
Multipath Routing Algorithm to find Optimal
Path in SDN with POX Controller

121

Original Scientific Paper

Abstract – The past decade witnessed a tremendous increase in network usage, and traditional network architecture is needed to
sustain modern requirements with high throughput and minute delay. This leads to the introduction of software-defined networks.
Congestion is a critical problem that needs attention, so identifying the optimal path is required to eliminate the congestion.
Researchers introduce rigorous studies to identify optimal paths, some resulting in less data loss and delay. Identifying multiple paths
between nodes may eliminate congestion. When the first best path is congested, selecting the second best path between nodes can
solve the congestion problem. With this ideology, the multipath routing algorithm is developed and tested on Fat Tree, Custom, and
Tree topologies, and performance is measured using quality of service factors. Considering Throuhput, Fat Tree produced 27.15%
better throughput than the tree topology and 17.57% better than the custom topology, Whereas in the case of jitter, fat tree topology
reduces jitter by about 90.36%compared to the tree topology, but custom topology reduces jitter by about 12.24% compared to the
fat-tree topology. In the packet delivery ratio, fat tree topology reduces packet loss by about 77.87% compared to the tree topology.
Fat tree topology reduces packet loss by about 55.62% compared to the custom topology. Fat tree performs best overall, with the
highest throughput, lowest packet loss, and significantly reduced jitter compared to the tree and custom topologies.MiniNet is used
to perform simulations. TCP and UDP flows are calculated with the iperf tool and tested on the POX Controller.

Keywords: SDN, Congestion, POX, Multipath, MiniNet

Volume 16, Number 2, 2025

Deepthi Goteti*
Department of Computer Science & Engineering,
Koneru Lakshmaiah Education Foundation,
Green Fields, Vaddeswaram, A.P, India
2102031088@kluniversity.in

Imran Rasheed
Department of Computer Science & Engineering,
Koneru Lakshmaiah Education Foundation,
Green Fields, Vaddeswaram, A.P, India
imran.rasheedamu@kluniversity.in

Received: September 6, 2024; Received in revised form: October 28, 2024; Accepted: November 26, 2024

*Corresponding author

1. INTRODUCTION

The network's infrastructure is based on hardware,
and a multitude of devices, like switches and routers,
work for data forwarding and operate with rules and
requirements. This is resisting convolution networks'
upgrades to services [1]. Network usage has immense-
ly increased over the past decade, and traditional net-
works are unable to withstand due to the unadoptable
nature of their architectures [2].

To meet modern requirements, layered architec-
ture is unsuitable, so the architecture is designed into
planes in software-defined networks. Every plane is

dedicated to a particular responsibility and can add
programmability to SDN, which enhances the chances
of opting for the SDN. The data plane is tightly packed
with various data forwarding devices, and the control
plane works as intelligence to network [3].

Data planes are designed to work with switches and
to create topologies. POX controller is used for routing
decisions, traffic monitoring, and identifying the optimal
path between two nodes and computing the shortest
route; multipath algorithm is implemented with the help
of POX controller on Fat Tree and Custom topologies.

The main aim of separating planes is to use resources
efficiently and control and secure them. Due to that,

122 International Journal of Electrical and Computer Engineering Systems

numerous controllers like Floodlight, RYU, POX, Open-
DayLight, and POX have been developed. SDN has a
wide range of Controllers, and selecting the optimum
controller depends on the application. Gupta et al. as-
sess and contradict various SDN controllers, and simu-
lations are conducted with Mininet [4].

Control planes are responsible for routing decisions,
using open flow protocol as an interface. Using the
open-flow protocol, the controller will identify paths
across switches for data packets [5]. Centralized and
distributed path computations are well-known ap-
proaches with prominent results due to their dynamic
resource handling. The author analyzed these tech-
niques and performed simulations to test critical fac-
tors such as latency, throughput, and fault tolerance in
various traffic patterns with varying loads. The research
provided valuable insights into optimized path com-
putation with an extensive network and low latency.
Results reveal that the centralized approach is supe-
rior but needs more scalability. Whereas distributed
approaches face challenges with higher latency, the
author concludes that hybrid models perform best in
scalability and fault tolerance, but security issues must
be addressed [6].

Caria et al. proposed a model that combines distrib-
uted routing with a centralized control plane, which al-
lows centralized decision-making. Results are noted on
parameters like control overhead and scalability. The
author concluded that this approach could manage
large-scale features [7].

Denar et al. mentioned that handling massive data
by switches will downgrade the performance, so the
author suggested threading and multiprocessing,
which are parallel programming methods that improve
controller performance on CPU time consumption,
memory usage, and execution time and it concludes
that Ryu produced superior results over POX [8]. The
application plane uses logical programs handled by
APIs and deploys software, routing, and policies. Planes
are communicated with two sets of interfaces: south-
ern and northern [9]. SDN architecture, which includes
various planes, is shown in Fig. 1.

 If data transmission needs to occur between two
dedicated nodes over a network, then we need to
identify the optimal path between nodes. Then trans-
mission will happen. The main drawback of selecting
the same optimal path every time is that it leads to con-
gestion, which leads to network performance degrada-
tion. We address this problem by identifying multiple
paths between nodes, regardless of the cost and length
of the paths. We measured network performance with
Throughput, jitter, and packet loss. The controller used
in the control plane influences these metrics and the
overall network design. The multipath algorithm me-
ticulously tests three distinct topologies using the POX
controller within the innovative Software-Defined Net-
working (SDN) framework. We carry out simulations us-
ing a MiniNet simulator.

The Fat Tree topology performed well over custom
and Tree topologies in Throughput and packet loss. On
the other hand, a custom topology also demonstrated
slightly improved performance, with less jitter than the
Fat Tree topology.

The remaining sections explain the methodology fol-
lowed by the simulations taken over topologies with
the POX controller. The result analysis showcases the
QOS factor over topologies through extensive bench-
marking using the iPerf tool.

2. LITERATURE REVIEW

2.1. SDN CONTROLLERS

This research mainly concentrates on increasing the
throughput of network with optimal path algorithm,
Optimal path will allow packet loss routing from source
to given destination without congestion. static routers
are not suitable if there is a drastic increase of load in
network also fail to maintain if nodes are added routing
tables are fail to control this may be result link failure
and congestion in SDN. SDN controller computes path
and maintains network information. So, it is called a
central part of the SDN. The network is more efficiently
managed with the help of OpenFlow protocol. SDN
controller forwards the packets from source to destina-
tion to establish the path we are using. Multi-path rout-
ing is tested with a POX controller, and performance is
measured with QoS factors.

2.2. EXPLORING ThE FUNCTIONALITy OF SDN
 CONTROLLER OVER DIFFERENT
 APPROAChES

POX is inherited from NOX Controller, written in py-
thon code and implemented in OpenFlow protocol. It
is mainly used for academic research due to its ease
of use and flexibility to develop network system and

Fig. 1. SDN architecture

123Volume 16, Number 2, 2025

control applications. MiniNet is used to build POX con-
troller code available from GitHub [10, 11]. This can run
multiple programs like switch, load balance and hub.

Mohammadi et al. compared conventional and SDN
based on throughput, packet loss, and delay on three
typologies with Wire shark and concluded that linear
topology performed better than tree topology in delay
and throughput [12]. According to Salman et.al., with
OpenFlow protocol, POX can directly access forward-

ing devices which is easy and perfect for experiments
and demonstrations [13]. In this paper, we are going to
test the shortest path computing algorithm on custom
and Fat Tree typologies with QoS as measuring factors.

Many researchers analyzed the performance of Ryu,
POX, ONOS, OpenDaylight, and NOX on various typolo-
gies and with common factors like throughput, jitter,
and packet loss.

Table 1. shows a literature review

Author year Topology/Approach Controller QoS Parameters Simulators

Patel et al. [14] 2023 Comparative evaluation of SDN
controllers

POX, Ryu,
OpenDaylight

Response time, resource
management Mininet-WiFi

Smith et al. [15] 2023 Enhancements in POX SDN
topologies POX Latency, throughput, reliability Mininet

Koulouras et.al.
[16] 2022 Abilene Network, GEANT

Network
ONOS, Ryu

OpenDaylight
Throughput, RTT latency, packet

loss, and jitter Mininet

Wilson et al. [17] 2022 Ryu SDN controller for scalable
topologies Ryu Scalability, resource efficiency Mininet

Liehuang Zhu et
al. [18] 2020 IoT and VANETS POX, Ryu,Nox,ONOS,

Floodlight, and OD Latency and throughput CBench, PktBlaster,
and OFNet

Lee et al. [19] 2020 Ryu SDN framework Ryu Latency, throughput, resource
management Mininet

Numan et al. [20] 2019 Single POX RTT, Jitter, Delay Ping, iperf, MiniNet

Sajid et al. [21] 2018 Round Robin & Random
Algorithm POX response time and transaction

per second MiniNet

Duque et al. [22] 2018 Custom POX Floodlight QoS Metrics Mininet

Farrugia et al. [23] 2018 Geant, Butterfly,Optimized
peer- Multipath OpenDaylight throughput, jitter NS-3.26

Abdul-hafiz et
al. [24] 2017 Abilene network/Improved

Dijkstra’s Ryu throughput and latency MinNet,Iperf

Bholebawa et
al.[25] 2016 OpenFlow-enabled network

topologies POX Latency, throughput Mininet

Yahya et al. [26] 2015 Abilene network/Extended
Dijkstra’s Ryu end-to-end latency, and

throughput. MinNet,Iperf

Zhang et al. [27] 2015 Tree-based topology design POX Throughput, delay Mininet

Stancu et al. [28] 2015 Comparison of SDN controllers Various Performance metrics (response
time, resource utilization) Mininet

Table 1 shows a literature review of different articles.
A few authors have worked on Dijkstra’s performance
evaluation on multiple controllers, as noted in the table
below. Numerous authors worked on finding optimal
paths and analyzing the performance of various topol-
ogies and controllers observed from the last decade;
however, identifying multiple paths and testing them
is presented in this work with the help of the POX con-
troller on topologies like Custom and Fat Tree. The mul-
tipath algorithm will be tested on various controllers
with further available topologies.

Ram et al. analyze SDN performance in wireless and
wired networks over single, linear, and tree topologies.
They measure POX and RYU controllers’ metrics, such
as jitter, Bitrate, and packet loss, with D-ITG, Mininet,
and Mininet-WiFi simulators. The research found that
wireless networks showed performance inconsistency
through SDN-optimized resource management. How-
ever, this research has limited application in real-world
applications, and more dynamic topologies need to be
tested.

N. Ullah et al. worked on evaluating the performance
of Dijkstra's algorithm on POX and Ryu controllers.
They measured Jitter, throughput, packet loss, and
packet delivery ratio with iperf, Wireshark, and the
MiniNet simulation tool. Where RYU outpaced POX in
terms of witnessing low Jitter and higher throughput,
which is well suited for dynamic networks. In the case
of packet loss, both have near results. Research can be
done on more dynamic and hybrid topologies to know
the adoptability of this approach [29].

 Several distributed but logically centralized controllers
are available, including POX, Ryu, Floodlight, and Open-
DayLight; the author compared these with Ryu. Ryu per-
formed well due to its scalability and modularity; when
testing the MniNet emulator, the author exhibited the
controller's scalability and reliability and studied network
performance under heavy loads over linear topology. The
study briefly touches on operational styles but suggests
further research is needed to fully understand how differ-
ent modes impact controller efficiency in various environ-
ments [30]. Therefore, we must test any algorithm that
needs more in-depth testing with various topologies.

124 International Journal of Electrical and Computer Engineering Systems

Koulouras et al. worked on the evaluation of various
SDN controllers customized for wireless networks. To
assess controllers, the authors specially used an analyt-
ic hierarchy process, and they found Ryu and ONOS to
be the best among other controllers. They concluded
that selecting the controller plays a crucial role in eval-
uating the performance of any approach. Still, studies
must fully explore wireless protocols like 5G and their
adaptability to massive networks and dynamic condi-
tions. The type of topology also makes a difference in
various quality of service factors [31].

 This is proved by exploring optimized tree-based
network topology in SDN and applying various optimi-
zation strategies like routing to address inefficiencies in
traditional topologies and manage traffic in a Dynamic
way. Data centers use tree topology because it performs
better under higher loads. Author prospered teaching
produced a 10% increase in throughput and a 15 %re-
duction in latency. However, the author stuck to only
tree topology and did not do rigorous testing on dynam-
ic networks [32]. Identifying the optimal path is achieved
by Dijkstra's algorithm, and with the help of the POX con-
troller, path computation and network performance are
enhanced. Real-time network conditions drive dynamic
decisions on routing. Algorithm efficacy is measure with
QOS factors. It also addressed critical issues in traditional
routing and achieved noticeable throughput and less jit-
ter. However, it still lacks energy efficiency and is stuck to
general topologies like mesh, star, and ring topologies
where the structure is straightforward. Calculating the
optimal path is simple [33].

Cabarkapa et al. conducted a performance analy-
sis of the Ryu-POX controller in various tree-based
Software-Defined Networking (SDN) topologies. The
methodology involves simulations in a controlled en-
vironment where different tree-based topologies, such
as binary and balanced trees, are evaluated [34]. The
quality-of-service factors measures the effectiveness of
the Ryu and POX controllers in handling the load over
these topologies and performance. The quality-of-ser-
vice factors measures the effectiveness of the Ryu and
POX controllers in handling the load over these topolo-
gies and performance. This work proves that selecting
topology depends on the traffic type and network de-
mand. Most of the researchers' work concluded that
selecting a proper controller and testing with multiple
topologies will help them evaluate any approach's per-
formance. Also, for finding an optimal path, Dijkstra is
one role model, though congestion is a significant is-
sue. So, in this paper, we have used multipath routing
tested on multiple topologies on a pox controller.

3. PROPOSED MEChANISM

Congestion will occur when two dedicated nodes se-
lect the same optimal path for every transmission and
must identify alternative paths to avoid network traffic.
Calculating multiple paths between all available nodes
in the network is necessary. The algorithm will choose an

alternative path if the load floods the selected path. This
proposed mechanism discusses selecting multiple paths
based on bandwidth, link cost, and hop number between
dedicated nodes. Multipath routing algorithm start with
finding the routes with the help of the Depth First Search
algorithm, whose working functionality, is to go deep
from other adjacent nodes of the last visited node of a
graph [35]. DFS algorithm is showed in table. With the DFS
algorithm, every node is visited once to compute paths
from each node to every other node. Pseudocode shows
the Multipath routing algorithm. It starts with executing
topology at one end; on another end, The system initial-
izes the POX controller and executes the Multipath algo-
rithm. After initializing the get path function, we will use
DFS to acquire paths between dedicated nodes, as we ex-
pect paths between the source and destination. The rout-
ing table stores all paths, and Get-link-cost will be used to
calculate path cost.

Algorithm:
RecurDFS(Gi, root):
Traversed <- set all nodes false initially
DFS(root)
function DFS(u):
if Traversed [ui] = true:
return
print(ui)
Traversed [ui] <- true
for each vi in G[ui]. neighbors ():
DFS(vi)
Input: G is graph in Adjacency list where root
 is starting node
Output: DFS order nodes in that graph are printed

At the start, bandwidth is initialized. B1 is the mini-
mum bandwidth requirement between si and sj, ewi is
the bandwidth capacity of the edge between si and sj,
and reference bw/bl refers to the baseline value. It en-
sures B1, the minimum bandwidth requirement met by
the bandwidth available between si and sj, compared
to the reference BW value.

We identify all possible paths and calculate the cost.
The shortest Path will return a less costly option. Get Path
will display several available paths and sort them in order.
Upon selecting the Path,add_ports_to paths functions
add ports for communication between hosts, which in-
volves various link and switch handling functions. In the
data plane, topology is created with a set of nodes and
switches from the control plane. The Multipath algorithm
computes paths between source to destination, and per-
formance is measured with iPerf and wire shark with Mini-
Net as the simulation environment. The following sec-
tions present the simulations, network setup, and results.

Pseudocode
1. Define function get_paths(self, sr, dj):
 return paths
 DFS algorithm to find paths

125Volume 16, Number 2, 2025

2. Define function get_link_cost(self, si, sj):
 set er1 to self.adjacency[si][sj]
 set er2 to self.adjacency[si][sj]
 set bl to min(self.bandwidths[si][sj],
 self.bandwidths[si][sj])
 set ewi to reference_bw/bl
 return ewi
3. Define function get_path_cost(self, path):
 return cost
4. Define function get_optimal_paths(self, sr, dj):
 # sr is switch, dj is switch
 set paths to self.get_paths(sr, dj)
 set paths_count to length(paths)
 if length(paths) < maxi_paths
 else maxi_paths
 return sorted(all_set_of_paths)
5. Define function add_ports_to_paths(self, paths,

first_port, last_port):
 # assigning ports to path
6. return paths_p

Fig. 2 represents the flow of work. This includes To-
pologies applied and simulations taken on multipath
routing algorithm with implementation on POX con-
troller.

Fig. 2. Methodology

4. SIMULATION SETUP

We conduct simulations using MiniNet [36]. Stanford
University develops it. It includes routers, switches,
end-hosts, and SDN controllers, which are of OpenFlow
and allow users to create networks with the MiniEdit
tool via a graphical interface. Users can test different
topologies, and it has a feature of CLI support to create
and test switches and routers. Mininet supports wide-

ranging controllers for flexible simulations. It gears up
its usage in various sectors like education, research,
and development by allowing Operating system virtu-
alization with hundreds of nodes [37, 38].

We worked with Mininet on the 2.3.0 version of the
default operating system with ubuntu-20.04.4. con-
troller installed with POX-2.0, switch is over 2.5.4, SBI
is OpenFlow 1.3 with iperf 2.0.13 also used Wireshark
with 4.0.6 to analyze the network.

4.1. TOPOLOGIES

Topologies can be created either by using commands
or through MiniEdit. MiniNet also supports creating to-
pology with Python code. Here, we have used all three
ways to create topologies, and this work presents a per-
formance evaluation of the Multipath routing algorithm
with Fat tree, Tree, and Custom Topologies. Python code
creates a Fat Tree topology, Tree Topology with MiniEdit,
and Custom topology through commands, but we have
drawn all topologies in MiniEdit for better visual clarity.
Fig. 3 shows the Fat Tree topology. It has three levels,
where the core level is to create redundant paths, con-
nect to aggregate switches, and ensure multiple paths
between pairs of edge switches. The middle level is the
aggregation level. It distributes traffic to the core level
received from edge-level switches. The edge level has
end host devices that directly connect to the network. In
fat tree topology, each end node connects to the top of
the rack switch. Fat Tree was chosen because of its iden-
tical bandwidth for bisections; each layer has the same
aggregated bandwidth. Also, each port has the same
speed at the end host.

Fig. 3. Tree Topology

Observations are also taken on custom topology
with superuser privileges with a remote controller lo-
cated at 127.0.0.1. This means the controller can run on
the same machine as MiniNet. Open vSwitch is a switch
type, and the system sets the OpenFlow protocol ver-
sion to 1.3. A custom tree topology creator designs it
with a fan-out of 3, which means each node has three
child nodes, and depth means several levels. Fig. 4
shows the custom topology. The controller creates the
tree topology with nine switches, connecting them to
10 nodes in various ways.

126 International Journal of Electrical and Computer Engineering Systems

The system generates these three topologies at the
data plane while testing occurs at the control plane
using a POX controller. A multipath routing algorithm
calculates a path between dedicated nodes, as shown
in Pseudocode.

Fig. 4. Custom Topology

Fig. 5. Tree Topology

5. SIMULATION SETUP

Simulations are carried out with a POX controller on
three topologies under three test cases. In every test
case, the common factor is finding the multiple paths
between node one and node two and calculating
throughput, jitter, and packet loss ratio with the help of
a network analyzing tool. Measured TCP and UDP flows.
Test case 1 includes Testing with Fat Tree topology, Test
case 2 is with custom topology, and Test case 3 is with
Tree topology.

5.1. TEST CASE 1: FAT-TREE

POX implements the multipath algorithm on fat-tree
topologies, and We use the iPerf benchmark utility to
obtain TCP and UDP flows and observe bandwidth per-
formance. When we execute "Fat Tree.py" in the termi-

nal, it creates topologies according to the SDN archi-
tecture in what can be called a data plane. In the POX
environment, the system opens another terminal to
execute the Multipath algorithm. Links start observed
between dedicated nodes after executing h1 ping h16.
or we use Xtrem h1, h16, and ping from h1 to h16.with
set of perf commands and note TCP and UDP flows.

Table 2. TCP and UDP Flow-Fat Tree with Multipath
Routing Algorithm

C.T TCP FLOW UDP FLOW
Interval

(sec)
Bandwidth
(Gbits/sec)

Bandwidth
(Mbits)

Jitter
(ms)

Lost/Total
Datagram

0.0- 1.0 17.2 10.7 0.014 56/ 984

1.0- 2.0 18.7 10.6 0.084 8/ 894

2.0- 3.0 19.7 10.5 0.099 5/ 983

3.0- 4.0 14.5 10.4 0.104 9/ 898

4.0- 5.0 18.6 10.6 0.184 1/ 882

5.0- 6.0 17.3 10.5 0.211 4/ 888

6.0- 7.0 17.8 10.7 0.245 5/ 862

7.0- 8.0 17.6 10.2 0.017 31/ 898

8.0- 9.0 18.6 10.5 0.011 26/ 899

9.0-10.0 17.18 10.6 0.039 3/898

0.0-10.0 17.71 10.53 0.098 148/9085

We measure throughput from TCP and UDP flow and
observe jitter and packet loss from the UDP flow. Table
2 shows the Fat Tree TCP flow and UDP flow.

5.2. TEST CASE 2: CUSTOM TOPOLOGy

Switch connected to 3 more switches. Each switch
at the third level connects to three hosts (Hosts "h1" to
"h8"). In the sudo command, we specified the control-
ler as remote and IP 127.0.0.1; this specifies the control-
ler for the MiniNet network. Fig. 4 shows the custom
topology when Ping is executed between the H1 and
H27 respective switches, making the path from source
to destination. The multipath algorithm is applied, and
TCP and UDP flow are noted in Table 3. Congestion can
be avoided by carefully designing the custom topology.

Table 3. TCP and UDP Flow-Custom topology with
Multipath Routing Algorithm

C.T TCP FLOW UDP FLOW
Interval

(sec)
Bandwidth
(Gbits/sec)

Bandwidth
(Mbits)

Jitter (ms) Lost/Total
Datagram

0.0- 1.0 18.98 10.7 0.106 123/ 983

1.0- 2.0 16.3 10.2 0.084 26/ 867

2.0- 3.0 17.5 10.3 0.029 44/ 895

3.0- 4.0 16.5 10.2 0.208 66/ 899

4.0- 5.0 16.6 10.2 0.134 52/ 865

5.0- 6.0 18.6 10.2 0.101 2/ 892

6.0- 7.0 18.5 10.1 0.035 2/ 899

7.0- 8.0 18.3 10.2 0.019 5/ 883

8.0- 9.0 19.4 10.2 0.099 6/ 898

9.0-10.0 19.5 10.1 0.102 2/ 899

0.0-10.0 18.01 10.24 0.086 328/8980

127Volume 16, Number 2, 2025

Table 4. TCP and UDP Flow-Tree topology with
Multipath Routing Algorithm

C.T TCP FLOW UDP FLOW

Interval
(sec)

Bandwidth
(Gbits/sec)

Bandwidth
(Mbits)

Jitter
(ms)

Lost/Total
Datagram

0.0- 1.0 18.98 10.7 0.965 449/889

1.0- 2.0 16.3 10.2 3.208 21/ 867

2.0- 3.0 17.5 10.3 2.252 39/ 895

3.0- 4.0 16.5 10.2 0.803 75/ 899

4.0- 5.0 16.6 10.2 0.542 49/ 865

5.0- 6.0 18.6 10.2 0.412 22/ 892

6.0- 7.0 18.5 10.1 0.619 2/ 899

7.0- 8.0 18.3 10.2 1.369 12/ 883

8.0- 9.0 19.4 10.2 0.446 82/ 898

9.0-10.0 19.5 10.1 0.505 86/ 899

0.0-10.0 18.01 10.24 1.019 651/8886

5.3. TEST CASE 3: TREE TOPOLOGy

Controller, The system connects controller c0 to
switches s1 through s9, facilitating node connections.
The nodes communicate with each other via the switch-
es and controllers. Fig. 5 displays the structure of the tree
topology. Table 4 lists TCP and UDP flows after executing
the tree topology in the data plane and running the mul-
tipath algorithm at the control plane with the POX con-
troller. When the system executes the ping command
from node 1 to node eight, it computes multiple paths,
including one optimal path selected for transmission.
Tree topology experiences congestion due to its archi-
tecture, and most packets queue at the root node. Tree
topology experiences congestion due to its architecture,
and most packets queue at the root node.

6. RESULT ANALySIS

The simulation section notes the results of executing
the multipath algorithm on Fat Tree, Custom, and Tree
topologies. In this section, the quality-of-service pa-
rameters, which are throughput, jitter, and packet loss,
will be calculated from the results.

6.1. ThROUGhPUT

Throughput is measured in the context of the data
rate at which data is successfully transmitted between
source and destination or how many packets are de-
livered per second. This section discusses the Through-
put of Fat Tree, Custom, and Tree topologies and their
performances upon applying the multipath routing al-
gorithm. The choice of topology plays a crucial role in
identifying network performance.

6.1.1 Fat Tree Topology

This solution suits multipath connections between
nodes best and organizations mainly use it in data cen-
ters requiring the highest throughput and crucial load
balancing. Fat Tree is designed to produce high band-
width by allowing traffic to distribute across multiple
paths between dedicated nodes, reducing congestion

and improving the service's overall quality. POX serves as
a controller that effectively leverages multipath routing to
maximize throughput. Table 4 shows the transfer rate of
Fat Tree topology with ten intervals produced an average
of 2.81GBytes of throughput with TCP flow. In the case of
UDP, a throughput rate of 1.256 Mbytes of data is noted.

6.1.2 Custom Topology

Custom topology performance depends on the layout,
how it supports multipath, and how it balances the load
in various paths. Due to its adequate redundancy with
path multiplicity, it achieves a high throughput, though
less than Fat Tree's. If multiple paths are available between
dedicated nodes, optimal performance is achieved by
carefully designing configurations to eliminate bottle-
necks and enhance throughput. Table 5 shows TCP flow
and UDP flows noted over custom topology. TCP flow
noted an average of 2.39 GBytes of throughput, whereas,
in the case of UDP flow, it is 1.39 Mbytes

6.1.3 Tree Topology

Tree topology is more prone to bottlenecks and lim-
ited redundancy, so throughput is low compared to
well-designed custom and fat-tree topologies

Near the root, congestion may occur. However, mul-
tipath routing will distribute traffic across available
paths. However, there needs to be more path diver-
sity, and it cannot utilize the benefits of multipath
routing. There is a higher chance of congestion at the
root, which limits the throughput. Table 6 displays
the transfer rates of TCP and UDP flows, observing
rates of 2.21 GBytes and 1.21 MBytes. Ultimately, we
can conclude that the POX controller achieves better
throughput with Fat Tree than with custom and tree
topologies when applying multipath routing. The de-
sign of the Fat Tree itself supports multiple paths that
are sometimes redundant and have high bandwidth.
Suppose we design a custom topology with redun-
dancy and multiple paths. In that case, a tree topology
with minimal bottlenecks and careful path handling
can also enable these topologies to produce high
throughput. The TCP flow of the three topologies is
compared in Fig. 6, while Fig. 7 displays the UDP flow.

Fig 6. Throughput -TCP flow over various topologies

128 International Journal of Electrical and Computer Engineering Systems

Fig 7. Throughput -UDP flow over various
topologies

6.2. JITTER

Inconsistency of arrival time at the destination is
known as jitter. Here, packets have irregular interval
times. This variability we will denote as jitter. The main
reasons for jitter may include congestion in the route,
which may be due to load packets that may take dif-
ferent routes to reach the destination or a controller
that introduces delays to process packets when it en-
counters enormous traffic. The POX controller is pro-
grammed and configured to manage the jitter. Path
selection, dynamic path adjustment, and monitoring
traffic influence the process. POX includes a real-time
module that monitors traffic by maintaining a thresh-
old for jitter. If it encounters massive traffic, the module
reroutes the traffic to a less congested route to avoid
congestion.

6.2.1 Fat-Tree Topology

This topology balances traffic by allowing it to flow
on multiple paths in a balanced way, which reduces
congestion on a single path. So, it produces less jitter
than tree topology and custom topology. It also main-
tains consistent latency across paths, which minimizes
jitter. The main reason is that packets are routed to
the destination in a similar path length to synchronize
packet delivery. POX controller avoids paths with high
inconsistency. The fat tree structure maintains consis-
tency in fluctuating traffic conditions, ensuring less
jitter. Up on applying multipath routing on fat-tree,
noted an average of 0.09ms of jitter.

6.2.3 Custom Topology

The design of a custom topology affects jitter. Careful
topology design may yield less jitter. Path lengths and
capacities produce varying jitters. Paths are balanced in
terms of capacity and latency, which achieves low jitter.
The POX controller performs traffic management and
path selection to control traffic across paths to mini-
mize jitter. We note an average of 0.86ms of jitter over
ten intervals.

Fig 8. Jitter over various topologies

6.2.3 Tree Topology

As Tree topology suffers from limited path redundancy,
the route node gets congested which leads to delays. Lim-
ited number of paths makes the queues for packets. Po-
tential length differences can introduce inconsistency in
packet delivery times, resulting in higher jitter. Managing
jitter is more challenging due to the limited path range
and latent congestion. The POX controller may struggle to
maintain consistent path performance, leading to incon-
stant latency and increased jitter. Table V shows an aver-
age of 1.09 ms of jitter. Jitter is managed if multiple paths
between source and destination are the same length.
Among all topologies, the custom topology achieves less
jitter, though the fat tree is designed well. Figure 8 shows a
comparison of fat tree, custom, and tree topology.

6.3. PACKET DELIVERy

The packet delivery ratio is calculated from the num-
ber of packets lost to send. To find the number of pack-
ets delivered, subtract the lost packets from the sent
packets. Measuring the network performance will be
helped by a smaller number of lost packets. Traffic con-
gestion and link failures are a few reasons for packet loss.
Buffering also may lead to packet loss. To achieve less
packet loss with the POX controller, the critical factor is
to choose a topology with redundancy, and the control-
ler should able to manage traffic over multiple paths

6.3.1 Fat-Tree Topology

As it has high redundancy and availability of multiple
paths between any pair of nodes, it helps to distribute
traffic more evenly across paths, which reduces con-
gestion. In case of link failure, redundancy will help to
minimize packet loss. Multipath routing prevents load
on a single path and balances by enrooting to another
path, which reduces packet loss. Path diversity in fat-
tree topologies helps mitigate packet loss even under
varying traffic conditions. Table 6 shows a packet deliv-
ery ratio of 10 intervals with 148 packets lost over 9085
packets, resulting in a 1.62 % packet loss ratio.

129Volume 16, Number 2, 2025

6.3.2 Custom Topology

Packet loss in custom topology depends on design
with adequate redundancy, and a balanced path can
achieve less packet loss. However, its limitations with
redundancy suggest that multipath routing could be
more effective in foreseeing packet loss. The configura-
tion of the POX controller effectively utilizes multipath
routing, although performance depends on traffic pat-
terns and the network design. Still applying multipath
routing algorithm on custom topology acquired a loss
ratio of 3.65%, where 328 packets were lost during the
transmission of 8980 packets over ten intervals from
source to destination.

6.3.3 Tree Topology

Tree topology mostly has a problem of enormous
packet loss due to a hierarchical structure where traf-
fic is congested at the root, which increases packet loss
when the network hits heavy traffic. Multipath routing
helps distribute the traffic over alternative paths, signif-
icantly reducing packet loss, though lack of path diver-
sity and redundancy limits its effectiveness. Multiple
paths may exist, but they differ in factors like Capacity
and not equal size.

Fig 9. Packet delivery over Fat-Tree, Custom, Tree

The POX controller may need to help distribute traf-
fic efficiently enough to avoid these losses. So, it wit-
nessed more packet loss than the other topologies.
During ten intervals, the transmission lost 651 out of
8886 packets, producing a 7.32% packet loss ratio. Fig-
ure 9 shows comparisons of fat-tree, custom, and tree
topologies regarding packet loss and packets sent.Fat-
tree topology showed better performance, as shown
in Figure 9. The bar chart over interval 1 to interval
ten shows packet loss, where each bar represents the
packets delivered at the bottom and the top.at interval
one, the tree topology had a packet loss of 440 packets
and sent 449 packets. Later, they reduced the packet
loss percentage in the tree topology. All three topolo-
gies sent packets without a considerable loss in a few
intervals. In the end, fat-tree performed well when
multipath routing was applied with the POX controller
over topology with quality-of-service parameters like
throughput, jitter, and packet loss ratio.

7. CONCLUSION

Software Defined Network (SDN) enable developers
to build SDN applications due to architecture compat-
ibility, which separates the control plane and data plane

and allows centralized network management with pro-
grammability. POX controller is an open-source and
Python-based controller that works with MiniNet as
it supports Python-based coding to create a network.
Congestion is the most significant problem; We need
immediate solutions to avoid data loss. Selecting the
optimal path repeatedly between dedicated nodes may
lead to overload and congestion. Multipath routing has
been introduced in SDN to address this problem. It iden-
tifies multiple paths between all nodes with Depth First
Search and selects one path among available paths. If
the selected path becomes congested, the system will
reroute packets to the following path. This action can re-
duce congestion, and tested this algorithm on Fat-Tree,
custom, and Tree topologies using the POX controller.

Throughput, jitter, and packet loss ratio are the pa-
rameters used to measure the performance of the mul-
tipath routing algorithm. Fat-Tree showed improved
performance over remaining topologies due to redun-
dancy and path diversity, which are limited in remain-
ing topologies. If a custom topology is designed well,
then this can also produce better throughput. In the
case of a tree topology, the root itself is getting con-
gested, so packet loss is more with tree topology. In the

130 International Journal of Electrical and Computer Engineering Systems

future, the Multipath routing algorithm is going to be
tested with the Ryu controller.

This work helps the researcher who wants to work
with optimal path identification over various topologies
and load balancing over the POX controller, as well as
with POX and various topologies. Fat-tree topology can
be selected when the choice of performance metric is
throughput and less packet loss. They can even test cus-
tom topology with proper design. Tree topology clearly
shows the occurrence of congestion at the root itself.

8. REFERENCES

[1] A. Ram, S. K. Chakraborty, “Analysis of Software-

Defined Networking (SDN) Performance in Wired

and Wireless Networks Across Various Topologies,

Including Single, Linear, and Tree Structures”, In-

dian Journal of Information Sources and Services,

Vol. 14, No. 1, 2024, pp. 39-50.

[2] Y. Zhang, M. Chen, “Performance evaluation of

Software-Defined Network (SDN) controllers us-

ing Dijkstra’s algorithm”, Wireless Networks, Vol. 28,

2022, pp. 3787-3800.

[3] J. Ma, R. Jin, L. Dong, G. Zhu, X. Jiang, “Implementa-

tion of SDN traffic monitoring based on Ryu con-

troller”, Proceedings of the International Sympo-

sium on Computer Applications and Information

Systems, 19 May 2022.

[4] N. Gupta, M. S. Maashi, S. Tanwar, S. Badotra, M.

Aljebreen, S. Bharany, “A Comparative Study of

Software Defined Networking Controllers Using

Mininet”, Electronics, Vol. 11, No. 17, 2022, p. 2715.

[5] T. H. Obaida, H. A. Salman, “A novel method to find

the best path in SDN using firefly algorithm”, Jour-

nal of Intelligent Systems, Vol. 31, No. 1, 2022, pp.

902-914.

[6] M. C. Saxena, M. Sabharwal, P. Bajaj, “Exploring path

computation techniques in Software-Defined Net-

working: A review and performance evaluation of

centralized, distributed, and hybrid approaches”,

International Journal on Recent and Innovation

Trends in Computing and Communication, Vol. 11,

No. 9s, 2023, pp. 553-567.

[7] M. Caria, A. Jukan, M. Hoffmann, “SDN partitioning:

A centralized control plane for distributed routing

protocols”, IEEE Transactions on Network and Ser-

vice Management, Vol. 13, No. 3, 2016, pp. 381-393.

[8] D. R. Akbi, W. Suharso, “A comparison of Ryu and

Pox controllers: A parallel implementation”, Journal

of Intelligent Systems, Vol. 9, No. 1, 2024, pp. 1-9.

[9] E. Adedokun, A. O. Adesina, O. O. Olabiyisi, “Im-

proved extended Dijkstra's algorithm for software

defined networks”, Proceedings of the Interna-

tional Conference on Computing, Networking and

Informatics, Lagos, Nigeria, 2017, pp. 1-6.

[10] “POX controller manual current documentation”,

https://noxrepo.github.io/pox-doc/html/ (ac-

cessed: 2022)

[11] B. Lantz, N. Handigol, B. Heller, V. Jeyakumar, “In-

troduction to Mininet”, Mininet Project, https://

github.com/mininet/mininet/wiki/Introduction-

to-Mininet (accessed: 2022)

[12] R. Mohammadi, A. Nazari, M. Nassiri, M. Conti, “An

SDN-based framework for QoS routing in Internet

of Underwater Things”, Telecommunication Sys-

tems, Vol. 78, No. 2, 2021, pp. 253-266.

[13] M. I. Salman, “A hybrid SDN-multipath transmis-

sion for a reliable video surveillance system”, Asso-

ciation of Arab Universities Journal of Engineering

Sciences, Vol. 29, No. 2, 2022, pp. 46-54.

[14] R. Patel, N. Gupta, “Comparative evaluation of SDN

controllers: POX, Ryu, and OpenDaylight”, IEEE Ac-

cess, Vol. 11, 2023, pp. 29015-29028.

[15] J. Smith, L. Zhang, “Enhancements in POX SDN

topologies for improved network management”,

Journal of Network and Computer Applications,

Vol. 75, No. 1, 2023, pp. 45-56.

[16] I. Koulouras, S. V. Margariti, I. Bobotsaris, E. Ster-

giou, C. Stylios, “Assessment of SDN controllers in

wireless environments using a multi-criteria tech-

nique”, Information, Vol. 14, No. 9, 2023.

[17] A. Wilson, C. Lee, “Advancements in Ryu SDN

controller for scalable network topologies”, IEEE

Transactions on Network and Service Manage-

ment, Vol. 19, No. 4, 2022, pp. 789-800.

[18] L. Zhu, M. M. Karim, K. Sharif, C. Xu, F. Li, X. Du, M.

Guizani, “SDN controllers: A comprehensive analy-

sis and performance evaluation study”, ACM Com-

puting Surveys, Vol. 53, No. 6, 2020.

[19] S. Lee, K. Park, “Ryu SDN framework: Design and per-

formance”, IEEE Transactions on Network and Service

Management, Vol.17, No. 2, 2020, pp. 123-135.

131Volume 16, Number 2, 2025

[20] P. E. Numan, K. M. Yusof, M. N. B. Marsono, S. K. S.
Yusof, M. H. B. M. Fauzi, S. Nathaniel, M. A. B. Baharu-
din, “On the latency and jitter evaluation of software
defined networks”, Bulletin of Electrical Engineering
and Informatics, Vol. 8, No. 4, 2019, pp. 1507-1516.

[21] A. S. Sajid, S. F. N. Niloy, K. Hossain, T. Rahman,
“Comprehensive evaluation of shortest path algo-
rithms and highest bottleneck bandwidth algo-
rithm in software-defined networks”, Report, De-
partment of Computer Science and Engineering,
BRAC University, Bangladesh, 2018.

[22] J. P. Duque, D. D. Beltrán, G. P. Leguizamón, “Open-
Daylight vs. Floodlight: Comparative analysis of a
load balancing algorithm for software defined net-
working”, International Journal of Communication
Networks and Information Security, Vol. 10, 2018,
pp. 348-357.

[23] N. Farrugia, V. Buttigieg, J. Briffa, “A globally opti-
mized multipath routing algorithm using SDN”, in
Proceedings of the IEEE International Conference
on Innovation Networking and Services, Paris,
France, 19-22 February 2018, pp. 1-8.

[24] A. Abdul-hafiz, E. A. Adedokun, S. Man-Yahya, “Im-
proved extended Dijkstra’s algorithm for software
defined networks”, International Journal of Applied
Information Systems, Vol. 12, No. 8, 2017, pp. 22-26.

[25] I. Z. Bholebawa, U. D. Dalal, “Design and perfor-
mance analysis of OpenFlow-enabled network
topologies using Mininet”, International Journal of
Computer Communication Engineering, Vol. 5, No.
6, 2016, pp. 419-429.

[26] W. Yahya, A. Basuki, J. R. Jiang, “The extended Dijks-
tra’s-based load balancing for OpenFlow network”,
International Journal of Electrical and Computer
Engineering, Vol. 5, No. 2, 2015, pp. 289-296.

[27] X. Zhang, Y. Lu, Q. Wu, “Tree-based topology de-
sign in software-defined networks”, Proceedings
of the IEEE Global Communications Conference,
2015, pp.1-6.

[28] A. L. Stancu, S. Halunga, A. Vulpe, G. Suciu, O. Fratu,
E. C. Popovici, “A comparison between several soft-
ware defined networking controllers”, Proceedings
of the 12th International Conference on Telecom-
munication in Modern Satellite, Cable and Broad-

casting Services, Nis, Serbia, 14-17 October 2015,

pp. 223-226.

[29] N. Naimullah, M. Imad, M. Hassan, M. Afzal, S. Khan,

A. Khan, “POX and RYU controller performance

analysis on Software Defined Network”, EAI En-

dorsed Transactions on Internet of Things, Vol. 9,

2023.

[30] M. N. A. Sheikh, I.-S. Hwang, M. S. Raza, M. S. Ab-

Rahman, “A qualitative and comparative perfor-

mance assessment of logically centralized SDN

controllers via Mininet emulator”, Computers, Vol.

13, No. 4, 2024, p. 85.

[31] I. Koulouras, I. Bobotsaris, S. V. Margariti, E. Ster-

giou, C. Stylios, “Assessment of SDN Controllers in

Wireless Environment Using a Multi-Criteria Tech-

nique”, Information, Vol. 14, 2023, p. 476.

[32] Y. Wang, L. Li, Y. Zhao, “Optimizing tree-based to-

pologies in SDN: Techniques and applications”,

Computer Communications, Vol. 217, 2023, pp. 10-

22.

[33] Y. Chen, J. Lee, “Integrating Dijkstra’s algorithm

with the POX SDN controller for network optimiza-

tion and path computation”, Computer Networks,

Vol. 211, 2023, p. 108160.

[34] D. Cabarkapa, D. Rancic, “Performance analysis of

Ryu-POX controller in different tree-based SDN

topologies”, Advances in Electrical and Computer

Engineering, Vol. 21, No. 3, 2021, pp. 47-56.

[35] S. Sryheni, “Introduction to depth first search al-

gorithm (DFS)”, Baeldung on Computer Science,

www.baeldung.com (accessed: 2023)

[36] “Mininet commands”, available online: http://mini-

net.org/ (accessed: 2022)

[37] K. K. Sharma, M. Sood, “Mininet as a container-

based emulator for software defined networks”,

International Journal of Advanced Research in

Computer Science and Software Engineering, Vol.

4, 2014, pp. 681-685.

[38] K. K. Sharma, M. Sood, “Mininet as a container-

based emulator for software defined networks”,

International Journal of Advanced Research in

Computer Science and Software Engineering, Vol.

4, 2014, pp. 681-685.

