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Abstract – The past decade witnessed a tremendous increase in network usage, and traditional network architecture is needed to 
sustain modern requirements with high throughput and minute delay. This leads to the introduction of software-defined networks. 
Congestion is a critical problem that needs attention, so identifying the optimal path is required to eliminate the congestion. 
Researchers introduce rigorous studies to identify optimal paths, some resulting in less data loss and delay. Identifying multiple paths 
between nodes may eliminate congestion. When the first best path is congested, selecting the second best path between nodes can 
solve the congestion problem. With this ideology, the multipath routing algorithm is developed and tested on Fat Tree, Custom, and 
Tree topologies, and performance is measured using quality of service factors. Considering Throuhput, Fat Tree produced 27.15% 
better throughput than the tree topology and 17.57% better than the custom topology, Whereas in the case of jitter, fat tree topology 
reduces jitter by about 90.36%compared to the tree topology, but custom topology reduces jitter by about 12.24% compared to the 
fat-tree topology. In the packet delivery ratio, fat tree topology reduces packet loss by about 77.87% compared to the tree topology. 
Fat tree topology reduces packet loss by about 55.62% compared to the custom topology. Fat tree performs best overall, with the 
highest throughput, lowest packet loss, and significantly reduced jitter compared to the tree and custom topologies.MiniNet is used 
to perform simulations. TCP and UDP flows are calculated with the iperf tool and tested on the POX Controller.
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1.  INTRODUCTION

The network's infrastructure is based on hardware, 
and a multitude of devices, like switches and routers, 
work for data forwarding and operate with rules and 
requirements. This is resisting convolution networks' 
upgrades to services [1]. Network usage has immense-
ly increased over the past decade, and traditional net-
works are unable to withstand due to the unadoptable 
nature of their architectures [2]. 

To meet modern requirements, layered architec-
ture is unsuitable, so the architecture is designed into 
planes in software-defined networks. Every plane is 

dedicated to a particular responsibility and can add 
programmability to SDN, which enhances the chances 
of opting for the SDN. The data plane is tightly packed 
with various data forwarding devices, and the control 
plane works as intelligence to network [3]. 

Data planes are designed to work with switches and 
to create topologies. POX controller is used for routing 
decisions, traffic monitoring, and identifying the optimal 
path between two nodes and computing the shortest 
route; multipath algorithm is implemented with the help 
of POX controller on Fat Tree and Custom topologies.

The main aim of separating planes is to use resources 
efficiently and control and secure them. Due to that, 
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numerous controllers like Floodlight, RYU, POX, Open-
DayLight, and POX have been developed. SDN has a 
wide range of Controllers, and selecting the optimum 
controller depends on the application. Gupta et al. as-
sess and contradict various SDN controllers, and simu-
lations are conducted with Mininet [4].

Control planes are responsible for routing decisions, 
using open flow protocol as an interface. Using the 
open-flow protocol, the controller will identify paths 
across switches for data packets [5]. Centralized and 
distributed path computations are well-known ap-
proaches with prominent results due to their dynamic 
resource handling. The author analyzed these tech-
niques and performed simulations to test critical fac-
tors such as latency, throughput, and fault tolerance in 
various traffic patterns with varying loads. The research 
provided valuable insights into optimized path com-
putation with an extensive network and low latency. 
Results reveal that the centralized approach is supe-
rior but needs more scalability. Whereas distributed 
approaches face challenges with higher latency, the 
author concludes that hybrid models perform best in 
scalability and fault tolerance, but security issues must 
be addressed [6].

Caria et al. proposed a model that combines distrib-
uted routing with a centralized control plane, which al-
lows centralized decision-making. Results are noted on 
parameters like control overhead and scalability. The 
author concluded that this approach could manage 
large-scale features [7].

Denar et al. mentioned that handling massive data 
by switches will downgrade the performance, so the 
author suggested threading and multiprocessing, 
which are parallel programming methods that improve 
controller performance on CPU time consumption, 
memory usage, and execution time and it concludes 
that Ryu produced superior results over POX [8]. The 
application plane uses logical programs handled by 
APIs and deploys software, routing, and policies. Planes 
are communicated with two sets of interfaces: south-
ern and northern [9]. SDN architecture, which includes 
various planes, is shown in Fig. 1.

 If data transmission needs to occur between two 
dedicated nodes over a network, then we need to 
identify the optimal path between nodes. Then trans-
mission will happen. The main drawback of selecting 
the same optimal path every time is that it leads to con-
gestion, which leads to network performance degrada-
tion. We address this problem by identifying multiple 
paths between nodes, regardless of the cost and length 
of the paths. We measured network performance with 
Throughput, jitter, and packet loss. The controller used 
in the control plane influences these metrics and the 
overall network design. The multipath algorithm me-
ticulously tests three distinct topologies using the POX 
controller within the innovative Software-Defined Net-
working (SDN) framework. We carry out simulations us-
ing a MiniNet simulator.

The Fat Tree topology performed well over custom 
and Tree topologies in Throughput and packet loss. On 
the other hand, a custom topology also demonstrated 
slightly improved performance, with less jitter than the 
Fat Tree topology.

The remaining sections explain the methodology fol-
lowed by the simulations taken over topologies with 
the POX controller. The result analysis showcases the 
QOS factor over topologies through extensive bench-
marking using the iPerf tool.

2. LITERATURE REVIEW

2.1. SDN CONTROLLERS

This research mainly concentrates on increasing the 
throughput of network with optimal path algorithm, 
Optimal path will allow packet loss routing from source 
to given destination without congestion. static routers 
are not suitable if there is a drastic increase of load in 
network also fail to maintain if nodes are added routing 
tables are fail to control this may be result link failure 
and congestion in SDN. SDN controller computes path 
and maintains network information. So, it is called a 
central part of the SDN. The network is more efficiently 
managed with the help of OpenFlow protocol. SDN 
controller forwards the packets from source to destina-
tion to establish the path we are using. Multi-path rout-
ing is tested with a POX controller, and performance is 
measured with QoS factors.

2.2. EXPLORING ThE FUNCTIONALITy OF SDN 
 CONTROLLER OVER DIFFERENT 
 APPROAChES

POX is inherited from NOX Controller, written in py-
thon code and implemented in OpenFlow protocol. It 
is mainly used for academic research due to its ease 
of use and flexibility to develop network system and 

Fig. 1. SDN architecture
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control applications. MiniNet is used to build POX con-
troller code available from GitHub [10, 11]. This can run 
multiple programs like switch, load balance and hub. 

Mohammadi et al. compared conventional and SDN 
based on throughput, packet loss, and delay on three 
typologies with Wire shark and concluded that linear 
topology performed better than tree topology in delay 
and throughput [12]. According to Salman et.al., with 
OpenFlow protocol, POX can directly access forward-

ing devices which is easy and perfect for experiments 
and demonstrations [13]. In this paper, we are going to 
test the shortest path computing algorithm on  custom 
and Fat Tree typologies with QoS as measuring factors.

Many researchers analyzed the performance of Ryu, 
POX, ONOS, OpenDaylight, and NOX on various typolo-
gies and with common factors like throughput, jitter, 
and packet loss. 

Table 1. shows a literature review

Author year Topology/Approach Controller QoS Parameters Simulators

Patel et al. [14] 2023 Comparative evaluation of SDN 
controllers

POX, Ryu, 
OpenDaylight

Response time, resource 
management Mininet-WiFi

Smith et al. [15] 2023 Enhancements in POX SDN 
topologies POX Latency, throughput, reliability Mininet

Koulouras et.al. 
[16] 2022 Abilene Network, GEANT 

Network
ONOS, Ryu 

OpenDaylight
Throughput, RTT latency, packet 

loss, and jitter Mininet

Wilson et al. [17] 2022 Ryu SDN controller for scalable 
topologies Ryu Scalability, resource efficiency Mininet

Liehuang Zhu et 
al. [18] 2020 IoT and VANETS POX, Ryu,Nox,ONOS, 

Floodlight, and OD Latency and throughput CBench, PktBlaster, 
and OFNet

Lee et al. [19] 2020 Ryu SDN framework Ryu Latency, throughput, resource 
management Mininet

Numan et al. [20] 2019 Single POX RTT, Jitter, Delay Ping, iperf, MiniNet

Sajid et al. [21] 2018 Round Robin & Random 
Algorithm POX response time and transaction 

per second MiniNet

Duque et al. [22] 2018 Custom POX Floodlight QoS Metrics Mininet

Farrugia et al. [23] 2018 Geant, Butterfly,Optimized 
peer- Multipath OpenDaylight throughput, jitter NS-3.26

Abdul-hafiz et 
al. [24] 2017 Abilene network/Improved 

Dijkstra’s Ryu throughput and latency MinNet,Iperf

Bholebawa et 
al.[25] 2016 OpenFlow-enabled network 

topologies POX Latency, throughput Mininet

Yahya et al. [26] 2015 Abilene network/Extended 
Dijkstra’s Ryu end-to-end latency, and 

throughput. MinNet,Iperf

Zhang et al. [27] 2015 Tree-based topology design POX Throughput, delay Mininet

Stancu et al. [28] 2015 Comparison of SDN controllers Various Performance metrics (response 
time, resource utilization) Mininet

Table 1 shows a literature review of different articles. 
A few authors have worked on Dijkstra’s performance 
evaluation on multiple controllers, as noted in the table 
below. Numerous authors worked on finding optimal 
paths and analyzing the performance of various topol-
ogies and controllers observed from the last decade; 
however, identifying multiple paths and testing them 
is presented in this work with the help of the POX con-
troller on topologies like Custom and Fat Tree. The mul-
tipath algorithm will be tested on various controllers 
with further available topologies.

Ram et al. analyze SDN performance in wireless and 
wired networks over single, linear, and tree topologies. 
They measure POX and RYU controllers’ metrics, such 
as jitter, Bitrate, and packet loss, with D-ITG, Mininet, 
and Mininet-WiFi simulators. The research found that 
wireless networks showed performance inconsistency 
through SDN-optimized resource management. How-
ever, this research has limited application in real-world 
applications, and more dynamic topologies need to be 
tested.

N. Ullah et al. worked on evaluating the performance 
of Dijkstra's algorithm on POX and Ryu controllers. 
They measured Jitter, throughput, packet loss, and 
packet delivery ratio with iperf, Wireshark, and the 
MiniNet simulation tool. Where RYU outpaced POX in 
terms of witnessing low Jitter and higher throughput, 
which is well suited for dynamic networks. In the case 
of packet loss, both have near results. Research can be 
done on more dynamic and hybrid topologies to know 
the adoptability of this approach [29].

 Several distributed but logically centralized controllers 
are available, including POX, Ryu, Floodlight, and Open-
DayLight; the author compared these with Ryu. Ryu per-
formed well due to its scalability and modularity; when 
testing the MniNet emulator, the author exhibited the 
controller's scalability and reliability and studied network 
performance under heavy loads over linear topology. The 
study briefly touches on operational styles but suggests 
further research is needed to fully understand how differ-
ent modes impact controller efficiency in various environ-
ments [30]. Therefore, we must test any algorithm that 
needs more in-depth testing with various topologies.
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Koulouras et al. worked on the evaluation of various 
SDN controllers customized for wireless networks. To 
assess controllers, the authors specially used an analyt-
ic hierarchy process, and they found Ryu and ONOS to 
be the best among other controllers. They concluded 
that selecting the controller plays a crucial role in eval-
uating the performance of any approach. Still, studies 
must fully explore wireless protocols like 5G and their 
adaptability to massive networks and dynamic condi-
tions. The type of topology also makes a difference in 
various quality of service factors [31]. 

 This is proved by exploring optimized tree-based 
network topology in SDN and applying various optimi-
zation strategies like routing to address inefficiencies in 
traditional topologies and manage traffic in a Dynamic 
way. Data centers use tree topology because it performs 
better under higher loads. Author prospered teaching 
produced a 10% increase in throughput and a 15 %re-
duction in latency. However, the author stuck to only 
tree topology and did not do rigorous testing on dynam-
ic networks [32]. Identifying the optimal path is achieved 
by Dijkstra's algorithm, and with the help of the POX con-
troller, path computation and network performance are 
enhanced. Real-time network conditions drive dynamic 
decisions on routing. Algorithm efficacy is measure with 
QOS factors. It also addressed critical issues in traditional 
routing and achieved noticeable throughput and less jit-
ter. However, it still lacks energy efficiency and is stuck to 
general topologies like mesh, star, and ring topologies 
where the structure is straightforward. Calculating the 
optimal path is simple [33]. 

Cabarkapa et al. conducted a performance analy-
sis of the Ryu-POX controller in various tree-based 
Software-Defined Networking (SDN) topologies. The 
methodology involves simulations in a controlled en-
vironment where different tree-based topologies, such 
as binary and balanced trees, are evaluated [34]. The 
quality-of-service factors measures the effectiveness of 
the Ryu and POX controllers in handling the load over 
these topologies and performance. The quality-of-ser-
vice factors measures the effectiveness of the Ryu and 
POX controllers in handling the load over these topolo-
gies and performance. This work proves that selecting 
topology depends on the traffic type and network de-
mand. Most of the researchers' work concluded that 
selecting a proper controller and testing with multiple 
topologies will help them evaluate any approach's per-
formance. Also, for finding an optimal path, Dijkstra is 
one role model, though congestion is a significant is-
sue. So, in this paper, we have used multipath routing 
tested on multiple topologies on a pox controller.

3.  PROPOSED MEChANISM

Congestion will occur when two dedicated nodes se-
lect the same optimal path for every transmission and 
must identify alternative paths to avoid network traffic. 
Calculating multiple paths between all available nodes 
in the network is necessary. The algorithm will choose an 

alternative path if the load floods the selected path. This 
proposed mechanism discusses selecting multiple paths 
based on bandwidth, link cost, and hop number between 
dedicated nodes. Multipath routing algorithm start with 
finding the routes with the help of the Depth First Search 
algorithm, whose working functionality, is to go deep 
from other adjacent nodes of the last visited node of a 
graph [35]. DFS algorithm is showed in table. With the DFS 
algorithm, every node is visited once to compute paths 
from each node to every other node.  Pseudocode  shows 
the Multipath routing algorithm. It starts with executing 
topology at one end; on another end, The system initial-
izes the POX controller and executes the Multipath algo-
rithm. After initializing the get path function, we will use 
DFS to acquire paths between dedicated nodes, as we ex-
pect paths between the source and destination. The rout-
ing table stores all paths, and Get-link-cost will be used to 
calculate path cost.

Algorithm:
RecurDFS(Gi, root):
Traversed <- set all nodes false initially
DFS(root)
function DFS(u):
if Traversed [ui] = true: 
return 
print(ui) 
Traversed [ui] <- true 
for each vi in G[ui]. neighbors (): 
DFS(vi)
Input: G is graph in Adjacency list where root 
 is starting node
Output: DFS order nodes in that graph are printed

At the start, bandwidth is initialized. B1 is the mini-
mum bandwidth requirement between si and sj, ewi is 
the bandwidth capacity of the edge between si and sj, 
and reference bw/bl refers to the baseline value. It en-
sures B1, the minimum bandwidth requirement met by 
the bandwidth available between si and sj, compared 
to the reference BW value.

We identify all possible paths and calculate the cost. 
The shortest Path will return a less costly option. Get Path 
will display several available paths and sort them in order. 
Upon selecting the Path,add_ports_to paths functions 
add ports for communication between hosts, which in-
volves various link and switch handling functions. In the 
data plane, topology is created with a set of nodes and 
switches from the control plane. The Multipath algorithm 
computes paths between source to destination, and per-
formance is measured with iPerf and wire shark with Mini-
Net as the simulation environment. The following sec-
tions present the simulations, network setup, and results.

Pseudocode 
1. Define function get_paths(self, sr, dj):
 return paths
 DFS algorithm to find paths
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2. Define function get_link_cost(self, si, sj):
 set er1 to self.adjacency[si][sj]
 set er2 to self.adjacency[si][sj]
 set bl to min(self.bandwidths[si][sj],       
 self.bandwidths[si][sj])
 set ewi to reference_bw/bl
 return ewi
3. Define function get_path_cost(self, path):
 return cost
4. Define function get_optimal_paths(self, sr, dj):
 # sr is switch, dj is switch
 set paths to self.get_paths(sr, dj)
 set paths_count to length(paths)
 if length(paths) < maxi_paths 
  else maxi_paths
 return sorted(all_set_of_paths)
5. Define function add_ports_to_paths(self, paths,  

first_port, last_port):  
  # assigning ports to path
6. return paths_p

Fig. 2 represents the flow of work. This includes To-
pologies applied and simulations taken on multipath 
routing algorithm with implementation on POX con-
troller.

Fig. 2. Methodology

4. SIMULATION SETUP

We conduct simulations using MiniNet [36]. Stanford 
University develops it. It includes routers, switches, 
end-hosts, and SDN controllers, which are of OpenFlow 
and allow users to create networks with the MiniEdit 
tool via a graphical interface. Users can test different 
topologies, and it has a feature of CLI support to create 
and test switches and routers. Mininet supports wide-

ranging controllers for flexible simulations. It gears up 
its usage in various sectors like education, research, 
and development by allowing Operating system virtu-
alization with hundreds of nodes [37, 38]. 

We worked with Mininet on the 2.3.0 version of the 
default operating system with ubuntu-20.04.4. con-
troller installed with POX-2.0, switch is over 2.5.4, SBI 
is OpenFlow 1.3 with iperf 2.0.13 also used Wireshark 
with 4.0.6 to analyze the network.

4.1. TOPOLOGIES

Topologies can be created either by using commands 
or through MiniEdit. MiniNet also supports creating to-
pology with Python code. Here, we have used all three 
ways to create topologies, and this work presents a per-
formance evaluation of the Multipath routing algorithm 
with Fat tree, Tree, and Custom Topologies. Python code 
creates a Fat Tree topology, Tree Topology with MiniEdit, 
and Custom topology through commands, but we have 
drawn all topologies in MiniEdit for better visual clarity. 
Fig. 3 shows the Fat Tree topology. It has three levels, 
where the core level is to create redundant paths, con-
nect to aggregate switches, and ensure multiple paths 
between pairs of edge switches. The middle level is the 
aggregation level. It distributes traffic to the core level 
received from edge-level switches. The edge level has 
end host devices that directly connect to the network. In 
fat tree topology, each end node connects to the top of 
the rack switch. Fat Tree was chosen because of its iden-
tical bandwidth for bisections; each layer has the same 
aggregated bandwidth. Also, each port has the same 
speed at the end host.

Fig. 3. Tree Topology

Observations are also taken on custom topology 
with superuser privileges with a remote controller lo-
cated at 127.0.0.1. This means the controller can run on 
the same machine as MiniNet. Open vSwitch is a switch 
type, and the system sets the OpenFlow protocol ver-
sion to 1.3. A custom tree topology creator designs it 
with a fan-out of 3, which means each node has three 
child nodes, and depth means several levels. Fig. 4 
shows the custom topology. The controller creates the 
tree topology with nine switches, connecting them to 
10 nodes in various ways. 
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The system generates these three topologies at the 
data plane while testing occurs at the control plane 
using a POX controller. A multipath routing algorithm 
calculates a path between dedicated nodes, as shown 
in Pseudocode.

Fig. 4. Custom Topology

Fig. 5. Tree Topology

5. SIMULATION SETUP

Simulations are carried out with a POX controller on 
three topologies under three test cases. In every test 
case, the common factor is finding the multiple paths 
between node one and node two and calculating 
throughput, jitter, and packet loss ratio with the help of 
a network analyzing tool. Measured TCP and UDP flows. 
Test case 1 includes Testing with Fat Tree topology, Test 
case 2 is with custom topology, and Test case 3 is with 
Tree topology.

5.1. TEST CASE 1: FAT-TREE

POX implements the multipath algorithm on fat-tree 
topologies, and We use the iPerf benchmark utility to 
obtain TCP and UDP flows and observe bandwidth per-
formance. When we execute "Fat Tree.py" in the termi-

nal, it creates topologies according to the SDN archi-
tecture in what can be called a data plane. In the POX 
environment, the system opens another terminal to 
execute the Multipath algorithm. Links start observed 
between dedicated nodes after executing h1 ping h16.
or we use Xtrem h1, h16, and ping from h1 to h16.with 
set of perf commands and note TCP and UDP flows. 

Table 2. TCP and UDP Flow-Fat Tree with Multipath 
Routing Algorithm

C.T TCP FLOW UDP FLOW
Interval 

(sec)
Bandwidth 
(Gbits/sec)

Bandwidth 
(Mbits)

Jitter 
(ms)

Lost/Total 
Datagram

0.0- 1.0 17.2 10.7 0.014 56/ 984 

1.0- 2.0 18.7 10.6 0.084 8/ 894 

2.0- 3.0 19.7 10.5 0.099 5/ 983 

3.0- 4.0 14.5 10.4 0.104 9/ 898 

4.0- 5.0 18.6 10.6 0.184 1/ 882 

5.0- 6.0 17.3 10.5 0.211 4/ 888 

6.0- 7.0 17.8 10.7 0.245 5/ 862 

7.0- 8.0 17.6 10.2 0.017 31/ 898

8.0- 9.0 18.6 10.5 0.011 26/ 899 

9.0-10.0 17.18 10.6 0.039 3/898

0.0-10.0 17.71 10.53 0.098 148/9085

We measure throughput from TCP and UDP flow and 
observe jitter and packet loss from the UDP flow. Table 
2 shows the Fat Tree TCP flow and UDP flow.

5.2. TEST CASE 2: CUSTOM TOPOLOGy

Switch connected to 3 more switches. Each switch 
at the third level connects to three hosts (Hosts "h1" to 
"h8"). In the sudo command, we specified the control-
ler as remote and IP 127.0.0.1; this specifies the control-
ler for the MiniNet network. Fig. 4 shows the custom 
topology when Ping is executed between the H1 and 
H27 respective switches, making the path from source 
to destination. The multipath algorithm is applied, and 
TCP and UDP flow are noted in Table 3. Congestion can 
be avoided by carefully designing the custom topology.

Table 3. TCP and UDP Flow-Custom topology with 
Multipath Routing Algorithm

C.T TCP FLOW UDP FLOW
Interval 

(sec)
Bandwidth 
(Gbits/sec)

Bandwidth 
(Mbits)

Jitter (ms) Lost/Total 
Datagram

0.0- 1.0 18.98 10.7 0.106 123/ 983

1.0- 2.0 16.3 10.2 0.084 26/ 867 

2.0- 3.0 17.5 10.3 0.029 44/ 895 

3.0- 4.0 16.5 10.2 0.208 66/ 899 

4.0- 5.0 16.6 10.2 0.134 52/ 865 

5.0- 6.0 18.6 10.2 0.101 2/ 892 

6.0- 7.0 18.5 10.1 0.035 2/ 899 

7.0- 8.0 18.3 10.2 0.019 5/ 883 

8.0- 9.0 19.4 10.2 0.099 6/ 898

9.0-10.0 19.5 10.1 0.102 2/ 899 

0.0-10.0 18.01 10.24 0.086 328/8980



127Volume 16, Number 2, 2025

Table 4. TCP and UDP Flow-Tree topology with 
Multipath Routing Algorithm

C.T TCP FLOW UDP FLOW

Interval 
(sec)

Bandwidth 
(Gbits/sec)

Bandwidth 
(Mbits)

Jitter 
(ms)

Lost/Total 
Datagram

0.0- 1.0 18.98 10.7 0.965 449/889

1.0- 2.0 16.3 10.2 3.208 21/ 867 

2.0- 3.0 17.5 10.3 2.252 39/ 895 

3.0- 4.0 16.5 10.2 0.803 75/ 899 

4.0- 5.0 16.6 10.2 0.542 49/ 865

5.0- 6.0 18.6 10.2 0.412 22/ 892 

6.0- 7.0 18.5 10.1 0.619 2/ 899 

7.0- 8.0 18.3 10.2 1.369 12/ 883 

8.0- 9.0 19.4 10.2 0.446 82/ 898 

9.0-10.0 19.5 10.1 0.505 86/ 899 

0.0-10.0 18.01 10.24 1.019 651/8886

5.3. TEST CASE 3: TREE TOPOLOGy

Controller, The system connects controller c0 to 
switches s1 through s9, facilitating node connections. 
The nodes communicate with each other via the switch-
es and controllers. Fig. 5 displays the structure of the tree 
topology. Table 4 lists TCP and UDP flows after executing 
the tree topology in the data plane and running the mul-
tipath algorithm at the control plane with the POX con-
troller. When the system executes the ping command 
from node 1 to node eight, it computes multiple paths, 
including one optimal path selected for transmission. 
Tree topology experiences congestion due to its archi-
tecture, and most packets queue at the root node. Tree 
topology experiences congestion due to its architecture, 
and most packets queue at the root node. 

6. RESULT ANALySIS

The simulation section notes the results of executing 
the multipath algorithm on Fat Tree, Custom, and Tree 
topologies. In this section, the quality-of-service pa-
rameters, which are throughput, jitter, and packet loss, 
will be calculated from the results. 

6.1. ThROUGhPUT

Throughput is measured in the context of the data 
rate at which data is successfully transmitted between 
source and destination or how many packets are de-
livered per second. This section discusses the Through-
put of Fat Tree, Custom, and Tree topologies and their 
performances upon applying the multipath routing al-
gorithm. The choice of topology plays a crucial role in 
identifying network performance.

6.1.1 Fat Tree Topology

This solution suits multipath connections between 
nodes best and organizations mainly use it in data cen-
ters requiring the highest throughput and crucial load 
balancing. Fat Tree is designed to produce high band-
width by allowing traffic to distribute across multiple 
paths between dedicated nodes, reducing congestion 

and improving the service's overall quality. POX serves as 
a controller that effectively leverages multipath routing to 
maximize throughput. Table 4 shows the transfer rate of 
Fat Tree topology with ten intervals produced an average 
of 2.81GBytes of throughput with TCP flow. In the case of 
UDP, a throughput rate of 1.256 Mbytes of data is noted. 

6.1.2 Custom Topology

Custom topology performance depends on the layout, 
how it supports multipath, and how it balances the load 
in various paths. Due to its adequate redundancy with 
path multiplicity, it achieves a high throughput, though 
less than Fat Tree's. If multiple paths are available between 
dedicated nodes, optimal performance is achieved by 
carefully designing configurations to eliminate bottle-
necks and enhance throughput. Table 5 shows TCP flow 
and UDP flows noted over custom topology. TCP flow 
noted an average of 2.39 GBytes of throughput, whereas, 
in the case of UDP flow, it is 1.39 Mbytes

6.1.3 Tree Topology

Tree topology is more prone to bottlenecks and lim-
ited redundancy, so throughput is low compared to 
well-designed custom and fat-tree topologies

Near the root, congestion may occur. However, mul-
tipath routing will distribute traffic across available 
paths. However, there needs to be more path diver-
sity, and it cannot utilize the benefits of multipath 
routing. There is a higher chance of congestion at the 
root, which limits the throughput. Table 6 displays 
the transfer rates of TCP and UDP flows, observing 
rates of 2.21 GBytes and 1.21 MBytes.  Ultimately, we 
can conclude that the POX controller achieves better 
throughput with Fat Tree than with custom and tree 
topologies when applying multipath routing. The de-
sign of the Fat Tree itself supports multiple paths that 
are sometimes redundant and have high bandwidth. 
Suppose we design a custom topology with redun-
dancy and multiple paths. In that case, a tree topology 
with minimal bottlenecks and careful path handling 
can also enable these topologies to produce high 
throughput. The TCP flow of the three topologies is 
compared in Fig. 6, while Fig. 7 displays the UDP flow.

Fig 6. Throughput -TCP flow over various topologies
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Fig 7. Throughput -UDP flow over various 
topologies

6.2. JITTER

Inconsistency of arrival time at the destination is 
known as jitter. Here, packets have irregular interval 
times. This variability we will denote as jitter. The main 
reasons for jitter may include congestion in the route, 
which may be due to load packets that may take dif-
ferent routes to reach the destination or a controller 
that introduces delays to process packets when it en-
counters enormous traffic. The POX controller is pro-
grammed and configured to manage the jitter. Path 
selection, dynamic path adjustment, and monitoring 
traffic influence the process. POX includes a real-time 
module that monitors traffic by maintaining a thresh-
old for jitter. If it encounters massive traffic, the module 
reroutes the traffic to a less congested route to avoid 
congestion.

6.2.1 Fat-Tree Topology

This topology balances traffic by allowing it to flow 
on multiple paths in a balanced way, which reduces 
congestion on a single path. So, it produces less jitter 
than tree topology and custom topology. It also main-
tains consistent latency across paths, which minimizes 
jitter. The main reason is that packets are routed to 
the destination in a similar path length to synchronize 
packet delivery. POX controller avoids paths with high 
inconsistency. The fat tree structure maintains consis-
tency in fluctuating traffic conditions, ensuring less 
jitter. Up on applying multipath routing on fat-tree, 
noted an average of 0.09ms of jitter.     

6.2.3 Custom Topology

The design of a custom topology affects jitter. Careful 
topology design may yield less jitter. Path lengths and 
capacities produce varying jitters. Paths are balanced in 
terms of capacity and latency, which achieves low jitter. 
The POX controller performs traffic management and 
path selection to control traffic across paths to mini-
mize jitter. We note an average of 0.86ms of jitter over 
ten intervals.

Fig 8. Jitter over various topologies

6.2.3 Tree Topology

As Tree topology suffers from limited path redundancy, 
the route node gets congested which leads to delays. Lim-
ited number of paths makes the queues for packets. Po-
tential length differences can introduce inconsistency in 
packet delivery times, resulting in higher jitter. Managing 
jitter is more challenging due to the limited path range 
and latent congestion. The POX controller may struggle to 
maintain consistent path performance, leading to incon-
stant latency and increased jitter. Table V shows an aver-
age of 1.09 ms of jitter.  Jitter is managed if multiple paths 
between source and destination are the same length. 
Among all topologies, the custom topology achieves less 
jitter, though the fat tree is designed well. Figure 8 shows a 
comparison of fat tree, custom, and tree topology.

6.3. PACKET DELIVERy

The packet delivery ratio is calculated from the num-
ber of packets lost to send. To find the number of pack-
ets delivered, subtract the lost packets from the sent 
packets. Measuring the network performance will be 
helped by a smaller number of lost packets. Traffic con-
gestion and link failures are a few reasons for packet loss. 
Buffering also may lead to packet loss. To achieve less 
packet loss with the POX controller, the critical factor is 
to choose a topology with redundancy, and the control-
ler should able to manage traffic over multiple paths

6.3.1 Fat-Tree Topology

As it has high redundancy and availability of multiple 
paths between any pair of nodes, it helps to distribute 
traffic more evenly across paths, which reduces con-
gestion. In case of link failure, redundancy will help to 
minimize packet loss. Multipath routing prevents load 
on a single path and balances by enrooting to another 
path, which reduces packet loss. Path diversity in fat-
tree topologies helps mitigate packet loss even under 
varying traffic conditions. Table 6 shows a packet deliv-
ery ratio of 10 intervals with 148 packets lost over 9085 
packets, resulting in a 1.62 % packet loss ratio.



129Volume 16, Number 2, 2025

6.3.2 Custom Topology

Packet loss in custom topology depends on design 
with adequate redundancy, and a balanced path can 
achieve less packet loss. However, its limitations with 
redundancy suggest that multipath routing could be 
more effective in foreseeing packet loss. The configura-
tion of the POX controller effectively utilizes multipath 
routing, although performance depends on traffic pat-
terns and the network design. Still applying multipath 
routing algorithm on custom topology acquired a loss 
ratio of 3.65%, where 328 packets were lost during the 
transmission of 8980 packets over ten intervals from 
source to destination.

6.3.3 Tree Topology

Tree topology mostly has a problem of enormous 
packet loss due to a hierarchical structure where traf-
fic is congested at the root, which increases packet loss 
when the network hits heavy traffic. Multipath routing 
helps distribute the traffic over alternative paths, signif-
icantly reducing packet loss, though lack of path diver-
sity and redundancy limits its effectiveness. Multiple 
paths may exist, but they differ in factors like Capacity 
and not equal size. 

Fig 9. Packet delivery over Fat-Tree, Custom, Tree

The POX controller may need to help distribute traf-
fic efficiently enough to avoid these losses. So, it wit-
nessed more packet loss than the other topologies. 
During ten intervals, the transmission lost 651 out of 
8886 packets, producing a 7.32% packet loss ratio. Fig-
ure 9 shows comparisons of fat-tree, custom, and tree 
topologies regarding packet loss and packets sent.Fat-
tree topology showed better performance, as shown 
in Figure 9. The bar chart over interval 1 to interval 
ten shows packet loss, where each bar represents the 
packets delivered at the bottom and the top.at interval 
one, the tree topology had a packet loss of 440 packets 
and sent 449 packets. Later, they reduced the packet 
loss percentage in the tree topology. All three topolo-
gies sent packets without a considerable loss in a few 
intervals. In the end, fat-tree performed well when 
multipath routing was applied with the POX controller 
over topology with quality-of-service parameters like 
throughput, jitter, and packet loss ratio.

7. CONCLUSION

Software Defined Network (SDN) enable developers 
to build SDN applications due to architecture compat-
ibility, which separates the control plane and data plane 

and allows centralized network management with pro-
grammability. POX controller is an open-source and 
Python-based controller that works with MiniNet as 
it supports Python-based coding to create a network. 
Congestion is the most significant problem; We need 
immediate solutions to avoid data loss. Selecting the 
optimal path repeatedly between dedicated nodes may 
lead to overload and congestion. Multipath routing has 
been introduced in SDN to address this problem. It iden-
tifies multiple paths between all nodes with Depth First 
Search and selects one path among available paths. If 
the selected path becomes congested, the system will 
reroute packets to the following path. This action can re-
duce congestion, and tested this algorithm on Fat-Tree, 
custom, and Tree topologies using the POX controller.

Throughput, jitter, and packet loss ratio are the pa-
rameters used to measure the performance of the mul-
tipath routing algorithm. Fat-Tree showed improved 
performance over remaining topologies due to redun-
dancy and path diversity, which are limited in remain-
ing topologies. If a custom topology is designed well, 
then this can also produce better throughput. In the 
case of a tree topology, the root itself is getting con-
gested, so packet loss is more with tree topology. In the 
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future, the Multipath routing algorithm is going to be 
tested with the Ryu controller.

This work helps the researcher who wants to work 
with optimal path identification over various topologies 
and load balancing over the POX controller, as well as 
with POX and various topologies. Fat-tree topology can 
be selected when the choice of performance metric is 
throughput and less packet loss. They can even test cus-
tom topology with proper design. Tree topology clearly 
shows the occurrence of congestion at the root itself.
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