The transfer Learning process is based on the third 
approach, as mentioned above. In this process, first, 
select the pre-trained networks VGG [21] and Incep-
tionV3 [22], which are available to use on Keras [23].

The second is to classify the required problem based 
on the size similarity matrix, as shown below in Fig 3 [20]. 
This size similarity matrix shows how the size of the data-
set is related to the model's fine-tuning. Hence, there is a 
proper mapping based on the number of dataset images 
and the number of layers to be kept, not frozen. Finally, 
the third is to select and try various values of fine-tuning 
parameters based on the dataset size and pre-trained 
model dataset. So, for disease stage estimation, from Fig. 
4, orange circled mapping is used to incorporate transfer 
learning with fine-tuning parameter of value=2; as per 
class, there are around 600 images. 

Fig. 4. Size-similarity matrix & decision map for fine-
tuning pre-trained models

4.	 VGG16 and VGG19:

We employed two architectures, VGG16 and VGG19, 
for the fine-grained disease stage classification prob-
lem with minimal training data. Each architecture uses 
transfer learning by fine-tuning the higher layers of a 
pre-trained deep network to classify the disease stage.

The VGG architecture consists of three fully linked lay-
ers, a SoftMax activation function at the end, and Conv-1 
Layer with 64 filters, Conv-2 with 128 filters, Conv-3 with 
256 filters, and Conv 4 and Conv 5 with 512 filters. A max-
pooling layer of a 2x2-pixel window with a stride of 2 fol-
lows each filter of size 3 × 3, a Rectified Linear Units (ReLu) 
activation, and all layers are followed by a dropout layer 
with a dropout ratio of 20% followed by the last convolu-
tional layer. The final fully connected layer produces four 

outputs, one for each of the four classes. The SoftMax layer 
uses these outputs to determine the probability output. 
For both models, the input shape is 224 ×224 × 3, and the 
kernel size is 3 x 3 pixels. Fig 5 and 6 show the model archi-
tecture. The VGG16 model has 16 convolution layers, and 
we trained the model by freezing the first 12 layers for the 
VGG19 model, which has 19 convolution layers. So, both 
models are retrained by freezing 12 and 15 layers to ob-
tain precise disease stage classification. (Refer to Table 3).

Table 3. Details of fine-tuning used

Model Frozen layer Trainable Layer
VGG16 12 4

VGG19 15 4

Fig. 5. VGG16 architecture  Fig. 6. VGG19 architecture

5.	 Experimental preparation and 
assessment

This work uses a dataset of sunflower images of two 
diseases. Google Colab is used to train, validate, and 
test phase of both models. As shown in Table 2, each 
class has uneven samples per class. Hence, this uneven 
sample distribution makes the model learn slowly, re-
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Fig. 7. K4 Cross Validation

Fig. 8. K5 Cross Validation

Well-known Python machine-learning toolkit Scikit-
Learn natively facilitates stratified K-Fold Cross-Valida-
tion. To reduce data balancing, stratified K-fold cross-val-
idation ensures that samples from each class are used for 
testing and training the model. Using K=4 and 5 values, 
image samples are arranged into K strata in this work 
to construct non-overlapping sets. There will be 2360 
images distributed across four classes since 590 image 
samples are kept for each class to have even samples. 
There are 236 images for testing and 2124 for training 
because the split is 10% for testing and 90% for training. 
Since this work uses K4 and K5 cross-validation, there are 
531 and 425 images per fold, respectively. The training 
dataset was used to train the transfer learning model 
with a batch size 16. and the test dataset is used to assess 
it. Both models trained till epoch10 with fine-tuning =2 
and without fine-tuning. TensorFlow, Kera’s, and Sklearn 
Python libraries are combined in the models. The hy-
perparameters for both models are defined in Table 4. 
The network weights were iteratively adjusted using the 
Adam optimizer (with a learning rate of 0.0001) to un-
derrate the loss function during the model construction 
based on training data [24]. A sparse categorical cross-
entropy function with metric accuracy is utilized as the 

Table. 4. Hyperparameters used

Metrics Metrics Value
Batch size 16
Optimizer Adam

Learning rate 0.0001
Criterion Categorical cross Entropy Loss

6.	 Experimental Results

6.1.	 Alternaria Leaf Blight

Fig. 9 shows both model’s training and testing accu-
racies per fold without fine-tuning for Alternaria Leaf 
Blight. The testing accuracy of VGG16 on the holdout 
dataset is greater than VGG19 after K5 cross-validation.

Fig. 9. Training and Testing accuracies for Alternaria 
Leaf Blight (without fine tuning)

The confusion matrix for the VGG16 model on the hold-
out test set is presented in Table 5. In the initial stage, 
the model achieves a classification accuracy of 100% for 
K=5. The accuracy rates for the healthy and last stages are 
93.22%, while the middle stage has a lower accuracy of 
74.57%, making it more susceptible to misclassification.

Table 5. Confusion Matrix for Alternaria Leaf Blight for 
VGG16 at K5 cross-validation (without Fine-tuning)

Predicted
Stage 0 Stage1 Stage2 Stage3

G
ro

un
d 

Tr
ut

h

Stage 0 55 1 0 3
Stage1 0 59 0 0
Stage2 0 9 44 6
Stage3 1 3 0 55

sulting in a biased model. Thus, to mitigate this, strati-
fied K-fold cross-validation is employed. The samples are 
organized into K strata to provide nonoverlapping sets. 
The first strata from each class are then combined into 
the first fold, the second strata from each class into the 
second fold, and so on, to generate the stratified folds. 
By replicating the dataset’s initial groupings, folds are 
created.  After that, one-fold is used as the test set, and 
the remaining K-1 folds for training in each K-Fold Cross-
Validation process iteration (Refer to Figs. 7 and 8).

Table 6 presents the confusion matrix for the VGG19 
model tested on the hold-out dataset. All initial stages are 
accurately classified for K=4. The accuracy for the healthy 
stage is 91.52%, while the last stage achieves an accuracy 
of 86.44%. However, the middle stage has a lower accu-
racy of 71.18%, indicating it was frequently misclassified.

loss function because this task requires multiclass image 
classification. The loss function calculates the difference 
between the input label and the predicted result.
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Table 6. Confusion Matrix for Alternaria Leaf Blight 
for VGG19 at K4 cross-validation without fine-tuning)

Predicted
Stage 0 Stage1 Stage2 Stage3

G
ro

un
d 

Tr
ut

h

Stage 0 54 0 0 5
Stage1 0 59 0 0
Stage2 0 9 42 8
Stage3 1 5 2 51

Fig. 10 shows training and testing accuracies per fold 
with fine-tuning for Alternaria Leaf Blight. The testing 
accuracy for VGG16 and VGG19 on the holdout dataset 
is improved with fine tuning=2

Fig 10. Training and Testing accuracies for 
Alternaria Leaf Blight with fine-tuning

The confusion matrix of the VGG16 model on the 
hold-out test set is shown in Table 7. The accuracy of 
the healthy stage is 86.44%, and the accuracy of the ini-
tial and last stages is 96.61%. The middle stage is not 
classified correctly, with an accuracy of 76.27%.

Predicted
Stage 0 Stage1 Stage2 Stage3

G
ro

un
d 

Tr
ut

h

Stage 0 54 0 0 5
Stage1 0 59 0 0
Stage2 0 9 42 8
Stage3 1 5 2 51

Table 7. Confusion Matrix for Alternaria Leaf Blight 
for VGG16 at K5 cross-validation (with fine-tuning)

The confusion matrix for the VGG19 model with K4 
cross-validation on the hold-out data set is shown in 
Table 8. The Accuracy of the healthy stage is 72.88%. 
The initial stage is correctly classified at K=4. The Ac-
curacies for the middle and last stages are 94.91% and 
89.83% respectively.

Table 8. Confusion Matrix for Alternaria Leaf Blight 
for VGG19 at K4 cross-validation (with fine-tuning)

Predicted
Stage 0 Stage1 Stage2 Stage3

G
ro

un
d 

Tr
ut

h

Stage 0 43 0 3 13
Stage1 0 59 0 0
Stage2 0 0 56 3
Stage3 0 5 1 53

By the VGG19 model, stage 1 is more correctly classi-
fied than VGG16.

6.2. Powdery Mildew:

Both model's training and Testing accuracy plots (K4 
and K5 cross-validation without fine-tuning) are shown in 
Fig 11. The plots show that the VGG19 model has the same 
accuracy for both K4 and K5 cross-validation. Also, VGG16 
accuracy is increased to 74.15% after K5 cross-validation.

Fig 11. Training and Testing accuracies for Powdery 
Mildew (without fine tuning)

The confusion matrix of the VGG16 model on the hold-
out test set is shown in Table 9. Accuracies of healthy and 
initial stage accuracies are 67.79% and 67.79%, respec-
tively, and also the accuracy of the last stage is 96.61%, 
and the middle stage is 100% classified.

Table 9. Confusion Matrix for Powdery Mildew for 
VGG16 at K5 cross-validation (without fine-tuning)

Predicted
Stage 0 Stage1 Stage2 Stage3

G
ro

un
d 

Tr
ut

h

Stage 0 40 0 18 1
Stage1 0 40 19 0
Stage2 0 0 59 0
Stage3 0 0 2 57

Table 10 shows the confusion matrix for the VGG19   
model on the hold-out data set. The Accuracy of the 
healthy stage is 91.52%. The initial stage is classified with 
an accuracy of 67.79%. The Accuracies for the middle 
and last stages are 98.30% and 79.66%, respectively.

Table 10. Confusion Matrix for Powdery Mildew for 
VGG19 at K5 cross-validation (without Fine-tuning)

Predicted
Stage 0 Stage1 Stage2 Stage3

G
ro

un
d 

Tr
ut

h

Stage 0 54 0 3 4
Stage1 5 40 15 1
Stage2 0 0 58 3
Stage3 1 0 13 47

VGG19 outperformed disease stage classification for 
the initial and middle stages with accuracy of 91.52% 
and 98.30% than VGG16.
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Fig 12. Training and Testing accuracies for Powdery 
Mildew (with fine tuning)

Table 11 shows the confusion matrix for the VGG16   
model on the hold-out data set. The Accuracy of the 
healthy stage and last stage is 91.52%. The initial and 
middle stages are classified with an accuracy of 62.71% 
and 96.61%, respectively.

Table 11. Confusion Matrix for Powdery Mildew for 
VGG16 at K5 cross-validation (with Fine-tuning)

Predicted
Stage 0 Stage1 Stage2 Stage3

G
ro

un
d 

Tr
ut

h

Stage 0 54 1 2 2
Stage1 1 37 21 0
Stage2 1 0 57 1
Stage3 1 0 4 54

Table 12 shows the confusion matrix for the VGG19    
model on the hold-out data set at K=5. The accuracy 
of the healthy and initial stages is 89.83% and 81.35%, 
whereas the middle and last stages are classified as 
94.91% and 93.22%, respectively.

Table 12. Confusion Matrix for Powdery Mildew for 
VGG19 at K4 Cross-validation (with Fine-tuning)

Predicted
Stage 0 Stage1 Stage2 Stage3

G
ro

un
d 

Tr
ut

h

Stage 0 53 2 2 4
Stage1 3 48 9 1
Stage2 0 1 56 4
Stage3 0 0 6 55

Accuracies obtained by models are statistically wit-
nessed by calculating confidence intervals. The confi-
dence interval tells us how much precise the estimate 
values are calculated. This work estimates testing ac-
curacy for each K fold with and without an acceptable 
tuning approach. This calculation shows accuracy is 
likely to come in which range. Gaussian distribution 
[25][26] of proportion helps to calculate the interval's 

interval = z * sqrt((accuracy * (1 - accuracy)) / n) (1)

Where the interval is the radius of the confidence in-
terval, accuracy is the estimate(testing accuracy of the 
model is used) that is to be witnessed, z is the number 
of standard deviations from the Gaussian distribution. 
z value is used as 1.96 with a 95% significance level for 
calculating the confidence interval, and n is the total 
number of samples. In this case, n is 236, which is the size 
of the out dataset. Table 13 shows the calculated confi-
dence interval values with a range of testing accuracy.

Table 13. Calculation of Confidence Intervals

Model Kfold Accuracy 
(%)

Calculated Confidence 
Interval at 95% 

Significance Level
Range

Alternaria Leaf Blight Without Fine Tuning

VGG16
K=4 77.97 5% 72% to 82%

K=5 88.98 4% 84% to 92%

VGG19 
K=4 83.05 4% 79% to 87%

K=5 87.29 4% 83% to 91%

Alternaria Leaf Blight with fine-tuning

VGG16
K=4 86.02 4% 82% to 90%

K=5 90.25 3% 87% to 93%

VGG19
K=4 88.56 4% 84% to 92%

K=5 89.41 4% 85% to 93%

Powdery Mildew Without Fine Tuning

VGG16
K=4 64.41 6% 58% to 70%

K=5 74.15 5% 69% to 79%

VGG19
K=4 71.31 5% 66% to 76%

K=5 71.31 5% 66% to 76%

Powdery Mildew with Fine Tuning

VGG16
K=4 72.88 5% 67% to 77%

K=5 85.59 4% 81% to 89%

VGG19
K=4 80.33 5% 75% to 85%

K=5 86.89 4% 82% to 90%

From Fig. 12, we can observe that both model's testing 
accuracy is improved with fine tuning of 2 than without 
model fine-tuning (Refer Fig. 11). Also, after K5 cross-val-
idation, the accuracy of both models is enhanced.

radius. As this work is based on multiclass image clas-
sification, the radius of the interval [26] is calculated as 
per equation1 shown below:

From the above table, a claim can be made that both 
models with K5 cross-validation by fine-tuning ap-
proach give smaller confidence intervals shown with 
yellow color highlighted form, which indicates the test-
ing accuracy is more precise.

In this work, VGG16 and VGG19 models with K-fold 
(4 and 5) cross-validation with fine-tuning and with-
out fine-tuning are applied to both diseases. But the 
confidence interval shows that VGG16 (K5 cross-valida-
tion) with finetuning = 2 for Alternaria leaf blight and 
VGG19(K5 cross-validation) with fine tuning=2 for Pow-
dery Mildew giving smaller confidence interval and 
hence model accuracy 90.25% and 86.89% is claimed to 
be suitable for selected sample size respectively. Thus, 
Fig13(a) shows the accuracy and loss curves for mod-
els with precise testing accuracy. Models are trained till 
epoch 10. On the x-axis, 50 values are shown, which is 
epoch 10 per iteration, and the y-axis shows accuracy. 
Loss and accuracy curves are closer to each other. Fig 
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(a)

(b)

Fig. 13. a) Accuracy and Loss curves for VGG16 after K5 cross validation(Alternaria Leaf Blight) 
b) Accuracy and Loss curves for VGG19 after K5 cross validation(Powdery Mildew)

7.	 Conclusion 

This study recommends a deep learning approach 
with fine tuning for performing disease stage classi-
fication of Alternaria leaf blight and Powdery Mildew 
diseases. This work creates a path for calculating plant 
disease severity. Both pre-trained models are trained 
with and without a fine-tuning approach based on 
training samples. Stratified K-fold validation is applied 
as samples per class are not uniformly distributed. The 
results showed that VGG16 and VGG19 both performed 
well after fine-tuning the parameter set to 2. VGG16 
and VGG19 models gave more precise testing accuracy 
at 90.25% and 86.89% for Alternaria Leaf Blight and 
Powdery mildew, respectively, with small confidence 
intervals after K5 cross-validation. Both models have 
undergone K4 and K5 cross-validation; the result shows 
that with K5 cross-validation, the confidence interval is 
more minor. Hence K5 cross-validation is best suited 
for VGG16 and VGG19 models, demonstrating that the 
deep learning approach is the most favorable tech-
nique for disease stage classification based on plant 
disease severity estimation. 

In future work, more image samples at different stag-
es of both diseases will be collected with hyperspectral 
imaging with more powerful sensors, improving the 
model’s performance by training with minutiae details 
of affected leaves. It can give better testing on unseen 

data. Also, the framework can be proposed to capture 
field intensity using advanced drone cameras. 
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