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Abstract – The evolution of new technologies has made short-term power load forecasting an essential part of the streamlining process in 
the management of power grid systems. Machine learning algorithms have been applied widely in this area but with little success towards 
achieving better accuracy rates. These gaps point out the necessity for better forecasting methods . This study is about the power grid system 
from Ho Chi Minh city in Vietnam. Ho Chi Minh operates as a metropolitan area on the rise with economic activity and seasonal factors 
greatly influencing electricity consumption. Due to its intricate fluctuations in consumption pattern, the city is known for having a high 
level of energy. This makes the city suitable for an in-depth investigation regarding a case study on short-term load forecasting approaches. 
In this study, the goal is to evaluate the effectiveness of three hyperparameter optimization methods: Random Search, Grid Search, and 
Bayes Search. All these methods optimize the performance of Convolutional Neural Network (CNN) models for short-term electricity load 
forecasting in Ho Chi Minh City. The results obtained through this work can also be used as a basis for introducing the methods to other 
locations in Vietnam. The assessment of the techniques is performed using fundamental error measures such as Mean Absolute Error (MAE) 
and Mean Absolute Percentage Error (MAPE). Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Squared Error 
(MSE), and Root Mean Squared Error (RMSE). Bayes Search completed with an MAE of 77.93, MAPE of 2.94%, MSE of 10,376.7, and RMSE of 
101.9. These results indicate a noticeable enhancement in prediction accuracy when compared with the outcomes from Grid Search and 
Random Search. Grid Search provided an MAE of 106.23, MAPE of 3.95%, MSE of 17,033.7, and RMSE of 130.5. Random Search produces 
results of an MAE of 96.8, MAPE of 3.57%, MSE of 14,951.0, RMSE of 122.3. These results are evidence that Bayes Search is better for short-term 
electricity load forecasting in Ho Chi Minh City. The study also proposes an evaluation framework, which is meant for load forecasting in 
Vietnam. It is designed for Ho Chi Minh City predicting purposes, thus, integrating innovative concepts with actual forecasting functions. The 
framework is also applicable to other areas in Vietnam, both rural and urban, having different power consumption patterns. The reduction 
in forecasting inaccuracies through the use of Bayes Search is found to be promising as observed in the research. This automation supports 
better decision-making in energy management. It helps reduce costs in dynamic and complex power grid environments. These findings 
have practical value. They support efforts to build more flexible and efficient energy grids in Vietnam.
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1.  INTRODUCTION

Load forecasting in the near future is essential for ad-
equate power grid control in terms of power generation, 
distribution, and supply. Precise estimation of electricity 
consumption is key to preserving a stable provision of 
energy, and subsequently minimizing expenses. 

It guarantees rational energy distribution, which is 
particularly important in major metropolitan regions. 
The demand for electricity in cities is volatile due to 
the expansion of the commercial and industrial activi-
ties. This necessitates the need for accurate forecasting. 
There is considerable improvement in forecasting tech-
niques over the years. Still, there are difficulties. 
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One of the difficulties has always been the validity 
of the results. One issue is reliability. Conventional ap-
proaches, which bear this burden, have their own dif-
ficulties. Linear Regression [1], Time Series Forecasting 
[2], Kalman Filtering [3] are models that tend to fail for a 
variety of reasons. They have great difficulties deals with 
large, complex modern power system datasets. These 
datasets are often produced by contemporary power 
systems. To overcome these challenges, Deep Learn-
ing models are useful. Convolutional Neural Networks 
(CNN) is one of it. CNNs are capable of processing data 
with non-linear multi-dimensional structures. Thus, they 
are able to make better predictions [4]. They can uncover 
deeper patterns within the data than other methods. It 
also increases the overall accuracy of forecasts offered 
by the models.

Now we see more and more interest in load fore-
casting models in developing countries. There are so 
many techniques for improving forecasting. Study [5] 
proposed a hybrid model, HHO-GCN-LSTM. This model 
uses a sophisticated combination of deep learning ar-
chitectures and optimization methods. It aims towards 
achieving more precise load forecasting. Study [6] rec-
ommends the development of ensemble based tech-
niques for short term load forecasting. With this ap-
proach, wavelet transform, Extreme Learning Machine 
and Partical Least Squares Regression (PLSR) are used. 
The improvement of forecast accuracy is achieved by 
these methods. They also minimize overfitting. This 
enhances the reliability of the model’s predictions. 
Study [7] introduces a spatial-temporal forecasting 
framework using Graph Neural Networks, leveraging 
individual and aggregated load data to capture hidden 
dependencies among residential units, significantly 
enhancing prediction accuracy over conventional 
methods. These studies demonstrate significant prog-
ress in load forecasting in developing countries and 
contribute to shaping advanced technological trends 
in energy management, particularly in the context of 
increasingly scarce resources that must be utilized ef-
ficiently. However, recent studies also suggest that in-
tegrating signal decomposition techniques with deep 
learning models, as demonstrated in Article [8], can re-
sult in higher accuracy for short-term forecasting.

In recent years, the development of short-term power 
load forecasting models has achieved notable advance-
ments, driven by the progression of deep learning tech-
nologies. Studies [9-12] have explored these innovative 
methods, particularly the combination of Convolutional 
Neural Networks (CNNs) and Long Short-Term Memory 
Networks (LSTMs). Research [9] developed a Pyramid-
CNN model for customers with similar energy usage 
profiles, enhancing forecasting accuracy through cluster 
analysis. Meanwhile, studies [10] have focused on inte-
grating CNN and LSTM for short-term power load fore-
casting, demonstrating superior accuracy compared to 
traditional models. Further studies, such as those in [11], 
propose convolutional multi-integration models and 

convolutional wavelet models to handle complex fluc-
tuations in load data effectively. Research [12] further 
expands model capabilities by utilizing evolutionary 
methods and encoder-decoder combinations in power 
load forecasting. Article [13] highlights the utilization of 
technical indicators such as EMA and chaotic optimiza-
tion algorithms for time series prediction, showcasing 
their potential for applications in power load forecast-
ing. Building on this foundation, research [14] delves 
into a CNN- LSTM combined deep learning model, dem-
onstrating its high efficiency in addressing dynamic load 
fluctuations within specific power systems. Together, 
these studies underscore the advancements in predic-
tive modeling techniques for power systems.

The key issue to note in the aforementioned advanced 
methods is that many studies have not adequately ad-
dressed hyperparameter optimization, which is a critical 
factor that can significantly influence the performance 
and accuracy of the model. Failure to optimize hyper-
parameters may lead to suboptimal outcomes, even 
though deep learning models like CNNs and LSTMs 
have demonstrated their efficacy in short-term power 
load forecasting. Integrating hyperparameter optimiza-
tion techniques is thus an essential step to enhance the 
performance of these models further. Feature selection 
and model simplifications are covered in reference [15]. 
Some optimizational strategies, like FPA, outperform 
their non-optimized counterparts. These strategies cut 
down the cost for computation. Such techniques can be 
implemented in applications that need near real-time 
processing like power load forecasting. This pertains to 
hyperparameter tuning of the CNN model [16]. The aim 
is to refine load prediction in metropolitan areas. It em-
ploys sophisticated optimization techniques [17]. These 
techniques are Grid Search, Random Search and Bayes 
Search [18]. They assist in pinpointing optimal values for 
hyperparameters to maximize precision in load forecast-
ing. In this case, the MAE, MAPE, RMSE, and MSE error 
metrics are used to validate the model's accuracy.

What stands out its novelty is that it analyses the 
power grid of Ho Chi Minh City in Vietnam. The research 
focuses on certain anomalies of electricity usage in the 
area. These anomalies are correlated with socioeconom-
ics and seasonal changes. This research work differs from 
the general research works on the CNNs and the optimi-
zation methods. It focuses on the particular issues of the 
region. One of them is the problem of excessive volatil-
ity of electric power consumption. Another issue is the 
existing attitude regionally power systems applied mod-
ern optimization techniques. The research investigates 
three approaches to hyperparameter optimization. 
These were the Grid Search, Random Search, and Bayes 
Search methods. Each of them is assessed concerning 
the degree to which they are able to enhance the CNN 
model. The purpose of the modeling is to satisfy the con-
ditions of the power grid system of Ho Chi Minh City. 

This work attempt solve the problem of neglected hy-
perparameter tuning on the city’s power grid systems. 
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It illustrates the use of Bayes Search in combination 
with self-training algorithm and how it enhances a cus-
tomer’s computing performance. The results show that 
Bayes Search can lead to more precise predictions com-
pared to other methods. The analysis was performed 
on data obtained from a specific part of a city. It mea-
sures the performance of the developed models using 
MAE, MAPE, RMSE, and MSE which are considered error 
metrics. Evaluations of this nature are intended to com-
plement the findings. This work commences further 
research in this area. It demonstrates the application 
of contemporary methods in load forecasting at short 
time intervals. Other cities which have the same power 
difficulties may use the methods presented in this stud.

2. THEORETICAL BASIS

2.1. CNN MODEL

Deep Learning is a part of machine learning. It uses 
artificial neural networks to process data in layers. It 
helps the model understand complex patterns. Con-
volutional Neural Network (CNN) is one type of neural 
network. It is made to process data in multiple arrays. 
Images are a common example. CNN models are wide-
ly used in vision tasks. These tasks include face detec-
tion, image recognition, and object identification.

A CNN has many parts. Some of them are key com-
ponents. The convolutional layer is one of them. It uses 
filters to extract features from the input data. The activa-
tion layer is another part. It adds non-linearity. This helps 
the model learn complex patterns. The pooling layer 
works with the two layers. It reduces data size but keeps 
important information. The fully connected layer comes 
at the end. It brings together all extracted features. It 
handles the final classification or prediction [19].

Convolutional Layer: A filter (or filters) is slid through 
the input image to create a featured map in a convolu-
tional layer. Each filter is small (3x3 or 5x5) and is applied 
to the entire input image to create a new featured map. 
The mathematics of this process can be represented as 
follows: For the input image I and filter F, the charac-
teristic map is calculated by the convolutional product: 

S(i, j)=(F*I)(i, j)= ∑m∑nF(m,n)I(i-m,j-n) (1)

Where:

(i, j): is the location on the characteristic map.

S(i, j): The output value at position (i,j) after applying 
the convolution operation.

F*I: The convolution operation between the filter F 
and the input image I.

F(m, n): The value at position (m,n) in the filter (also 
called a kernel).

I(i-m, j-n): The value at position (i-m, j-n) in the input 
image I.

∑m∑n: Summation over all elements of the filter.

Activation Layer: After the filter is applied, the values 
on the characteristic map are passed through a non-
linear trigger function, usually ReLU (Rectified Linear 
Unit). The ReLU function is defined as:

ReLU(x)=max(0,x) (2)

Where:

x: The input value to the activation function (which 
can be the output from a previous layer in a neural 
network).

ReLU(x): The output value of the ReLU activation 
function.

max(0,x): The function returns the more excellent 
value between 0 and x.

Pooling Layer: Pooling typically uses max pooling or av-
erage pooling to reduce the spatial size of featured maps, 
highlight essential features, and reduce the number of pa-
rameters. Maximum compounding is defined as:

P(i, j)=maxk, l ∈ window I(i+k, j+l) (3)

Where:

P(i, j): The output value of the max pooling operation 
at position (i, j).
maxk, l ∈ window: The maximum value is selected from 
the specified window.

I(i+k, j+l): The input characteristic map (or feature 
map), where i+k, j+l represents the elements inside 
the pooling window.

Fully Connected Layer: Data from the fully connected 
layer is flattened and fed into one (or more) fully con-
nected layer (s). Each neuron in this layer is connected 
to all the neurons in the previous layer, each with its 
own weight. The output of this class is: 

y=Wx+b (4)

Where 

x: is the input from the previous layer.

W: i s the weighted matrix.

B: is the bias vector. 

CNN's mathematical model is complex and requires 
optimization during training to learn effective weights 
and filters. Typically, this is done with the aid of back-
propagation algorithms. If there is optimization in-
volved, one method is Gradient Descent.

2.2. CNN NETwORk HypERpARAMETERS

CNNs are mostly used for image processing. Howev-
er, they can also be used for time series tasks like power 
load forecasting. Many hyperparameters are important 
for this type of work. These parameters help define the 
model’s performance and relevance.

•	 Fewer filters make it harder for the model to detect 
features. More filters help the model learn complex 
patterns. Too many filters increase computation 
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time. The number of filters must balance complex-
ity and performance.

•	 Larger filter sizes increase the visible area during 
convolution. They help the model capture broader 
patterns. Smaller filters focus on fine details. The 
filter size affects how well the model detects time-
based patterns.

•	 Stride controls how far the filter moves. A large 
stride reduces computations but may miss impor-
tant data. A small stride captures more detail but 
increases cost.

•	 Padding defines how the model treats the input 
edges. ‘Same’ padding keeps the input and output 
size equal. ‘Valid’ padding reduces the output size. 
Padding affects how the model reads edge data.

•	 Activation functions add non-linearity. ReLU is the 
most common. It helps reduce the vanishing gradi-
ent and speeds up training.

•	 Pooling layers reduce the number of feature maps. 
Max pooling and average pooling are the most 
used. Pooling helps reduce overfitting and focuses 
on key features.

•	 The learning rate controls how fast weights up-
date. A high learning rate speeds up training but 
may cause errors. A low learning rate trains slowly 
but more carefully.

•	 Batch size is the number of training samples pro-
cessed at once. Small batches train slowly but learn 
fine patterns. Large batches train fast but may miss 
details.

•	 Epochs define how many times the model goes 
over the data. More epochs give more learning 
chances. Too many may cause overfitting.

•	 Regularization helps reduce overfitting. L1 and 
L2 add penalties to large weights. Dropout turns 
off some neurons during training. These methods 
help the model generalize better.

Choosing correct values for all parameters improves 
CNN performance on time series data. Hyperparam-
eters also affect the CNN structure and real-world use.

3.2. HypERpARAMETER OpTIMIzATION  
 METHOD 

Tuning is a key component when training the ma-
chine learning model because it fine tunes the perfor-
mance of the model. It determines the optimal values for 
a number of adjustable predefined settings like learning 
rate, batch size, hidden layers, neurons per layer, etc. All 
of these must be configured prior to commencing the 
training thus rendering them immutable during the 
training process. Hyperparameters are distinct from 
model weights which are changed during training. Hy-
perparameters remain unchanged thereby making tun-
ing a time-consuming process that requires enormous 
computational resources. The accuracy of the model on 
new data is improved, though. In the absence of tuning, 

overfitting or underfitting of the model is likely resulting 
in poor performance in real life scenarios.

Grid Search

Grid search is a method for hyperparameter optimi-
zation. It tests all possible combinations of hyperpa-
rameter values. It works well in small search spaces and 
when high precision is needed. Bergstra and Bengio 
[20] said Grid Search is easy to learn and use for begin-
ners. However, it becomes inefficient in large search 
spaces because it takes a lot of time and resources. For 
example, three hyperparameters with four values each 
require 64 runs. Hutter et al. [21] called it “brute-force” 
and said it does not learn from past trials. Because of 
this, deep learning and decision tree models often use 
other methods. Random Search and Bayesian Search 
are common alternatives. They focus on promising re-
gions and save resources. Petro and Pavlo Liashchyn-
skyi [22] noted the strength of these methods.

Random Search

Among many methods, Random Search is a practical 
option for hyperparameter tuning. It works well in large 
and complex search spaces. Grid Search tests every pos-
sible configuration. In contrast, Random Search tests a 
limited number of random configurations. Navon and 
Bronstein [23] showed that Random Search can still 
give good results. It also uses fewer resources, which 
helps when computational power is limited. First, the 
user selects the hyperparameters. Then, the user sets 
the value ranges. The algorithm randomly generates a 
few configurations to test. Florea and Andonie [24] sug-
gested a new version called Weighed Random Search. 
This version still uses random generation. However, it 
adds probabilistic rules to focus on better parts of the 
search space. This makes the search more efficient. Still, 
Random Search is not always precise. If too few con-
figurations are tested, the results may be poor. In such 
cases, Bayes Search is better. Bischl et al. recommended 
it for better accuracy [25]. This method learns from past 
tests. It helps the model find the best areas to search.

Bayes Search

Like other forms of hyperparameter tuning, Bayes-
SearchCV attempts to minimize some objective func-
tion. The difference is its use of Bayesian optimization, 
an advanced technique used to optimize functions 
that are costly or time-consuming to evaluate. It usu-
ally employs Gaussian Processes to try and direct the 
search to better places. The model first looks to find 
the promising regions within the space to search. After 
that, it tries to focus on evaluating those regions. Com-
pared to Grid Search or Random Search, this approach 
considerably lowers the amount of attempts required 
[26]. The model decides upon a new set of parameters, 
evaluates the function and adjusts the estimate of its 
performance accordingly. BayesSearchCV is especially 
great when resources are limited [27]. However, it sacri-
fices some accuracy due to the surrogate model. It also 
needs extra settings which makes it harder to use. Still, 
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it performs better with complex models. Deep neural 
networks, for example, benefit a lot. They need fewer 
trials to find the best configurations [25].

3.  pROpOSED OpTIMIzATION MODEL 
STRUCTURE

3.2.  ALGORITHMIC FLOwCHART

The authors explain an algorithm flowchart in this 
article. Its purpose is to evaluate the efficiency of three 
optimization methods which include: Grid Search, Ran-
dom Search, and Bayes Search. The analysis is conduct-
ed on the CNN model. Figure 1 shows the flowchart.

Where:

Xtrain, Ytrain: are the training inputs for the model. 

Xtest, Ytest: are the testing inputs for the model. 

Ypred: symbolizes the output from the model after ex-
ecution. 

Y1, Y2,…,Yn: represent the past load values

The main processes of the flowchart are described as 
follows:

•	 Input Data: The process begins with the input data, 
consisting of historical load values (Y1, Y2,…,Yn).

•	 Input Data Processing: The input data is prepro-
cessed and divided into Training Data (Xtrain, Ytrain) 
used to train the CNN model and testing Data (Xtest, 
Ytest) used to evaluate the model's performance.

•	 Search Space of Hyperparameters: A predefined 
search space of hyperparameters is established, 
specifying possible configurations for the CNN 
model.

•	 Optimization Algorithms: Three optimization al-
gorithms, Grid Search, Random Search, and Bayes 
Search, are applied to explore the hyperparameter 
search space and identify the Optimal Hyperpa-
rameters.

•	 Training the CNN Model: The CNN model is trained 
on the training dataset (Xtrain, Ytrain) using the opti-
mal hyperparameters.

•	 Prediction: The trained CNN model predicts the 
output (Ypred) based on the test input data (Xtest).

•	 Evaluation: The predicted values (Ypred) are com-
pared with the actual test data (Ytest), and the errors 
are calculated using metrics such as MAE, MAPE, 
MSE, and RMSE.

The following formula describes the mathematical 
model of the error rates used in the paper. Where yi is 
the actual value and yî is the predicted value.

(5)

(6)

(7)

(8)

Where

MAE: Mean Absolute Error.

MAPE: Mean Absolute Percentage Error.

MSE: Mean Squared Error.

RMSE: Root Mean Squared Error.

n: The total number of data points.

yi: The actual value at index i.
yî:The predicted value at index i.

Fig. 1. Hyperparameter optimization algorithm 
diagram

4. CNN HypERpARAMETER OpTIMIzATION 
ANALySIS RESULTS

4.1. ExpERIMENTAL SETUp

In this study, the authors employed the electric-
ity load dataset of Ho Chi Minh City, Vietnam, as pre-
sented in Table 1 below. The data sampling interval is 
60 minutes, resulting in 24 data points daily. A sliding 
window approach with a window size of 24 generated 
Input-Target pairs (X, Y). The dataset (X, Y) consists of 
840 samples, which were divided into a training data-
set (Xtrain, Ytrain) and a testing dataset (Xtest, Ytest) with a 
ratio of 8:2.

Volume 16, Number 6, 2025



448 International Journal of Electrical and Computer Engineering Systems

Table 1. Historical Load Data in Ho Chi Minh City 
from 12/9/2016 to 31/12/2018

Date 00:00 01:00 ………. 22:00 23:00
12/09/2016 1842.1 1795.1 ………. 2337.2 2110.1

14/09/2016 1975.7 1914.6 ………. 2297.5 2106.2

………. ………. ………. ………. ………. ……….

30/12/2018 2083.3 1980.9. ………. 2325.4 2127.8

31/12/2018 1902.7 1776.4 ………. 2233.8 2059.5

Fig. 2 presents the electricity load profile for Decem-
ber 31, 2018. The chart shows an apparent fluctuation 
in the electricity load throughout the day, with the 
minimum load occurring in the early morning (1072.4 
MW) and the maximum load during peak hours (2032.9 
MW). This reflects the low electricity demand at night 
and early morning, while the demand increases signifi-
cantly around midday when people and facilities use the 
most electricity. This chart helps identify usage trends 
throughout the day, allowing for better planning of an 
efficient power supply. Understanding these fluctua-
tions not only aids in managing electricity distribution 
more effectively but also helps optimize operational 
strategies and distribution, ensuring that peak demand 
is met while saving resources during off-peak hours.

Fig. 2. Electricity Load on December 31, 2018

Table 2 presents the search space for the hyperpa-
rameters of the CNN model under investigation, in-
cluding the number of filters, kernel size, batch size, 
and epochs. These search spaces are consistently ap-
plied across the Grid Search, Random Search, and 
Bayes Search algorithms.

Table 2. Hyperparameter search space

Hyperparameter Search Space Description

Filters [16, 32, 64, 96, 
128]

Number of filters in the 
Conv1D layer

Kernel Size [3, 5, 7] Size of the convolutional 
window

Batch Size [16, 32, 64, 128, 
256]

Number of samples processed 
in each training step

Epochs [50, 100, 150, 200, 
250] 

Number of complete passes 
through the training dataset.

4.2. ExpERIMENTAL RESULTS

Table 3 presents the optimal hyperparameter val-
ues obtained from the three algorithms: Grid Search, 

Table 3. Hyperparameter sets with optimal 
methods

Randon Search Gird Search Bayes Search
Filters 32 32 64

Kernel Size 7 7 5

Batch Size 16 32 32

Epochs 250 250 200

Figs. 3, 4, and 5 illustrate how the predicted values 
from Grid Search, Random Search, and Bayes Search 
align with actual observations. The visual similarity 
between predicted and real values suggests that each 
algorithm successfully fine-tunes the CNN model to an 
acceptable level of accuracy. However, the differences 
in precision still matter when choosing the optimal 
method. The results prove the effectiveness and accu-
racy of the methodologies employed.

Fig. 3. The graph of predicted values using the Grid 
Search algorithm

Fig. 4. Predicted values graph using Random Search

Fig. 5. Predicted values graph using Bayes Search

Random Search, and Bayes Search. These results corre-
spond to the hyperparameter search space described 
in Table 2 for the CNN model.
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The error metrics for Grid Search, Random Search, and 
Bayes Search are shown in Table 4. The metrics include 
MAE, MAPE, MSE, and RMSE. Bayes Search gives the best 
results. It has the lowest MAE of 81.94. It also gives a MAPE 
of 3.09%, an MSE of 11,458.0, and an RMSE of 107.1. These 
values show high accuracy. They also show that Bayes 
Search improves model robustness. This makes it the 
most effective method. Random Search gives the worst 
results. It has an MAE of 166.7, a MAPE of 5.92%, an MSE 
of 36,783.19, and an RMSE of 191.7. These values show 
poor performance in finding good hyperparameters. Ran-
dom Search is simple but not efficient here. Grid Search 
performs better than Random Search. It gives an MAE of 
124.15, a MAPE of 4.58%, an MSE of 22,116.2, and an RMSE 
of 148.7. Grid Search can find near-optimal values. How-
ever, it is still less precise than Bayes Search.

Table 4. The results of error rates

Search_Method MAE MApE MSE RMSE
Grid Search 124.15 4.58 22116.2  148.7

Random Search 166.7 5.92 36783.19 191.7

Bayes Search 81.94 3.09 11456.0 107.1

Fig. 6 presents the execution time for the three algo-
rithms: Grid Search, Random Search, and Bayes Search. 
The runtime comparison shows that Grid Search is the 
slowest, taking nearly 9,551.44 seconds due to its ex-
haustive evaluation. Random Search improves efficien-
cy with a runtime of around 3,796.13 seconds. Bayes 
Search is the fastest, completing it in just over 4,218.63 
seconds, making it the most efficient method, accord-
ing to the execution time.

Fig. 6. Runtime of Optimization Methods

5. CONCLUSION

This study underlines how hyperparameter optimi-
zation—using techniques like Grid Search, Random 
Search, and Bayes Search—can significantly enhance 
CNN model performance for forecasting electricity de-
mand. Among them, Bayes Search showed the highest 
predictive accuracy and the shortest processing time. In 
contrast, while Grid Search was moderately accurate, its 
longer runtime made it less practical. Random Search 

was quicker but less precise, making it a less reliable op-
tion for pinpointing the best parameter combinations 
Although moderately accurate, the Grid Search algo-
rithm had the longest execution time, reflecting its in-
efficiency for large-scale problems. The Random Search 
algorithm showed better runtime efficiency than the 
Grid Search algorithm but produced higher error values, 
making it less dependable for optimal configurations. 
Future studies could further investigate advanced opti-
mization algorithms and their application to larger data-
sets to enhance forecasting performance.
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