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Abstract – Medical image segmentation is essential for disease screening and diagnosis, particularly through techniques like anatomical 
and lesion segmentation that can be used to isolate critical regions of interest. However, manual segmentation is labor-intensive, costly, and 
susceptible to subjective bias, underscoring the need for automation. Deep learning, particularly convolutional neural networks (CNNs), has 
significantly advanced segmentation accuracy and efficiency. With the introduction of 3D imaging, research has evolved from 2D CNNs 
to 3D CNNs, which leverage inter-slice information to improve segmentation precision. This paper aims to provide a literature review of 
studies published between 2018 and 2024 on platforms such as Google Scholar and ScienceDirect, where the identified relevant research 
are "3D segmentation" and "3D medical imaging". This study outlines the key stages of 3D CNN segmentation that include preprocessing, 
region-of-interest extraction, and post-processing. Furthermore, this study emphasizes the application of 3D CNN architectures to complex 
lung imaging scenarios, such as lung cancer and COVID-19. Although 3D CNNs outperform 2D CNNs in preserving spatial continuity across 
slices, they present notable limitations. Key challenges include heavy computational and high memory demands, as well as a dependency 
on large annotated datasets, which are often scarce in medical imaging. Additionally, effective multiscale feature learning remains a 
challenging issue, with current architectures struggling to generalize the features of interest across several usage variations. To further 
improve the segmentation performance, future research should prioritize developing adaptive algorithms and fostering interdisciplinary 
collaboration between computer scientists and medical professionals to design efficient and scalable models, designed specifically for 
clinical applications. This future research direction will enhance diagnostic accuracy and segmentation quality in 3D medical imaging.
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1.  INTRODUCTION

Image segmentation, particularly in medical appli-
cations, is essential for accurately distinguishing and 
isolating regions of interest within medical images, 
thereby aiding in diagnosis and treatment planning. Al-
though manual segmentation is often more precise, it 
is time-intensive and susceptible to subjectivity issues, 
prompting the need for automated approaches. A com-
monly used conventional technique is thresholding, 
where lung regions are identified as the largest blob, 
as described by Manikandan [1]. However, this method 
lacks robustness when applied to lung disease cases, 
such as those affected by pneumonia or COVID-19, due 

to substantial variability in lung image data. To address 
this limitation, adaptive techniques like watershed seg-
mentation have been explored, as demonstrated by 
Navya and Pradeep [2]. Nonetheless, these methods 
are too dependent on basic assumptions, such as the 
use of Sobel edge operators, which may not effectively 
handle intensity variations across different CT scans. 
Similarly, preprocessing filters such as Wiener, mean, 
and median filters increase the computational load 
and do not ensure segmentation robustness [3]. The 
application of these filters is often followed by mor-
phological masking as the post-processing step, which 
can inadvertently erode critical lung regions, thereby 
reducing segmentation accuracy.
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Alternative methods, including those that combine 
super pixels and fuzzy clustering [4], have been pro-
posed to enhance segmentation outcomes. However, 
super pixel-based clustering can be computationally de-
manding and frequently fails to achieve good pixel-level 
accuracy. This pixel grouping into super pixel blobs may 
obscure minor variations within these regions, poten-
tially leading to the misclassification of lung areas. Such 
inaccuracies are particularly problematic for disease 
staging identification, where even slight errors can have 
substantial diagnostic implications.  A review by Ker et al. 
[5] explores the application of machine learning, partic-
ularly convolutional neural networks (CNNs), in medical 
image analysis. It highlights the advantages of machine 
learning in handling large medical data by analyzing the 
data's hierarchical relationships without the extensive 
use of feature engineering. 

Deep learning, particularly convolutional neural net-
works (CNNs), has emerged as a powerful approach for 
medical image segmentation [6-8] CNNs are capable of 
automatically learning and extracting features from large 
datasets, yielding more accurate and reliable segmenta-
tion results. The growing availability of large datasets and 
enhanced computational resources has led to the increas-
ing adoption of deep learning methods in healthcare, 
where this approach provides robust solutions to the limi-
tations of conventional machine learning techniques. Ad-
ditionally, the deep learning approach can also be used to 
facilitate the generation of synthetic datasets through the 
generative adversarial network (GAN) approach, which 
helps mitigate privacy concerns that are associated with 
sensitive medical data [9-12].

Alongside advancements in segmentation tech-
niques, improvements in 3D imaging technologies, 
such as computed tomography (CT) and magnetic 
resonance imaging (MRI), have also significantly en-
hanced medical imaging capabilities. These technolo-
gies enable a more detailed and precise assessment 
of pathologies, particularly small-scale anomalies like 
cancerous nodules, which may not be discernible in 2D 
imaging [13, 14]. By providing a comprehensive view 
of the anatomical structures, 3D imaging reduces the 
likelihood of mistaking small pathologies for noise and 
offers a more accurate representation of tissues that 
might otherwise appear as artifacts in 2D images [15].

Despite the potential of deep learning and advanced 
imaging technologies, several challenges persist in 
medical image segmentation. Deep learning mod-
els rely on large volumes of annotated data, and the 
quality of these ground truth data is dependent on 
the expertise of the annotators, which may lead to in-
consistencies. Standardizing annotation practices and 
improving training for annotators are crucial for en-
hancing segmentation accuracy. Furthermore, medi-
cal segmentation tasks can be divided into anatomical 
and lesion segmentation. Anatomical segmentation 
involves delineating organs or structures, which can 
be complex due to visual similarities between differ-

ent structures. In contrast, lesion segmentation focuses 
on identifying abnormal regions, which vary greatly in 
size, shape, and location across patients, adding to the 
difficulty of accurate segmentation.

Research on 3D CNNs for medical segmentation has 
also made substantial progress, with studies exploring 
both 2D slice-based methods and full 3D volumetric ap-
proaches. While 2D methods often overlook crucial inter-
slice information, 3D approaches utilize the entire data 
volume to produce improved segmentation outcomes. 
Although existing reviews on 3D CNNs [16-18] discuss 
various facets of 3D segmentation, our work focuses 
specifically on the application and methodological work-
flows of 3D CNN segmentation in medical imaging. Addi-
tionally, this study examines the use of 3D deep learning 
methods in lung imaging, where the modification or the 
improvement of the backbone networks will be catego-
rized and discussed. Further discussions are also added to 
address the network’s limitations and challenges. Finally, 
future directions in this field are proposed, highlighting 
areas for continued research and development. 

2. METHODOLOGY

This review was conducted by searching the Google 
Scholar and ScienceDirect databases for peer-reviewed 
journal articles and conference proceedings. Only Eng-
lish-language articles published between 2018 and 
2024 were selected. The search terms are set to "3D seg-
mentation" and "medical image," while exclusion criteria 
are set to omit books, newspapers, non-peer-reviewed 
articles, and any study that is not specifically focused on 
3D image segmentation within medical applications. Ini-
tially, 114 articles were identified, but the selection was 
refined to focus on papers discussing 3D deep learning 
algorithms (specifically 3D CNNs) applied to medical im-
age segmentation (see Fig. 2). Fig. 1 summarizes the lit-
erature review methodology.

Fig. 1. Literature Review Methodology
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3. MEDICAL IMAGE SEGMENTATION

This section begins with a general overview of the 
importance of medical image segmentation, followed 
by a discussion comparing the basic 2D CNN and 3D 
CNN methodologies. Figure 3 outlines the general 
steps in medical image segmentation using 3D CNNs, 
which include image pre-processing, region of inter-
est (ROI) identification, 3D CNN segmentation, binary 
mask generation, and image post-processing. Based on 
Figure 2, each stage of the research methodology em-
ployed in the selected papers is discussed, except for 
image segmentation, which is later analyzed in greater 
detail specifically for the lung imaging. This process 
provides a comprehensive understanding of the over-
all approach to 3D CNN segmentation in medical imag-
ing, with particular emphasis on lung imaging.

The development of automated segmentation algo-
rithms has been extensively researched in various ap-
plications. Recent advancements in the field of medical 
image processing have led to the emergence of several 
segmentation models that can be categorized broadly 
into three classes: 1) conventional image processing-
based algorithms, 2) machine learning-based algo-
rithms, and 3) deep learning-based algorithms.

Conventional semantic segmentation algorithms, 
such as edge-based methods, are commonly employed 
to identify borders within an image. These methods rely 
on gradient-based edge detection operators, includ-
ing Prewitt, Canny, Sobel, Roberts, and Laplacian filters. 
Despite its limitations, edge-based segmentation can 
be integrated with more advanced techniques to en-
hance its performance further. Besides that, local shape 
analysis has also been applied to segment lung patholo-
gies [19]. In this approach, a set of predefined generic 
shapes representing local pathologies is compared with 
the tested input data using a geodesic distance metric. 
Another method proposed by Cui et al. [20] employs a 
more sophisticated technique involving predefined fea-
tures through a boundary expansion approach. In this 
method, an initial seed representing the pathological 
region is defined, and color information is utilized to ex-
pand the region based on a fixed 20% threshold.

For machine learning-based category, it can be fur-
ther divided into two approaches which are supervised 
and unsupervised learning. Unsupervised learning, 
particularly clustering methods, partitions data into 
distinct groups based on inherent feature similarities. 
Among these, the K-means algorithm is one of the 
most widely utilized clustering techniques. In contrast, 
supervised learning through classification tasks relies 
on a labeled training dataset, where each data point is 
associated with a specific target ground truth. One of 
the most used supervised algorithms is the K-nearest 
neighbor (K-NN) classifier.

For the third category, the deep learning-based ap-
proach mainly leverages Convolutional Neural Network 
(CNN), which is known for its robust feature extraction 

capabilities that have demonstrated exceptional per-
formance in tasks such as natural image classification, 
object detection, and segmentation. As for the segmen-
tation task, Fully Convolutional Neural Network (FCNN) 
is one of the earliest semantic segmentation models 
that is particularly well-suited for medical image seg-
mentation tasks. These deep learning-based methods 
surpass traditional techniques in terms of robustness 
and accuracy, establishing themselves as the dominant 
approach in automatic medical image segmentation. 
Many medical image segmentation tasks have utilized 
the enhanced versions of the U-Net architecture, which 
is a symmetric network with skip connections between 
the encoder and decoder paths [21].

Fig. 2. The general flow of a 3D CNN segmentation. 
The dotted line boxes are not compulsory steps, 

while solid line boxes are compulsory steps.

4. 2D VS 3D CNN SEGMENTATION FOR 3D 
MEDICAL IMAGES

The application of deep learning-based segmenta-
tion to 3D medical images can be approached in two 
distinct ways. The first approach involves directly feed-
ing 3D imaging data into a 3D  CNN architecture. The 
second approach entails slicing the 3D imaging data 
into a series of 2D slices and inputting these individual 
2D slices into a 2D CNN architecture. While consider-
able research has focused on the second approach due 
to its lower computational requirements, the 3D CNN 
approach holds particular advantages for segmenta-
tion tasks, especially when dealing with boundaries 
and edges. This is because 3D CNNs retain more spa-
tial information by maximizing the interslice context, 
as compared to 2D methods, which may fail to capture 
important volumetric relationships across slices [22]. In 
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3D medical imaging, ROI often extends across multiple 
slices, making the interslice information critical. Addi-
tionally, 3D convolutional kernels can process data in 
all three spatial dimensions, as opposed to 2D convo-
lutional kernels which can only analyze data in two-
dimensional format [23].

The 2D U-Net architecture [24] which takes inspira-
tion from the fully convolutional network consists of 23 
layers in its symmetric encoder-decoder network. This 
architecture is typically divided into two segments: the 
down-sampling path (encoder) and the up-sampling 
path (decoder). During the down-sampling phase, con-
volutional and pooling layers are applied to the input 
image, generating feature maps at varying levels of 
abstraction. The up-sampling phase gradually restores 
the size of the feature maps by using deconvolutional 
layers. To recover the detailed information lost dur-
ing the down-sampling process, the feature maps are 
merged with corresponding higher-resolution feature 
maps from the encoder side. These up-sampling proce-
dures have been implemented in [25] to facilitate the 
reconstruction of 3D models. 

However, since much of medical imaging data is in-
herently three-dimensional, the application of a 2D 
U-Net network can lead to the loss of critical spatial 
information. Moreover, the two-dimensional structure 
of the network results in the loss of contextual informa-
tion during the down-sampling process [26] This limi-
tation can reduce the network's sensitivity to fine bor-
der details, as they are usually not effectively restored 
during the up-sampling phase. Consequently, there is 
a need to employ a three-dimensional network for fur-
ther optimization that may also contribute to the infor-
mation loss. Additionally, the input data must undergo 
slicing, where the 3D data is divided into multiple 2D 
slices. This process may reduce the network's accuracy, 
as the correlation between adjacent slices will be lost.

To address these challenges, Çiçek et al. [27] pro-
posed the 3D U-Net, which is an extension of the origi-
nal U-Net architecture by incorporating 3D convolu-
tional and pooling layers in the encoder side and 3D 
deconvolutional layers in the decoder side. However, 
the 3D U-Net only utilized three down-sampling lay-
ers due to the high computational cost, which limits its 
ability to extract deep-layer image features. This restric-
tion has resulted in reduced accuracy for certain medi-
cal image segmentation tasks. To overcome this chal-
lenge, Milletari et al. [28] introduced another model, 
the V-Net, which incorporates residual connections to 
enable deeper network architectures. Subsequently, 
over the years, numerous modifications and enhance-
ments have been proposed that significantly improve 
segmentation accuracy. 3D CNN-based segmentation 
methods have been successfully applied across a range 
of medical imaging applications, including head and 
neck [29], heart [30], lung [31], kidney [32], liver [33], 
brain [34, 35], and multi-organ segmentation [36], as il-
lustrated in Fig. 3.

The main contribution of this review paper is the discus-
sion of several categories of these model modifications, 
highlighting their contributions to performance improve-
ments. In subsequent sections, we discuss the limitations 
of these modifications and propose future research direc-
tions. These insights aim to guide future researchers in 
medical image processing and provide valuable perspec-
tives for healthcare professionals or clinicians.

Fig. 3. 3D CNN segmentation applications in the 
medical imaging field

5. THE SUMMARY OF THE INCLUDED PAPERS

Based on the findings from the included studies, it 
was observed that not all studies incorporated pre-pro-
cessing steps as part of their methodology as can be 
seen in Figure 2, despite its potential to enhance image 
quality and facilitate better feature extraction. This vari-
ability in methodology highlights differing approaches, 
with some studies relying entirely on the robustness of 
their 3D CNN models for effective segmentation. Gen-
erally, many studies employed single-stage segmenta-
tion pipelines where the 3D CNN directly processes the 
input images. In contrast, there are also studies that 
utilized a two-stage pipeline, which includes a prelimi-
nary Region of Interest (ROI) extraction step. This ad-
ditional ROI extraction stage allows the model to focus 
on specific areas of the image, potentially improving 
segmentation performance by reducing irrelevant and 
noisy data.

Studies that incorporated pre-processing techniques 
alongside 3D CNNs will be discussed in detail in Sec-
tion 5.1, with an emphasis on how these techniques 
contributed to improved model performance and seg-
mentation accuracy. In contrast, studies that utilized 
ROI extraction as part of their two-stage pipeline are 
analyzed in Section 5.2, highlighting the role of this ad-
ditional step in optimizing the segmentation process.

Moreover, Section 5.3 explores the contribution of 
post-processing techniques, which are integral steps in 
refining the segmentation outputs of 3D CNNs. This re-
spective section details how post-processing methods, 
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such as smoothing, morphological operations, or filter-
ing, are employed to enhance the quality of segmen-
tation results. By structuring the review analysis in this 
manner, this paper aims to present a comprehensive 
evaluation of the segmentation pipeline, specifically 
that pertains to 3D CNN methodologies.

There are several significant trends that have been 
identified with regard to the design of 3D CNN architec-
tures to address specific challenges of medical imag-
ing dataset characteristics, such as low contrast, noise, 
or irregular anatomical structures. The adaptability of 
these architectures reflects their targeted approach 
to overcoming image-related limitations, emphasiz-
ing the importance of architectural customization in 
achieving effective segmentation outcomes.

In Table 1, we also categorize the segmentation meth-
ods based on their backbone networks. The backbone 
network serves as a reference framework for under-
standing how these approaches are classified. The iden-
tified backbone networks can be generally grouped into 
3D U-Net, 3D FCN, 3D CNN, V-Net, and others. It was ob-
served that most of the segmentation models are based 
on 3D U-Net, highlighting its popularity in medical im-
age segmentation tasks. This preference is likely due to 
its symmetric encoder-decoder structure, which is par-
ticularly effective for capturing multi-scale contextual 
information and maintaining spatial precision which is 
crucial for medical imaging applications.

In addition to 3D U-Net, Fully Convolutional Network 
(FCN) architectures are also frequently employed. FCN 
eliminates the fully connected layers on the decoder 
side, enabling pixel-wise predictions and making them 
suitable for dense segmentation tasks. Meanwhile, vanil-
la Convolutional Neural Networks (CNNs), which are the 
foundational architecture for image analysis, have been 
adapted to 3D applications for volumetric segmenta-
tion but often lack the multi-scale feature aggregation 
of U-Net variants. Furthermore, V-Net is another promi-
nent backbone utilized in medical segmentation. It is a 
3D extension of the U-Net design, incorporating residual 
connections to enhance gradient flow during training, 
which is particularly beneficial for deeper networks. 

In summary, while 3D U-Net remains the dominant 
choice due to its proven effectiveness, architectures like 
FCN, vanilla CNN, and V-Net provide additional options, 
catering to specific requirements of segmentation tasks. 
Given the focus of this review on 3D CNN-based segmen-
tation methods, a substantial portion of the discussion is 
dedicated to lung imaging applications. These methods 
serve as a representative example of the capabilities and 
variations inherent in 3D CNN-based approaches, mak-
ing them an ideal case for an in-depth analysis of seman-
tic segmentation strategies. This section will explore the 
categories and limitations of 3D CNN architectures, as 
well as highlight the available public lung imaging data-
bases that are commonly used in this field.

Table 1. Summary of the included papers

Reference Pre-Processing ROI 3D Backbone Network Post-Processing

Zhang et al. [21] x  UNET x

Xu et al. [37] x x VNET x

Shi et al. [38] ×  UNET x

Li et al. [39]  x UNET x

Jin et al. [40]  x UNET 

González Sánchez et al. [41]  x UNET x

Dalvit Carvalho da Silva et al. [42] x  UNET x

Ren et al. [29]   CNN x

Nikan et al. [43]  x FCN x

Gao et al. [44]  x UNET x

López-Linares Román et al. [30]  x VNET + FCN x

Chen et al. [45]  x UNET x

Brahim et al. [46]   UNET x

Zhang et al. [47]  x UNET x

Yang et al. [48] x x UNET x

Xiao et al. [49]   UNET x

Wang et al. [50] x  VNET x

Wang et al. [51] x x UNET x

Hussain et al. [52]  x UNET x

Hossain et al. [31]  x CNN 

Zhao et al. [32]   UNET 

Yang et al. [53]  x CNN x

Kang et al. [54]   UNET 

Yang et al. [55], [55] x  FCN 

Zheng et al. [56]   UNET x

Xu et al. [57]  x CNN x

Meng et al. [58]  x CNN 

Hu et al. [59]  x CNN 
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Reference Pre-Processing ROI 3D Backbone Network Post-Processing
Deng et al. [60]  x CNN x

Alalwan et al. [33]  x UNET x

Qayyyum et al. [61] x x CNN x

Subramaniam et al. [62] x x UNET x

Sharrock et al. [63]  x VNET x

Saleem et al. [64]  x UNET x

Niyas et al. [65]  x UNET x

Liang et al. [66]  x UNET x

Li et al. [35]  x UNET x

Radiuk et al. [67]  x UNET x

Lin et al. [68] x x UNET x

Feng et al. [36]   CNN 

Yousefi et al. [69]  x UNET x

Souadih et al. [70] x  CNN 

Dai et al. [71]  x CNN x

Chen et al. [72]  x CNN x

Chao et al. [73]  x CNN x

Baldeon et al. [74]  x CNN 

Liu et al. [75]  x CNN x

Hua et al. [76] x x UNET x

Wang et al. [77]   UNET x

Ao et al. [78]  x CNN x

Ding et al. [79]  x UNET x

Xiao et al. [80] x  CNN x

Yang et al. [81]  x CNN x

Yang et al. [82]  x UNET 
VNET x

Chen et al. [83] x x
UNET 

INCEPTION 
RESNET

x

Bose et al. [84]  x UNET x

Singh et al. [85]   CNN x

5.1. IMAGE PRE-PROCESSING

According to Table 1, it appears that most studies for 
semantic segmentation of medical imaging do include 
pre-processing steps as part of their methodology. 
To enhance the effectiveness of the training process, 
3D medical images are typically preprocessed before 
being fed into a CNN model. This preprocessing step 
helps in improving the input data quality due to the 
presence of unknown noise within the patient’s body, 
which may introduce artifacts. These artifacts can result 
in unnatural intensity variations, significantly affecting 
image quality. The outlier voxels generated by these ar-
tifacts can negatively impact the performance of deep-
learning models during the training process [32]. As 
a result, several preprocessing techniques have been 
proposed, including voxel intensity normalization and 
data augmentation.

Voxel value normalization is commonly applied to 
CT scan images, as each type of tissue in the scan cor-
responds to a distinct Hounsfield unit (HU) value. Nor-
malizing the HU scale or applying window clipping 
enhances the features of the target organ, thereby 
improving the quality of the training process [29], [30]. 
Each organ would return different HU scale clipping, 
for example, head and neck values are in the range of 
[-200 200] [29], while a lung CT scan would be in the 

range of [-1000 400] and a kidney CT scan would be in 
the range of [-100 30] [49].

Data augmentation is another widely used tech-
nique to address the challenge of limited training data, 
a common problem in medical image research [33, 41, 
43, 45, 54]. Image augmentation involves generating 
synthetic data to supplement the existing real dataset, 
which can be achieved through both simple and com-
plex data generation methods. Simple augmentation 
techniques include basic image processing operations 
such as translation, rotation, zooming, and flipping 
[86]. In contrast, more complex augmentation meth-
ods may involve the use of Generative Adversarial Net-
works (GANs) to generate new data based on specific 
conditions [87]. Additionally, for brain imaging, skull 
stripping techniques have been employed to improve 
segmentation accuracy, as demonstrated in studies by 
[63], [64], [65], and [66].

5.2. REGIONS OF INTEREST EXTRACTION

Instead of feeding raw input data directly into the 
3D CNN architecture, some researchers have chosen 
to apply ROI extraction approach before the 3D CNN 
segmentation as you can see in the figure 3. In this 
method, only a subset of the raw data, specifically the 
extracted ROI, is input into the 3D CNN model [32]. 
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The primary goal of this approach is to reduce the 
complexity of the segmentation process and lower 
computational costs. ROI extraction also serves as an 
initialization step for subsequent segmentation stages. 
A notable research trend involves the use of a two-
stage CNN segmentation process, where ROI extrac-
tion typically focuses on anatomical lesions.

Table 2. ROI extraction methodologies

Type of ROI Purpose of ROI Reference

Automatic

Region Selection/  
organ localization

[21, 36, 38, 40, 44, 46, 
50, 55, 56, 70, 77]

Organ segmentation [42]

Manual

Region selection [29, 85]

Fixed region selection [31]

Statistical calculation [80]

For instance, Zhang et al. [21] implemented a two-
stage segmentation approach, where the first stage 
involves a coarse ROI extraction, followed by a refine-
ment stage that produces the binary output maps. In 
their study, automated ROI extraction is performed 
using a 3D-DMFNet, which detects the femur region 
and removes irrelevant areas, thus reducing memory 
usage for the latter refinement stage, which is carried 
out by the 3D ResUNet model. Similarly, Jin et al. [40] 
performed both localization and segmentation of the 
frontal vertebrae slices, utilizing the intensity patterns 
of the vertebrae for RoI extraction via the U-Net archi-
tecture. The concept of employing organ localization 
methods is commonly applied as a coarse-to-fine seg-
mentation approach, where the organ is first localized, 
followed by lesion segmentation using a series of CNN 
networks. A limitation of this approach is that the ac-
curacy of lesion segmentation is heavily dependent on 
the input from the automated ROI extraction process.

In contrast, Ren et al. [26, 29] employed manual an-
notation for ROI extraction, utilizing multi-atlas-based 
segmentation methods. While the studies in [28, 31] 
relied on the researchers' prior knowledge of the lung's 
location, opting for fixed region selection on each 
slice. This also applied in [85], the authors proposed a 
method to manually enhance sharp edges and shapes 
around the anomalous region of CT scans before input-
ting them into the 3D CNN. Additionally, due to the 
small size of the hippocampus, other research has fo-
cused on statistical location-based methods, perform-
ing cropping based on calculated regions [80]. 

5.3. IMAGE POST-PROCESSING

Although, in theory, post-processing should not be 
required for the CNN model since they are designed to 
leverage all relevant information to generate optimal 
results, current network architectures are unable to ex-
plicitly enforce certain output constraints, such as 3D 
connectivity and shape conformity. Therefore, further 
research is needed to integrate such constraints into 

the design of network structures. Additionally, overfit-
ting remains a concern, which makes post-processing 
steps essential for rule-based methods. In this study, 
a simple 3D connectivity analysis was employed to 
remove small, isolated regions. Gaussian smoothing 
was also applied to improve specific cases, while the 
probability output from the network was utilized to as-
sess the reliability of the segmentation maps, enabling 
case-specific post-processing adjustments [36].

Jin et al. [40] proposed methods to reduce false posi-
tives by excluding small predictions (i.e., those under 
200 voxels) and refining the segmentation through bi-
nary conversion and connected component analysis. 
Their approach incorporated mask padding and ap-
plied an optimal threshold of 0.75. They also used mor-
phological operations, such as dilation and erosion, to 
eliminate noise and small patches, resulting in a more 
than 50% reduction in false positives across various 
models [31].

Zhao et al. [32] employed a post-processing tech-
nique based on kidney anatomy, retaining only those 
tumor components connected to the kidneys, which 
significantly enhanced the segmentation performance. 
In a related study [28], segmentation results were bina-
rized, with a focus on the two largest connected com-
ponents. Morphological operations were applied to 
improve accuracy, particularly for small tumors, lead-
ing to an improvement of 1.77% and 2.82% in renal tu-
mor segmentation for different training models.

In a study by Yang et al. [55], input volumes were lim-
ited to 64 slices, requiring the division of regions into 
smaller sub-volumes. The segmentation process was 
refined using majority voting and a 3D conditional ran-
dom field (CRF) algorithm to correct misclassifications. 
Similarly, Meng et al. [58] employed fully connected 
CRFs (FC-CRFs) to refine segmentation boundaries, uti-
lizing CT values and category labels for improved accu-
racy. In the work of Hu et al. [59], morphological opera-
tions were applied to align segmented liver tissues with 
manual annotations. However, challenges remained in 
distinguishing organs with similar intensity values, as 
highlighted by Souadih et al. [70]. In their approach, pri-
or anatomical knowledge combined with mathematical 
morphology was used to accurately locate the sphenoid 
sinus, with final segmentations confirmed through larg-
est connected component analysis [74].

6. 3D CNN SEGMENTATION FOR LUNG IMAGING

This section explores various 3D deep-learning tech-
niques applied to lung imaging. Segmenting lung re-
gions is a critical step in the screening and diagnosis 
of lung-related diseases, such as COVID-19, pneumo-
nia, lung cancer nodules, and other medical conditions 
[82]. The analysis highlights the unique segmentation 
challenges posed by each lung disease and how 3D 
CNN-based algorithms are designed to address these 
issues, as depicted in Fig. 4 and Table 1.
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Fig. 4. 3D CNN modifications of segmentation 
models applied to lung imaging

The reviewed studies categorized 3D CNN segmen-
tation approaches based on their architectural back-
bones, including U-Net, FCN, CNN, and V-Net, with U-
Net being the most frequently employed. The analysis 
of these models will focus on the modification steps 
applied to these backbone architectures that aim to 
enhance segmentation performance and overcome in-
herent model limitations, often referred to as algorith-
mic advantages. This section emphasizes lung imaging 
as a representative use case, as techniques applied to 
this application are applicable to other medical imag-
ing scenarios. The backbone modifications discussed 
include dense connections, hybrid CNN methods, mul-
tiscale features, separable convolutions, feature atten-
tion mechanisms, deep supervisions, and others. Some 
studies fall into multiple modification categories, as re-
searchers often combined and tailored their models to 
meet specific objectives or segmentation goals.

6.1. BACKBONE MODIFICATIONS

Many lung lesions are small in size, presenting chal-
lenges for segmentation models like U-Net, which is 
known to be less effective for fine-grained cases. As a 
result, several studies proposed significant backbone 
modifications to address these issues. For instance, in 
[49], a 3D-UNet architecture was enhanced with a 3D-
Res2Net module. This hierarchical connection network 
improves multi-scale feature extraction, capturing finer 
details and reducing the likelihood of vanishing or ex-
ploding gradient problems. The inclusion of 3D-SE 
blocks recalibrates channel weights, which further opti-
mizes feature representation. The modified architecture, 
termed as 3D-Res2UNet, achieved a Dice coefficient of 
95.30% on the LUNA16 dataset, surpassing the baseline 
3D-UNet (89.12%) and 3D-UNet+CRF (93.25%).

In [83], a multiscale block called MSCblock replaced 
3D convolution blocks within U-Net. Inspired by the 
Inception-ResNet architecture, this approach com-
bined parallel convolutional layers of different kernel 
sizes and identity mappings, enhancing the multi-
scale feature capability of the model with a more effi-
cient training process. The MSDS-Unet [48] integrated 
ResNet modules at each block of a 3D U-Net, enabling 
the network to capture inter-slice continuity and learn 
richer feature representations. A two-pathway deep su-
pervision mechanism improved gradient flow, leading 
to better segmentation performance. These enhance-
ments addressed key challenges like vanishing gradi-
ents and insufficient feature representation, making 
the network robust for complex tasks such as lung tu-
mor segmentation.

Other notable modifications include the SegSEUNet 
architecture [47], which incorporated Recombination 
and Recalibration Modules (RRM) with SegSE blocks. 
This embedding enhanced both spatial and channel 
recalibration, focusing more on tumor-relevant re-
gions while suppressing irrelevant features. SegSEUNet 
achieved a Dice coefficient of 0.806 ± 0.120, outper-
forming traditional SE blocks (0.740 ± 0.144).

The study in [50] proposed an adaptation of V-Net 
using Parametric ReLU (PReLU) activations and Coord-
Conv layers, which incorporated positional awareness 
that is critical for pulmonary lobe segmentation. The 
model achieved an average Dice coefficient of 0.947, 
significantly surpassing the baseline V-Net model 
(0.795).

Finally, in [52], a modified 3D U-Net with residual con-
nections was employed for volumetric segmentation. 
This approach stabilized gradient flow and effectively 
learned from sparse expert-annotated data, improving 
the model's Dice scores from 0.730 ± 0.066 (baseline) to 
0.763 ± 0.069, when it is combined with gradient-based 
active learning strategies.

6.1.1. DENSE CONNECTIONS

The integration of a dense Conditional Random Field 
(CRF) framework significantly improved the segmenta-
tion model’s ability to delineate precise tumor bound-
aries. For instance, in [47], the CRF refined segmenta-
tion probability maps across scales, mitigating bound-
ary inaccuracies and enhancing spatial consistency. The 
Dice coefficient improved from 0.842 ± 0.082 to 0.851 ± 
0.071, and the Positive Predictive Value (PPV) increased 
from 0.900 ± 0.107 to 0.917 ± 0.101. Dense connections 
within the 3D-Res2Net module also ensured efficient 
gradient flow, enabling superior performance for small 
and irregular nodules.

6.1.2.  HYBRID CNN METHODS

The hybrid CNN modifications come in various 
strategies such as cascading more than one CNN and 
combining multiple parallel CNNs, which have been 
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proposed to address the main limitations of a single 
CNN model. One common approach is coarse-to-fine 
segmentation, where a coarse segmentation model 
provides input for a fine segmentation network. For 
example, in [83], the authors employed a lightweight 
3D CNN to capture long-range contextual information 
and a 2D CNN for fine-grained semantic details. The 
two networks were fused using a hybrid feature fusion 
module, which improved computational efficiency and 
segmentation accuracy. The proposed Hybrid Segmen-
tation Network (HSN) achieved a mean Dice score of 
0.898, outperforming standalone 3D CNNs (0.844) and 
2D CNNs (0.751).

Another coarse-to-fine approach was proposed in 
[49], where lung parenchyma was first segmented to 
isolate the region of interest, followed by a detailed 
segmentation of lung nodules using a 3D-Res2UNet. 
This method reduced the influence of surrounding tis-
sues, leading to improved segmentation accuracy for 
small lesions.

Another hybrid method is the pseudo-3D approach, 
where 2D feature maps are stacked and processed us-
ing 3D convolutions. For instance, in [31], the LungNet 
framework used stacked 2D slices fused via 3D convo-
lutions, achieving a Dice coefficient of 70.39, outper-
forming traditional U-Net and LungNet models while 
maintaining computational efficiency. 

6.1.3. MULTISCALE FEATURES

The variation in object sizes and shapes in medical 
images necessitates the implementation of multi-scale 
feature extraction. In [84], the D3MSU-Net architecture 
employed dense dilated convolutions with varying 
dilation rates to expand the receptive field without in-
creasing the size of the parameters. This design effec-
tively captured multi-scale spatial features, enhancing 
segmentation accuracy for diverse biomedical datas-
ets. Similarly, MSDS-Unet [48] used multi-scale deeply 
supervised learning, combining features at different 
scales to handle heterogeneous tumor characteristics, 
particularly for small and big-sized tumors.

A multi-scale strategy was also employed in [41], 
where image cubes of varying dimensions were pro-
cessed through separate SegSEUNet models. The resul-
tant output maps were further refined using a dense 
CRF method, resulting in improved segmentation per-
formance. Ablation studies revealed that removing the 
multi-scale strategy reduced the Dice coefficient from 
0.851 ± 0.071 to 0.820 ± 0.115, highlighting its effec-
tiveness.

6.1.4. SEPARABLE CONVOLUTIONS

Deep learning architectures often face challenges 
due to high computational costs, requiring the devel-
opment of efficient methods to mitigate these issues. 
Separable convolution has emerged as one of the main 
techniques used to reduce computational cost and the 

number of parameters. For instance, the S3D method 
proposed in [83] replaces a full 3D convolution with 
two consecutive layers: a 2D convolution to capture 
spatial features and a 1D convolution to extract tem-
poral features. This approach effectively decouples the 
learning process into spatial (inter-slice) and temporal 
(intra-slice) components. Compared to models utilizing 
full 3D convolutions, the S3D approach demonstrates 
superior performance, achieving a 1.1% improvement 
in Dice evalution. 

6.1.5. FEATURE ATTENTION MECHANISMS

Attention mechanisms play a critical role in the seg-
mentation model, particularly in recalibrating feature 
maps for tumor regions. The SegSE block [47], which 
is a novel extension of SE blocks, adds spatial reca-
libration for voxel-specific attention. This mechanism's 
performance surpasses conventional channel-only 
recalibration in SE blocks, making it more suitable for 
segmentation tasks. Comparative studies in the paper 
demonstrate that SegSE blocks yield better perfor-
mance than CBAM and SE mechanisms, with a Dice 
coefficient improvement from 0.740 ± 0.144 (SE) and 
0.751 ± 0.179 (CBAM) to 0.806 ± 0.120.

Another approach used the 3D-SE blocks, which are 
integrated into the Res2Net modules that act as at-
tention mechanisms, enhancing feature map focus by 
reassigning channel-wise weights. This mechanism im-
proves the model's sensitivity to small or irregular lung 
nodules, resulting in better segmentation accuracy 
even for edge features. For example, the proposed net-
work accurately segments smooth ellipse-like and jag-
ged edges, contributing to its high Dice score as shown 
in [49].

6.1.6. DEEP SUPERVISIONS

Deep supervision is a core innovation in the MS-
DS-Unet [48] architecture. By integrating multi-level 
supervision mechanisms, the network incorporates 
direct side outputs from hidden layers alongside aux-
iliary tasks. This approach ensures an effective learning 
process across different stages of the network. The use 
of hard fusion and soft fusion strategies combines lo-
cal and global losses, resulting in more accurate seg-
mentation labeling. Furthermore, the deep supervision 
mechanism allows the network to better handle multi-
scale features and provides consistent improvements 
in segmentation accuracy.

6.1.7. OTHERS 

A unique contribution in [50] is the use of Coord-
Conv layers, which enhance the conventional convo-
lution operator by adding three additional channels 
that correspond to the x, y, and z coordinates. These 
added channels enable the model to leverage spatial 
location as a "soft constraint," significantly reducing 
errors in segmenting lobes with overlapping or indis-
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tinct boundaries. The inclusion of CoordConv layers 
improved the overall Dice coefficient from 0.795 (base-
line) to 0.916. For example, the left-upper lobe Dice co-
efficient increased from 0.859 to 0.958 with this modi-
fication.

A key innovation of another study in [52] is the in-
troduction of gradient-based sample weighting mech-
anisms to address the noise in machine-generated 
pseudo-annotations. The first mechanism evaluates 
gradient similarity, which reflects the alignment of 
gradients between pseudo-labeled data and expert-
annotated validation data, emphasizing sample trust-
worthiness. The second mechanism assesses gradient 
magnitude to measure the informativeness of training 
samples by identifying those that provide new infor-
mation to the model. By combining these strategies, 
the model dynamically prioritizes the most reliable and 
informative samples during the training process. This 
approach increased the Dice score from 0.607 (using 
only gradient similarity) to 0.616 when both strategies 
were employed on a challenging dataset.

To reduce dependency on extensive expert annota-
tion, the method in [52] incorporates a noisy teacher-
based active learning strategy. Machine-generated 
pseudo-labels from the noisy teacher are used to anno-
tate unlabeled data, while a query function adaptively 
selects the most informative samples for training. By 
combining gradient similarity and magnitude weights, 
the model eliminates less trustworthy samples, ensur-
ing a more accurate optimization process. This strategy 
significantly enhanced segmentation performance, 
with Dice scores improving from 0.590 (semi-super-
vised learning alone) to 0.621 when active learning 
was applied to the Challenge data. While the model's 
performance on the Benchmark dataset with the active 
learning strategy managed to further improve the Dice 
score from 0.756 ± 0.085 to 0.763 ± 0.069. 

6.2. CURRENT RESEARCH LIMITATION / 
  CHALLENGES IN LUNG IMAGING 

Based on the previous discussion, it is evident that 
various deep learning-based 3D CNN segmentation 
methods have demonstrated promising outcomes in 
generating medical imaging segmentation maps. At 
the same time, it can be concluded that researchers 
have introduced diverse approaches to enhance the 
performance of basic algorithms. Additionally, it should 
be noted that there are several limitations observed in 
the field of medical image segmentation, particularly 
when dealing with challenges such as small lesion size 
that often causes class imbalance, and poor image 
quality, which is normally encountered in certain mo-
dalities like CT scans.

Firstly, architectural constraints within these algo-
rithms pose a huge challenge. The absence of self-
adaptive mechanisms often restricts the model's ability 
to achieve optimal performance across diverse datas-

ets. Additionally, certain 3D CNN architectures, such as 
those proposed in [47], exhibit deficiencies in captur-
ing fine contour details, leading to inaccuracies in seg-
menting complex anatomical structures.

A significant challenge also lies in multiscale feature 
learning. Many diseases exhibit multiscale character-
istics, requiring the models to effectively capture fea-
tures across varying scales. Despite efforts to integrate 
multiscale modules, current methods often struggle to 
accurately learn details across scales, particularly in de-
tecting small tumors, where features may be subtle and 
highly variable. While other multiscale techniques such 
as waterfall connections have also been explored [49], 
their utility remains largely confined to specialized ap-
plications, such as small tumor detection, rather than 
providing generalizable solutions applicable across a 
broad range of clinical scenarios. Another prominent 
limitation of this 3D network is the high computational 
demands to efficiently execute the deep CNN mod-
els. As these models grow increasingly complex with 
many layers, coupled with advanced modules such as 
squeeze blocks and multiscale pathways, the compu-
tational burden and training time of this 3D model has 
increased significantly. The requirement for extensive 
computational resources may render effective deploy-
ment in clinical environments impractical due to the 
limited access to high-performance computing infra-
structure [28, 31, 47, 49].

Data scarcity in the medical field also presents a 
significant challenge. High-performing deep learning 
models require large and well-annotated datasets for 
optimal training processes. However, several factors 
such as privacy concerns, the labor-intensive nature 
of annotation, and the limited availability of publicly 
accessible datasets often impede the development 
of robust models. This data shortage issue can lead to 
overfitting and diminished generalizability problems, 
thereby reducing the algorithm’s effectiveness across 
diverse patient populations [28, 88].

In conclusion, despite notable advances in the use of 
3D CNNs for medical image segmentation, the field still 
faces several challenges, including architectural limita-
tions, difficulties in multiscale feature extraction, high 
computational demands, and constrained data avail-
ability. Overcoming these obstacles will necessitate 
continued research into adaptive and resource-effi-
cient algorithms, potentially benefiting from increased 
collaboration between the fields of computer science 
and medicine. This topic will be discussed in the next 
section. 

6.3 FUTURE RESEARCH RECOMMENDATIONS 
 IN LUNG IMAGING

From the findings in section 6.2, there are several fu-
ture research directions that should be explored, which 
are further discussed in the following subsections. 
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6.3.1. Challenges in Medical Image 
 Segmentation Dataset

A primary challenge in medical image segmentation 
lies in the availability of data. Due to strict privacy con-
cerns surrounding patient information, open access 
to medical datasets remains limited. It is imperative to 
revisit and refine protocols for data protection to fa-
cilitate the use of anonymized datasets without com-
promising patient confidentiality. Addressing this issue 
could significantly benefit the research community. 
Additionally, there is a notable scarcity of volumetric 
data necessary for training robust deep-learning mod-
els. Collaborative efforts between healthcare institu-
tions, domain experts, and image-processing research-
ers are essential to expand the availability of such data. 
Establishing training programs for postgraduate stu-
dents under the guidance of clinical investigators, who 
are experts in specific diseases, may also support data 
collection efforts.

Another pressing issue is the labor-intensive and 
time-consuming process of creating annotated ground 
truth data. Semi-supervised learning techniques and 
transfer learning can be leveraged to mitigate this limi-
tation. Pretrained deep learning models, for instance, 
can effectively reduce the demand for large annotated 
datasets by utilizing knowledge transfer across related 
domains.

6.3.2. Advancements in Network 
 Architecture

Currently, most network architectures for medical 
image segmentation are heavily based on U-Net, which 
has demonstrated excellent performance in various ap-
plications. However, exploring alternative backbones, 
such as HRNet, could reveal additional potential. More-
over, reconsidering the parameter size within these 
architectures is also crucial. Increasing complexity by 
simply adding more parameters is not always efficient. 
Strategies like pyramid pooling and dilated (atrous) 
convolutions have emerged as promising alternatives. 
Dilated convolutions, in particular, help address mul-
tiscale challenges, as diseases often present lesions 
of varying sizes and shapes depending on their stage. 
However, careful investigation of dilation rates is nec-
essary to avoid the "gridding" effect that arises when 
large dilation rates are used.

As networks grow more complex, the associated in-
crease in computational cost must also be considered. 
Depthwise separable convolutions offer a potential solu-
tion by significantly reducing the number of parameters, 
which is particularly advantageous for 3D medical imag-
ing applications. While reduced parameters will lower 
computational demands, researchers must ensure that 
model performance and accuracy are not compromised. 
Balancing these trade-offs may involve integrating tech-
niques like attention mechanisms or deep supervision 
to maintain existing model performance.

6.3.3. Generalization of Deep Learning 
 Models

A significant limitation of current deep learning mod-
els is their generalizability across various conditions. 
Most models are developed and tested using data from 
a single source, which limits their ability to generalize 
across different conditions that may be encountered 
when varying imaging instruments and configurations 
are used to capture the images. Expanding studies to 
include multicenter datasets could greatly enhance 
model robustness and applicability.

Additionally, many current research often focuses on 
the segmentation of a single organ or modality. Broad-
ening this scope to include multiple organs or multi-
modal imaging data for specific diseases could yield 
more versatile and generalized models. Encouraging 
healthcare institutions to collect multimodal datasets 
for particular organs or diseases would further support 
this research direction and open new avenues for auto-
mated medical screening and diagnosis.

6.4 PUBLIC LUNG CLINICAL DATASETS

Most of the research studies utilized public datasets 
and a few of them mixed with private datasets. Usually, 
public datasets are the preferred dataset for compari-
son purposes so that the generalizability capability of 
the tested algorithms can be compared fairly [47, 48, 
50, 88, 89] shown in table 2.   It is also important to con-
sider privacy concerns in the medical field, which limit 
the availability of certain datasets. However, recent 
trends show that the use of private datasets has be-
come increasingly important. Most of the public data-
sets are not too big in numbers, highlighting the need 
for a hybrid approach of combining public and private 
datasets to support a more effective training process of 
deep learning models. This strategic combination ap-
proach also helps address the challenges of overfitting 
and class imbalance, ultimately enabling the models to 
produce better generalization capability in medical re-
search and applications. 

Table 2. Public Lung Clinical Datasets

Public Datasets Segmentation Tasks Studies that utilize 
the dataset

NSCLC-Radiomics Lung Tumor [31, 47]

LIDC Lung Tumor [47]

LUNA 16 Lung Nodule [36, 48, 88]

COVID-19 – Ma et al. Covid-19 Lesion [89]

COVID-19 Challenge Covid-19 Lesion [89]

7. CONCLUSION 

This review provides a valuable foundation for those 
new to the application of 3D CNNs in medical image seg-
mentation. It offers the public health communities and 
computer science researchers, a clearer understanding 
of both the advantages and limitations of automated 
segmentation, particularly within the context of lung 
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disease segmentation tasks. While no single "optimal" 
method currently exists for segmenting medical images, 
this paper presents a comprehensive overview of recent 
advancements in 3D CNN research, serving as a basis for 
future progress in the field. However, it is crucial to rec-
ognize that the deployment of 3D CNN models on real-
world datasets remains a significant challenge. To address 
this, there is an urgent need to amass larger datasets for 
model training and to explore the potential of syntheti-
cally generated data. Furthermore, the development of 
more robust algorithms that are capable of effectively ad-
dressing the multiscale problem is very crucial, given that 
the variations in lesion and organ sizes across different 
disease stages differ significantly. This underscores the 
importance of collaboration between image processing 
researchers and medical professionals to refine the devel-
oped 3D CNN models, ensuring they are aligned with the 
objectives of having effective and efficient support tools 
for screening and diagnosis purposes. By fostering such 
interdisciplinary collaboration, significant strides can be 
made in improving the accuracy and efficacy of medical 
image analysis in three dimensions.
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